中考数学知识点总结-第六章函数及其图像

合集下载

二次函数与圆总结(经典)

二次函数与圆总结(经典)

二次函数与圆总结(经典)-CAL-FENGHAI.-(YICAI)-Company One1二次函数 济宁附中李涛考点一、二次函数的概念和图像 (3~8分)1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:1、二次函数的性质函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像a>0a<0性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=a b 2-,顶点坐标是(ab2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab 2-时,y 有最小值,ab ac y 442-=最小值(1)抛物线开口向下,并向下无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(ab 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=a b 2-时,y 有最大值,a b ac y 442-=最大值 2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义: a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。

北师大版九年级上册数学第6章2反比例函数的图像与性质(3课时)(共37张PPT)

北师大版九年级上册数学第6章2反比例函数的图像与性质(3课时)(共37张PPT)

y
(1)求这个一次函数的解析式; (2)求POQ的面积.
Q o
P
x
3.如图,已知一次函数y kx b的图象与反比例函数 8 y 的图象交于A, B两点, 且点A的横坐标和点B x y 的纵坐标都是 2. A
求 : (1)一次函数的解析式 ; (2)AOB的面积 .
O B
x
k 4.如图, O是坐标原点, 直线OA与双曲线y 在第一象限内交于 x 1 点A, 过A作AB x轴, 垂足为B, 如果OB 4( AB : OB ) . 2 y
1.①在左图中任意做一条直线y=kx(k>0) ②在图中找出直线与双曲线的交点坐标 是 。 ③你从正比例函数的图像和反比例函数 图像的交点坐标中发现什么规律了吗?
2.如图所示,你能求出直线 6 y= 曲 x 线 的交点坐标吗?
3 y= x-2 4
与双
1、与坐标轴的交点 问题: 无限趋近于x、y轴, 与x、y轴无交点。 2、与正比例函数的 交点问题: 可以利用反比例函 数的中心对称性。 3、与一次函数的交 点问题: 列方程组,求公共 解,即交点坐标。
D (4,0)
画图象
(3)画反比例函数图象注意事项:
①列表:以0为中心,对称性取值(相反数)。填y值时, 只需计算右侧函数值,另一侧取相反数即可 有界取值, 无界省略。
②描点:先描一侧,另一侧根据中心对称的性质去找点; ③连线:平滑地按从左到右的顺序连接各点并延伸,有逐 渐靠近坐标轴的趋势,但永不相交. 指数为1,直线连接;指数非1,曲线连接。
A.S = 1
B.1<S<2
C.S = 2
D.S>2
4.如图:A、C是函数 的图象上任意两点, 过A作X轴的垂线,垂足为B;过C作y轴 的垂线,垂足为D,记Rt△AOB的面积为S1 Rt△OCB的面积为S2,则 A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定.

中考数学专题复习 函数及其图像

中考数学专题复习 函数及其图像

中考数学专题复习函数及其图像考点3.1 位置与坐标序号考查内容考查方式学习目标考点位置与坐标坐标与象限1、坐标值的几何意义2、特殊点的坐标特征3、两点之间距离的求法4、能根据图形建立适当坐标系并写出关键点的坐标5、能根据点的坐标值确定其余各点的坐标6、用极坐标表示点的位置考点3.2 函数的表示序号考查内容考查方式学习目标考点一函数的取值范围分式或根式何时有意义考点二函数及其图像实际问题与函数图像1、能根据具体情况识别函数图象2、能从函数图象中读出关键信息考点3.3 一次函数序号考查内容考查方式学习目标考点一一次函数图像和性质一次函数图像和性质综合应用1、能熟练判断出图像中的k b取值范围2、能根据k,b的取值范围熟练画出函数图象的草图3、能判断出函数图的共存4、能用待定系数法熟练求出函数解析式过程完整考点二一次函数的应用结合一次函数图像解决实际问题1、能正确解释交点坐标在实际问题中的意义2、能正确分割三角形和多边形的面积进而求出其面积3、能正确理解和应用简单的分段函数图象及其代表的意义考点3.4 反比例函数序号考查内容考查方式学习目标考点一反比例函数解析式的确定确定比例系数1、能从不同的表达式中分离出比例系数2、能根据比例系数画出函数草图待定系数法求解析式利用比例系数的几何意义确定反比例函数解析式k值的几何意义反映到函数中要结合具体的象限来确定值k考点二反比例函数的应用一次函数与反比例函数的综合应用考点3.5 二次函数序号考查内容考查方式学习目标考点一二次函数图像和性质确定二次函数图像的对称轴和顶点、与x轴的交点的坐标1、能准确化为一般形式,并指出其系数2、能熟练进行配方写出其顶点坐标式3、能熟练从三种解析式几个方面值的确定考点二二次函数的应用画二次函数图像及应用能熟练画出草图并进行分析应用考点三二次函数与实际问题(二次函数的应用题)确定解析式、求极值(解答题)能根据已知条件熟练写出解析式,并进行五个方面的相关计算考点3.6 用函数观点看方程(组)和不等式序号考查内容考查方式学习目标考点一函数与方程二次函数与一元二次方程理解二次函数与一元二次方程的联系,并能正确地将二次函数问题转化为一元二次方程,能用一元二次方程的根解释图象中的交点坐标考点二函数与不等式一次函数与一元一次不等式1、能根据图象正确判断不等式的解集2、理解交点坐标的意义3、能根据交点坐标正确写出方程或方程组反比例函数与不等式一次函数、反比例函数与不等式同上。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

浙江省杭州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质

浙江省杭州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质

[中考12年]杭州市2001-2012年中考数学试题分类解析专题6:函数的图像与性质一、选择题1. (2001年浙江杭州3分)若所求的二次函数图像与抛物线2y 2x 4x 1=--有相同的顶点,井且在对称轴的左侧,y 随着x 的增大而增大,在对称轴的右侧,y 随着x 的增大而减小,则所求二次函数的解析式为【 】.A .2y x 2x 5=-+-B .()2y ax 2ax a 3a 0=-+->C .2y 2x 4x 5=---D .()2y ax 2ax a 3a 0=-+-< 【答案】D 。

【考点】二次函数的性质。

2. (2002年浙江杭州3分)已知正比例函数y (2m 1)x =-的图象上两点A 11(x ,y )、B 22(x ,y ),当12x x <时,有12y y >,那么m 的取值范围是【 】.(A)1m2<(B)1m2>(C)m2<(D)m0>【答案】A。

【考点】正比例函数图象与系数的关系。

3. (2003年浙江杭州3分)一次函数y x1=-的图象不经过【】(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B。

【考点】一次函数图象与系数的关系。

4. (2005年浙江杭州3分)已知一次函数y=kx-k,若y随着x的增大而减小,则该函数的图象经过【 】(A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限 【答案】B 。

【考点】一次函数图象与系数的关系。

5. (2005年浙江杭州3分)用列表法画二次函数2y x bx c =++的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的值是【 】(A )506 (B )380 (C )274 (D )182 【答案】C 。

中考数学总复习知识点总结第六章 一次函数与反比例函数

中考数学总复习知识点总结第六章 一次函数与反比例函数

第六章 一次函数与反比例函数考点一、平面直角坐标系 (3分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分)1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考数学--函数的图像与性质(较难)

专题6:函数的图象与性质一、选择题1.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A. 1x <-B. 1x >-C. 1x >D.1x <2.如图,直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则AF·BE=A. 8B.6C. 4D. 623.已知直线l 经过点A(1,0)且与直线y x =垂直,则直线l 的解析式为 A .1y x =-+ B .1y x =-- C .1y x =+ D . 1y x =-4.有下列函数:①3y x =- ②1y x =- ③1(0)y x x=-> ④221y x x =++,其中函数值y 随自变量x 增大而增大的函数有A .①②B .②④C .②③D .①④5.已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出下列结果①b 2>4ac ;②abc >0;③2a +b=0;④a+b+c >0;⑤a ﹣b+c <0,则正确的结论是 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤6.如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论:①OA=OB ,②△AOM ≌△BON ,③若∠AOB=45°,则S △AOB =k ,④当AB=2时,ON -BN=1;其中结论正确的个数为A .1B .2C .3D .47.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是 A 、1m =B 、1m >C 、1m ≥D 、1m ≤8.反比例函数y =-1-a 2x (a 是常数)的图象分布在A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平 移3个单位,那么在新坐标系中此抛物线的解析式是 A .y =3(x -3)2+3 B .y =3(x -3)2-3 C .y =3(x +3)2+3 D .y =3(x +3)2-310.若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 211.小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是12小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y (米)与离家的时间x (分)之间的函数关系的是13.(已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的图象如图所示,有下列结论:①abc >0,②b 2﹣4ac <0,③a ﹣b+c >0,④4a ﹣2b+c <0,其中正确结论的个数是A 、1B 、2C 、3D 、4二、填空题1.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小。

初中数学一次函数知识点总结

初中数学一次函数知识点总结一次函数知识是每年中考的重点知识,是每卷必考的主要内容,本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.下面是小编为大家整理的关于初中数学一次函数知识点,希望对您有所帮助!初中数学一次函数知识点一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。

当b=0时,一次函数y=kx,又叫做正比例函数。

1.一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

2.当b=0,k≠0时,y=kx仍是一次函数。

3.当k=0,b≠0时,它不是一次函数。

4.正比例函数是一次函数的特例,一次函数包括正比例函数。

2一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

当k>0,b>0时,直线通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线通过一、二、四象限;当k<0,b<0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

3一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

初二数学一次函数知识点总结知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

九下数学第六章6.2二次函数图像和性质

第3课时二次函数的图象和性质(3)1.抛物线y=a(x-h)2+k(a>0),它的顶点坐标是_______,对称轴是_______.开口向______,______时,y随上的增大而增大,当_______时,有最________值,其值为______.2.抛物线y=ax2+bx+c(a<0),它的顶点坐标是_______,对称轴是_______,开口向_______,_______时,y随x的增大而增大,当_______时,有最_______值,其值为________.3.抛物线y=-x2-2x+3用配方法化成y=a(x-h)2+k的形式是_________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.4.将抛物线y=-2x2向右平移1个单位,再向上平移3个单位,所得抛物线的解析式是____.5.抛物线y=ax2+x+c与x轴交点的横坐标为-1,那么a+c=________.6.假设二次函数y=x2-6x+d的顶点在直线y=x上,那么d的值为_______.7.无论m为任何实数,二次函数y=(x-2m)2+m的图象的顶点总在定直线上,那么此定直线的解析式为__________.8.把抛物线y=(x+1)2-2向右平移2个单位,再向下平移1个单位,得到的抛物线的解析式是________.9.把抛物线y=x2+2x-1向左平移2个单位,再向上平移3个单位,得到的抛物线的解析式是_________.10.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式:____________.11.a-b+c=0,9a+3b+c=0,那么二次函数y=ax2+bx+c的图象的顶点在() A.第一象限或第二象限B.第三象限或第四象限C.第一象限或第四象限D.第二象限或第三象限12.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是() 13.二次函数①a>0;③当x=-1或A.3y=ax2+bx+c(a≠0)的图象如下图,给出以下结论:②该函数的图象关于直线x=1对称;x=3时,函数y的值者B等于0.其中正确结论的个数是B.2C.1D.0()的是()14.如,直角坐系中,两条抛物有相同的称,以下不正确...A.h=m B.k=n C.k>n D.h>0,k>0 15.抛物y=a(x+1)(x-3)(a≠0)的称是直() A.x=1B.x=-1C.x=-3D.x=316.通配方,确定抛物y=-2x2+4x+6的开口方向、称、点坐,再描点画.17.下面出了代数式x2+bx+c与x的一些:x⋯01234⋯x2+bx+c⋯-13⋯(1)在表内的空格中填入适当的数;(2)y=x2+bx+c,当x取何,y>0?(3)明怎平移函数y=x2+bx+c的象得到函数y=x2的象.18.二次函数y=x2+bx-1的象点(3,2).求个二次函数的关系式;画出它的象,并指出象的点坐;(3)当x >0,求使y≥2的x的取范.19.二次函数y=x2-x+m.写出它的象的开口方向、称及点坐;(2)当m何,点在x的上方?(3)假设抛物与y交于点A,点A作AB∥x,交抛物于另一点B,当S△AOB=4,求它的解析式.20.如,b>0,抛物y1x2b2xc与抛物y1x2b2xd,22其中一条的点P(0,1),另一条与x交于M、N(-2,0)两点.求两条抛物的解析式.(1)21.抛物y=x2-2x+m与x相交于点A(x1,0)、B(x2,0)(x2>x1).点P(-1,2)在抛物y=x2-2x+m上,求m的;假设抛物y=ax2+bx+m与抛物y=x2-2x+m关于y称,点Q1(-2,q1)、Q2(-3,q)都在抛物线2+bx+m上,那么q,q的大小关系是________;y=ax212(请将结论写在横线上,不必写出解答过程)(3)设抛物线y=x2-2x+m的顶点为M,△AMB是直角三角形,求m的值.22.抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.(1)假设该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)假设t=-4,求a,b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值...参考答案1.(h,h)直线x=h上x>hx=h小kb4acb2直线xb 2.,下2a4a2abx b大4acb23.y=-(x+1)2+4(1,0),(-3,0)(0,3)x4a2a2a4.y=-2(x-1)2+35.16.127.y 1x8.y=(x-1)2-39.y=(x+3)2+1 210.答案不唯一.如:y=x2-4x+3.11.C 12.C13.B14.B15.A16.y=-2(x -1)2+8 开口向下,对称轴为直线x=1,顶点(1,8),图略17.(1)00 (2)x <1或x >3(3)把函数y=x 2+bx+c 的图象先向上平移1个单位,再向左平移 2个单位就得到 y=x 2的图象.18.(1)把(3,2)代入y=x 2+bx -1,得b=-2,那么二次函数为y=x 2-2x -1.(2)图象略,顶点坐标为(1,-2).(3)要使y ≥2,那么x 2-2x -1≥2,又因为x >0,所以取x ≥3.21,∴对称轴19.(1)∵a=1>0,∴抛物线开口向上.∵y x 2xmx1 4m2 4是直线x1,顶点坐标为1 4m 1 . (2) ∵顶点在 x 轴的上方,∴ 4m 12 2 , 4 4 0.1.(3)令x=0,那么y=m ,即抛物线y=x 2-x+m 与y 轴交点坐标是A(0,m),∴m4∵AB ∥x 轴,∴点B 的纵坐标为m .当x 2-x+m=m 时,得x 1=0,x 2=1.∴A(0,m),B(1,m).在Rt △BAO 中,AB=1,OAm .∵S AOB14,∴m=±8.∴此二次 OAgAB2函数的解析式为y=x 2-x+8 或y=x 2-x -8.20.因为抛物线y1x 2b 2 xc 与抛物线y1x 2 b 2xd 的形状、大小完212全相同,只是顶点坐标不同,而抛物线yx 2 b2xc 的对称轴为直线x=-b -2,12抛物线yx 2 b2 x d 的对称轴为直线x=-b+2.又知b >0,故P(0,1)为顶点的2 11x 21.过抛物线为yx 2b 2 xd ,那么b=2,d=1,此抛物线的解析式为y21x 22M 、N(-2,0)这两点的抛物线的解析式为yb2xc ,其中b=2,那么2y1x 2 4x c ,再将N(-2,0)代入y 1x 24xc ,得c=6,那么此抛物线的解析式22为y1 x2 4x 6.221.(1)把点P(-1,2)代入抛物线y=x 2-2x+m ,得m=-1.(2)q 1<q 2(3)解法一:∵y=x 2-2x+m= (x -1)2+m -1,∴M(1,m -1).∵抛物线y=x 2-2x+m开口向上,且与 x 轴交于点A(x 1,0)、B(x 2,0)(x 1<x 2),∴m -1<0.∵△AMB 是直角三角形,AM=MB ,∴∠AMB=90°,△AMB 是等腰直角三角形.过点 M 作MN ⊥x 轴,垂足为点N ,那么N(1,0).又NM=NA .∴1-xi=1-m .∴x 1=m .∴A(m ,0).∴m 2-2m+m=0.解得m=0或m=1(不舍题意,舍去).∴m=0.x 2 x 1,x 1,解法二:∵NM=NA=NB .∴x2解得 m2-x 1=2-2m .∴x 1x 2 2m.,x 222m∴A(m ,0).∴m 2-2m+m=0.∴m=0或m=1(不合题意,舍去).∴m=0.22.(1)y 的最小值为-3t=-6(2)将(-4,0)和(-3,-3)代入y=ax 2+bx .得016a,a,4b,解得1开口向上.3 9a ,b 4.3b(3)-1(答案不唯一)。

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。

有时也用k xy =或1−=kx y 表示。

2. 反比例函数的图像:反比例函数的图像是双曲线。

3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y 随x 的增大而增大。

对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章:函数及其图像
知识点:
一、平面直角坐标系
1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。

在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。

2、不同位置点的坐标的特征:
(1)各象限内点的坐标有如下特征:
点P (x, y )在第一象限⇔x >0,y >0;
点P (x, y )在第二象限⇔x <0,y >0;
点P (x, y )在第三象限⇔x <0,y <0;
点P (x, y )在第四象限⇔x >0,y <0。

(2)坐标轴上的点有如下特征:
点P (x, y )在x 轴上⇔y 为0,x 为任意实数。

点P (x ,y )在y 轴上⇔x 为0,y 为任意实数。

3.点P (x, y )坐标的几何意义:
(1)点P (x, y )到x 轴的距离是| y |;
(2)点P (x, y )到y 袖的距离是| x |;
(3)点P (x, y )到原点的距离是2
2y x +
4.关于坐标轴、原点对称的点的坐标的特征:
(1)点P (a, b )关于x 轴的对称点是),(1b a P -;
(2)点P (a, b )关于x 轴的对称点是),(2b a P -;
(3)点P (a, b )关于原点的对称点是),(3b a P --;
二、函数的概念
1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。

2、函数:一般地,设在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。

(1)自变量取值范围的确是:
①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。

②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。

③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。

注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。

(2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。

(3)函数的表示方法:①解析法;②列表法;③图像法
(4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线
三、几种特殊的函数
1、一次函数
直线位置与k ,b 的关系:
(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角;
(2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角;
(3)b >0直线与y 轴交点在x 轴的上方;
(4)b =0直线过原点;
(5)b <0直线与y 轴交点在x 轴的下方;
2、二次函数
抛物线位置与a ,b ,c 的关系:
(1)a 决定抛物线的开口方向⎩⎨⎧⇔<⇔>开口向下开口向上
00a a
(2)c 决定抛物线与y 轴交点的位置:
c>0⇔图像与y 轴交点在x 轴上方;c=0⇔图像过原点;c<0⇔图像与y 轴交点在x 轴
下方;
(3)a,b决定抛物线对称轴的位置:a,b同号,对称轴在y轴左侧;b=0,对称轴是y轴;a,b异号。

对称轴在y轴右侧;
3、反比例函数:
4、正比例函数与反比例函数的对照表:
例题:
例1、正比例函数图象与反比例函数图象都经过点P(m,4),已知点P到x轴的距离是到y轴的距离2倍.
⑴求点P的坐标.;
⑵求正比例函数、反比例函数的解析式。

分析:由点P到x轴的距离是到y轴的距离2倍可知:2|m|=4,易求出点P的坐标,再利用待定系数法可求出这正、反比例函数的解析式。

解:略
例2、已知a,b是常数,且y+b与x+a成正比例.求证:y是x的一次函数.
分析:应写出y+b与x+a成正比例的表达式,然后判断所得结果是否符合一次函数定义.
证明:由已知,有y+b=k(x+a),其中k≠0.
整理,得y=kx+(ka-b). ①
因为k≠0且ka-b是常数,故y=kx+(ka-b)是x的一次函数式.
例3、填空:如果直线方程ax+by+c=0中,a<0,b<0且bc<0,则此直线经过第________象限.
分析:先把ax+by+c=0化为b c x b a --.因为a <0,b <0,所以0,0〈-〉b
a b a ,又bc <0,即b c <0,故-b c >0.相当于在一次函数y=kx+l 中,k=-b a <0,l=-b
c >0,此直线与y 轴的交点(0,-
b c )在x 轴上方.且此直线的向上方向与x 轴正方向所成角是钝角,所以此直线过第一、二、四象限.
例4、把反比例函数y=x
k 与二次函数y=kx 2(k ≠0)画在同一个坐标系里,正确的是( ). 答:选(D).这两个函数式中的k 的正、负号应相同(图13-110).
例5、画出二次函数y=x 2-6x+7的图象,根据图象回答下列问题:
(1)当x=-1,1,3时y 的值是多少?
(2)当y=2时,对应的x 值是多少?
(3)当x >3时,随x 值的增大y 的值怎样变化?
(4)当x 的值由3增加1时,对应的y 值增加多少?
分析:要画出这个二次函数的图象,首先用配方法把y=x 2-6x+7变形为y=(x-3)2-2,
确定抛物线的开口方向、对称轴、顶点坐标,然后列表、描点、画图.
解:图象略.
例6、拖拉机开始工作时,油箱有油45升,如果每小时耗油6升.
(1)求油箱中的余油量Q (升)与工作时间t (时)之间的函数关系式;
(2)画出函数的图象.
答:(1)Q=45-6t .
(2)图象略.注意:这是实际问题,图象只能由自变量t 的取值范围0≤t ≤7.5决定是一条线段,而不是直线.。

相关文档
最新文档