艺术生高考数学专题讲义:考点37 直线及其方程
高考数学直线的参数方程知识点

高考数学直线的参数方程知识点在高中数学的学习中,直线是一个重要的概念。
直线的表示形式有很多种,其中参数方程是一种常见的表达方式。
在高考数学中,直线的参数方程是一个常考的知识点。
本文将围绕直线的参数方程展开讨论,介绍其相关概念以及解题方法。
一、什么是直线的参数方程?直线的参数方程是通过引入参数来表示直线上各个点的坐标关系的一种方法。
通常情况下,直线的参数方程由两个参数和两个参数函数组成。
其中,参数函数表示直线上点的横坐标与参数的关系,另一个参数函数表示直线上点的纵坐标与参数的关系。
具体地说,对于直线上任意一点P(x, y),我们可以用参数t来表示这个点的位置。
假设直线上某一点为A(x1, y1),那么直线上任意一点P(x, y)的坐标可以通过下面的关系式计算得到:x = x1 + aty = y1 + bt其中,a和b是直线的方向向量。
二、直线的参数方程与一般方程的转换在解题过程中,我们有时需要将直线的参数方程转换成一般方程,或者将一般方程转换成参数方程。
下面我们分别介绍这两种转换方式。
1. 参数方程转换成一般方程将直线的参数方程转换成一般方程的关键在于消去参数t。
假设直线的参数方程为:x = x1 + aty = y1 + bt我们可以通过以下步骤将其转换成一般方程:(1)将t表示出来,得到t的表达式:t = (x - x1) / a(2)将t的表达式代入另一个参数函数,得到关于y的表达式:y = y1 + b((x - x1) / a)(3)整理化简,即可得到一般方程。
2. 一般方程转换成参数方程将一般方程转换成参数方程的关键在于引入参数t,并根据直线上任意一点P(x, y)与已知点A(x1, y1)的坐标关系,建立参数方程。
假设一般方程为Ax + By + C = 0,直线上已知点为A(x1, y1)。
我们可以通过以下步骤将其转换成参数方程:(1)建立关于x和t的参数方程:x = x1 + t(2)根据一般方程,将y用x和t表示出来:y = y1 - (A / B)(x1 + t)(3)整理化简,即可得到参数方程。
直线与方程专题复习讲义 高三数学二轮专题复习

第三章 直线与方程(一)直线的倾斜角1.定义:在平面直角坐标系中,当直线与x 轴相交时,取x 轴非负半轴作为基准,把x 轴的正方向按逆时针旋转至与直线重合的最小角,叫做直线的倾斜角.当直线平行于 x 轴或与x 轴重合时,我们规定直线的倾斜角为0°.2. 范围: 0°≤α<180° 倾斜角[0°,180°) 二面角[0°,180°]线面角[0°,90°] 异面直线成角(0°,90°](二)直线的斜率1.定义:倾斜角α不是90°的直线,正切值叫做这条直线的斜率,直线的斜率常用k 表示,即k=tanα,当直线的倾斜角等于90°时,直线的斜率不存在.2.倾斜角α与斜率k 的范围之间的对应关系 (三)斜率公式经过两点P ₁(x ₁,y ₁),P ₂(x ₂,y ₂)的直线的斜率是: k =y 2−y1x 2−x 1注:(1)斜率公式适用范围x ₁≠ x ₂ (2)斜率公式变形. y₂−y₁=k (x₂−x₁)例1 (1)过 P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若 P 恰为线段AB 的中点,求直线l 的斜率和倾斜角.k =-1,α = 135°(2)若经过点A(1-t ,1+t)和点B(3,2t)的直线的倾斜角为钝角,求实数t 的取值范围.(-2,1)(3)若直线l 的倾斜角是连接(-3,5),(0,9)两点的直线倾斜角的2倍,则直线l 的斜率为 −247.k =tanα=43k ′=tan2α=−247(4)直线l 的方程为x+ycosθ+3=0(θ∈R),则倾斜角的范围为 [π4,3π4].tanα=−1cosθ∈(−∞,+∞)(5)已知两点A(2,3)和B(-1,2),过点 P(1,-1)的直线l 与线段AB 有交点,则直线l 斜率k 的取值范围为 (−∞,−32]U [4,+∞).名称 方程 适用条件 参数几何意义 斜截式 y=kx+b α≠90° k:斜率b :纵截距(可正,可负)点斜式y-y ₀=k(x-x ₀)α≠90°k:斜率 点(x ₀,y ₀)例2 (1)过P(-2,2)点引一条直线l,使其与两坐标轴围成的三角形的面积等于4,求直线 l的方程.解析{b−a=12abab=8或−8∴{a=2+2√3b=−2+2√3 j{a=−2−2√3b=2−2√3(2)直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若 P恰为线段AB 的中点,求直线l的方程.3x-2y+12 = 0(3)若直线((2m²+m-3)x+(2-m)y=4m-1在 x轴上的截距为1,则实数 m是(D)A.1B.2C.−12 D.2 或−12(4)①在x轴,y轴上截距分别是-2,3的直线方程是3x-2y+6=0②求过点 P(2,3),并且在两轴上截距相等的直线方程y=32x或.x+y-5 =0例3 (1)直线l的方程为.Ax+By+C=0(A、B不同时为零),根据下列各位置特征,写出A,B,C应满足的关系:①l与两坐标轴都相交A≠0;B≠0 ;②l过原点 C=0 ;③l只与x轴相交 B=0 ;④l是y轴所在直线 B=0,C=0 ;⑤l在x,y轴上的截距互为相反数①C=0. A≠0,B≠0②C≠0且A= B≠0 .(2)①直线kx+y+1=0(k∈ R)恒过定点 (0,-1) .②直线kx+k+3k²x+k²y=0(k∈R)恒过定点 (-1,3) .(3)过点P(3,0)有一条直线l,它夹在两条直线l₁:2x−y−2=0与l₂:x+y+3=0之间的线段恰被点 P平分,求直线l的方程。
直线的方程-高中数学总复习课件

0),且与以 A (2,1), B (0, 3 )为端点的线段有公共点,则直
线 l 的斜率的取值范围为 (-∞,- 3 ]∪[1,+∞) .
目录
高中总复习·数学
解析:设直线 PA 与 PB 的倾斜角分别为α,β,直线 PA
的斜率是 kPA =1,直线 PB 的斜率是 kPB =- 3 ,当直
线 l 由 PA 变化到与 y 轴平行的位置 PC 时,它的倾斜角
图形,结合正切函数的单调性求解;
(2)函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,
反之亦可.
提醒
π
π
根据斜率求倾斜角的范围时,要分[0, )与( ,π)
2
2
两种情况讨论.
目录
高中总复习·数学
1. 直线 x sin α+ y +2=0的倾斜角的取值范围是(
)
A. [0,π)
解析: 设直线的倾斜角为θ,则有tan θ=- sin α.因为 sin α∈[-
+ 2 = 0,
= − 2,
0,令ቊ
解得 ቊ
1 − = 0,
= 1.
∴无论 k 取何值,直线总经过定点(-2,1).
目录
高中总复习·数学
(2)若直线不经过第四象限,求 k 的取值范围;
D. k 1< k 3< k 2
解析:
因为直线 l 2, l 3的倾斜角为锐角,且直线 l 2的倾斜角大
于直线 l 3的倾斜角,所以0< k 3< k 2.直线 l 1的倾斜角为钝角,斜率 k
1<0,所以 k 1< k 3< k 2.
目录
高中总复习·数学
直线的方程
【例2】 (1)(多选)(2024·临沂模拟)过点(-3,1)且在两
直线方程讲义-2024届高三艺术生数学一轮复习

11.1 直线1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴 正向 与直线l 向上 之间所成的角α叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为 0°. (2)倾斜角的取值范围: [0,π) . 2.直线的斜率(1)定义:当 α≠90° 时,一条直线的倾斜角α的 正切值 叫做这条直线的斜率,斜率通常用小写字母k 表示,即k = tan α ,倾斜角是90°的直线,其斜率不存在.(2)经过两点的直线的斜率公式:经过两点P (x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 1-y 2x 1-x 2. 【例1】若经过A (3,m ),B (1,2)两点的直线的倾斜角为45°,则m=( ) A.6B.-6C.4D.-4【解析】由题意可得tan 45°=312--m ,即1312=--m,解得m=4,故选C . 【变式探究1】(1)若A (-2,3) , B (3,-2) , C (21, m )三点共线,则m 的值为( ) A 、21 B 、21- C 、-2 D 、2 (2)过点A ()23,-与B ()32,-的直线的倾斜角为( ) A 、45°B 、135°C 、45°或135°D 、60°(3)过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( ) A 、1 B 、4 C 、1或3 D 、1或43.直线方程的五种形式 名称 条件方程 适用范围 点斜式 斜率k 与点(x 1,y 1) y -y 1=k (x -x 1) 不含直线x =x 1 斜截式 斜率k 与截距b y =kx +b 不含垂直于x 轴的直线 两点式两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1 不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2)截距式 截距a 与bx a +y b =1不含垂直于坐标轴和过原点的直线 一般式Ax+By+c=0(A 2+B 2≠0)平面直角坐标系内的直线都适用【例2】求经过点(2,-3),倾斜角是直线y=33倾斜角的2倍的直线方程. 【解析】∵直线的斜率为33∴倾斜角为30°. ∴所求直线的倾斜角为60°,其斜率为3. ∴所求直线方程为y+3=3(x-2),即3x-y-23-3=0.【变式探究2】(1)过点(-1,2)且倾斜角为30°的直线方程为( )A.3x -3y +6+3=0B.3x -3y -6+3=0C.3x +3y +6+ 3D.3x +3y -6+3=0(2)已知直线013:=++y x l ,则直线l 在x 轴上的截距是 ,倾斜角是 .4.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.5.两条直线的位置关系判定若直线l 1和l 2分别有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则: ①直线l 1∥l 2的充要条件是 k 1=k 2且b 1≠b 2 ②直线l 1与l 2重合的充要条件是 k 1=k 2且b 1=b 2 ③直线l 1⊥l 2的充要条件是 k 1·k 2=-1【例3】(1)若过点A (2,-2),B (5,0)的直线与过点P (2m ,1),Q (-1,m )的直线平行,则m 的值为( )A.-1B.71 C.2 D.21【解析】由k AB =k PQ ,得m m 21125)2(0---=--- 即m=17. (2).若直线l 经过点(a-2,-1)和(-a-2,1),且与直线3x+2y+6=0垂直,则实数a 的值为( )A.32-B.23-C.32 D.23【解析】由题意知a ≠0,直线l 的斜率k=222+---a a =a 1-,所以a 1-·(23-)=-1,所以a=23-. 【变式探究3】(1)直线l 1:(a+3)x+y+4=0与直线l 2:x+(a-1)y+4=0垂直,则直线l 1在x 轴上的截距是( )A.-4B.-2C.2D.4(2)直线l 与直线x+y-2=0垂直,且它在y 轴上的截距为4,则直线l 的方程为 .(3)过点(-1,3)且与直线x -2y +3=0平行的直线方程为( )A 、x -2y +7=0B 、2x+y -1=0C 、x -2y -7=0D 、x -2y -4=0(4)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|222121()()x x y y -+-特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2 (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2. 【例4】(1)已知点A (2,1),B (-2,3),C (0,1),在△ABC 中, BC 边上的中线长为 . 【解析】BC 中点为(-1,2),所以BC 边上中线长为()()10211222=-++(2)已知直线:1l 01=-+y ax 与直线:2l 05=+-y x 垂直,则点(1,2)到直线1l 距离为( )A . 1B . 2C .2 D . 22【解析】分析:先利用两直线垂直的条件求出a 值,再利用点到直线的距离公式进行求解.详解:因为21l l ⊥,所以a -1=0,即a =1,1l :x +y -1=0,则点(1,2)到直线1l 的距离为211121=+-+=d(3)已知直线l 1: ax+y -1=0,直线l 2: x -y -3=0,若l 1∥l 2,则两平行直线间的距离为 . 【解析】若l 1∥l 2,则a =-1, l 1:x -y +1=0,两平行直线间的距离1(3)2211d --==+【变式探究4】(1)已知点(a ,2)(a >0)到直线l :x-y +3=0的距离为1,则a 等于( ) A . B . C . D . (2)若两直线3x+y -3=0与6x+my +1=0平行,则它们之间的距离为( )A .510 B .5102 C .26105 D .10207习题: 11.1直线1、已知直线的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P (3,3),则直线的方程为____________.2、过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是 .3、过点A (1,2)且与原点距离最大的直线方程是 .4、已知直线l 经过点p (-2,1),且斜率为43-,则直线l 的方程为( ) A .3x +4y +2=0 B .3x-4y-2=0 C .4x +3y +2=0 D .4x-3y-2=05、直线kx -y +1-3k =0当k 变化时,所有的直线恒过定点( )A . (1,3)B . (-1,-3)C . (3,1)D . (-3,-1) 6、直线2kx +y-6k+1=0经过定点P ,则点P 为( )A .(1,3)B .(3,1)C .(-1,-3)D .(3,-1)7.已知a ,b 均为正实数,且直线ax+y-6=0与直线(b -1)x-y+5=0互相平行,则ab 的最大值为( )A . 1B .21 C . 41 D . 81 8、直线y =2x -3的斜率和在y 轴上截距分别等于( )222-12-12+l lA . 2, 3B . -3,-3C . -3, 2D . 2,-3 9、若直线l 过点(-1,2)且与直线2x-3y +4=0垂直,则l 的方程为( )A .3x+2y-1=0B . 2x +3y-1=0C .3x+2y+1=0D .2x-3y-1=010、直线()1:130l kx k y +--=和()()2:12320l k x k y -++-=互相垂直,则k = .11、过两点A (4,y ),B (2,-3)的直线的倾斜角是1350,则y =( )A .1B .-1C .5D .-512、若直线过点(1,2),(4,23 ( )A .300B .450C .600D .900。
高考数学知识点解析直线的方程与性质

高考数学知识点解析直线的方程与性质高考数学知识点解析:直线的方程与性质在高考数学中,直线的方程与性质是一个重要的知识点,它不仅在几何问题中有着广泛的应用,还与代数、三角函数等其他知识板块紧密相连。
理解和掌握直线的方程与性质,对于解决各类数学问题都具有关键作用。
一、直线的倾斜角与斜率首先,我们来了解直线的倾斜角。
直线的倾斜角是指直线与 x 轴正方向所成的角,范围是0, π)。
当直线与 x 轴平行或重合时,倾斜角为 0;当直线垂直于 x 轴时,倾斜角为π/2。
而直线的斜率则是倾斜角的正切值,通常用 k 表示。
如果已知直线上两个不同的点 P₁(x₁, y₁),P₂(x₂, y₂),那么直线的斜率 k =(y₂ y₁) /(x₂ x₁)。
需要注意的是,当直线垂直于 x 轴时,斜率不存在。
斜率的正负决定了直线的倾斜方向。
当斜率为正时,直线从左下方向右上方倾斜;当斜率为负时,直线从左上方向右下方倾斜;当斜率为 0 时,直线与 x 轴平行或重合。
二、直线的方程1、点斜式如果已知直线上一点 P₀(x₀, y₀),并且直线的斜率为 k,那么直线的点斜式方程为 y y₀= k(x x₀)。
2、斜截式如果直线的斜率为 k,且在 y 轴上的截距为 b(即直线与 y 轴交点的纵坐标),那么直线的斜截式方程为 y = kx + b。
3、两点式已知直线上两个不同的点 P₁(x₁, y₁),P₂(x₂, y₂),则直线的两点式方程为(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁)。
4、截距式如果直线在 x 轴和 y 轴上的截距分别为 a 和 b(a ≠ 0,b ≠ 0),那么直线的截距式方程为 x / a + y / b = 1。
5、一般式直线的一般式方程为 Ax + By + C = 0(A、B 不同时为 0)。
在具体解题时,我们需要根据题目所给的条件,选择合适的直线方程形式,以便更简便地进行计算和推理。
三、直线的位置关系1、平行两条直线平行,它们的斜率相等。
(完整版)直线与方程知识点归纳,推荐文档

y-
y1/y-y2=x-x1/x-x2
2、直线的截距式方程:已知直线 l 与 x 轴的交点为 A (a,0) ,与 y 轴的交点为 B (0,b) ,
其中 a 0,b 0
3.2.3 直线的一般式方程
1、直线的一般式方程:关于 x, y 的二元一次方程 Ax By C 0 (A,B 不同时为
C.-3
D.-1
1 a6 解析:由题意,两直线斜率存在,由 l1∥l2 知a-2=3≠2a,∴a=-1 答案:D
14.直线 3x-2y-4=0 的截距式方程是( )
3x y A. 4 -4=1
xy 11 B.3-2=4 3x y C. 4 +-2=1 x 4y D.3+-2=1
答案:D
15.已知点 A(1,2),B(3,1),则线段 AB 的垂直平分线的方程是( )
B.3x-4x+9=0
C.3x-4y-11=0 或 3x-4y+9=0
D.3x-4y+11=0 或 3x-4y-9=0 答案:C
强化练习
一 选择题 1.直线 y=-2x+3 的斜率和在 y 轴上的截距分别是( )
A.-2,3
B.3,-2
C.-2,-2
D.3,3
[答案] A
2.过点(1,3)且斜率不存在的直线方程为( )
2 A.5
2 C.- 5
B.6 D.-6
解析:令 y=0,得(m+2)x=2m,将 x=3 代入得 m=-6,故选 D.
答案:D
8.过 P1(2,0),P2(0,3)两点的直线方程是( )
xy
xy
A.3+2=1
B.2+3=1
xy
xy
C.3-2=1
D.2-3=1
答案:B
高等数学7.3直线及其方程
4
一般方程
点向式方程
参数方程
两直线夹角 直线与平面夹角
平面束
例 12 求过点 (1,2,4) 且与平面 2x 3 y z 4 0 垂直的直线方程. 解 x1 y2 z4 .
2 3 1
例 13 求过点 (3,2,5) 且与平面 x 4z 3 和 2x y 5z 1平行的
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
— 两直线的夹角公式
s1
s2
8
一般方程
点向式方程
参数方程
两直线夹角 直线与平面夹角
两直线的位置关系:
(1) L1 L2 m1m2 n1n2 p1 p2 0,
即 1 2(2 2 ) 1 0 , 解得 2 ,
由此得到所求平面方程为
3x 2y z 6 0 .
18
平面束
一般方程
点向式方程
参数方程
两直线夹角 直线与平面夹角
例19
求直线
L:
x
x
y y
z z
1 1
0 0
在平面
x 2 y z 0 的平面方程.
解 设平面方程为 x+2 y-z 6 ( x 2 y+z) 0 ,
即 (1 )x 2(1 ) y ( 1)z 6 0 ,
由于所求平面与平面 x 2 y z 0 垂直,所以
{1 , 2 2, 1} {1, 2, 1} 0 ,
直线方程相关知识点总结
直线方程相关知识点总结一、直线的定义直线是平面上的一个几何图形,它由无数个点组成,这些点都在同一条直线上。
直线是最简单的平面几何图形,也是最基本的图形之一。
在数学中,直线可以用数学语言和符号来描述。
在笛卡尔坐标系中,直线可以表示为一元一次方程。
一元一次方程实际上描述了坐标系中的一条直线,因此,直线方程和一元一次方程是密切相关的。
二、直线的方程在笛卡尔坐标系中,一条直线可以用一元一次方程来表示。
一元一次方程的一般形式为y = kx + b,其中k和b是常数,k称为直线的斜率,b称为直线的截距。
斜率k表示直线的倾斜程度,截距b则表示直线与y轴的交点。
因此,一元一次方程y = kx + b就是一条直线的方程。
1. 斜率斜率是直线的一个重要属性,它描述了直线的倾斜程度。
在数学中,直线的斜率可以用两点的坐标来表示。
设直线上有两点A(x1, y1)和B(x2, y2),则直线的斜率k可以表示为:\[k = \frac{y2 - y1}{x2 - x1}\]也可以表示为:\[k = \frac{\Delta y}{\Delta x}\]其中,Δy表示y2 - y1,Δx表示x2 - x1。
斜率k的正负决定了直线的倾斜方向,如果k > 0,则直线向右上倾斜;如果k < 0,则直线向左下倾斜;如果k = 0,则直线平行于x轴;如果k不存在,则直线垂直于x轴。
2. 截距截距是直线与y轴的交点,它描述了直线在y轴上的位置。
在一元一次方程y = kx + b中,b就是直线的截距。
当x = 0时,y = b,所以截距b就是直线与y轴的交点的纵坐标。
3. 点斜式除了一般形式的直线方程y = kx + b外,直线方程还可以用点斜式表示。
点斜式表示法是指直线上的一个点A(x1, y1)以及直线的斜率k,通过这两个条件就可以确定一条直线的方程。
点斜式的一般形式为:\[y - y1 = k(x - x1)\]其中,k是直线的斜率,(x1, y1)是直线上的一个点。
直线方程知识点总结
直线与方程知识点总结一、直线基本知识 1、直线的倾斜角与斜率 1直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α 2直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在; ②经过两点),(),,(222111y x P y x P 21x x ≠的直线的斜率公式是1212x x y y k --=21x x ≠ ③每条直线都有倾斜角,但并不是每条直线都有斜率; 2、两条直线平行与垂直的判定 1两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=; 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行; 2两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1;如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直;二、直线的方程 1、直线方程的几种形式注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示 不一定;1若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y 轴,方程为1y y =; (3)3若2121y y x x ≠≠且,直线方程可用两点式表示 2、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 3. 过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-;②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λλ为参数,其中直线l 2不在直线系中.三、直线的交点坐标与距离公式 1.两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立; 2.几种距离 1两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P -+-=特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP += 2点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=3两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=注意:① 求点到直线的距离时,直线方程要化为一般式;② 求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算;补充:1、直线的倾斜角与斜率 1直线的倾斜角(2).已知斜率k 的范围,求倾斜角α的范围时,若k 为正数,则α的范围为(0,)2π的子集,且k=tan α为增函数;若k 为负数,则α的范围为(,)2ππ的子集,且k=tan α为增函数;若k 的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范围;2、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线; 注:斜率变化分成两段,090是分界线,遇到斜率要谨记,存在与否需讨论; 3. 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l2;0,0-//1221122121≠-=⇔C A C A B A B A l l3;0,0-1221122121=-=⇔C A C A B A B A l l 重合与41l 与2l 相交01221≠-⇔B A B A如果2220A B C ≠时,则:11221121-=•⇔⊥B A B A l l 2⇔21//l l )不为0,,(222212121C B A C CB B A A ≠=;31l 与2l 重合⇔)不为0,,(222212121C B A C CB B A A ==41l 与2l 相交⇔)不为0,(222121B A B BA A ≠4. 有关对称问题 常见的对称问题: 1中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程;2轴对称①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-•--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x 可得到点1P 关于l 对称的点2P 的坐标),(22y x 其中21,0x x A ≠≠②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行;注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f 5. 两条直线的交角①直线1l 到2l 的角方向角;直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ②两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.6. 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”: (1) 在直线l 上求一点P,使PB PA +取得最小值,① 若点B A 、位于直线l 的同侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A② 若点B A 、位于直线的异侧时,连接AB 交于l 点P ,则P 为所求点;可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.(2)在直线l 上求一点P 使PB PA -取得最大值,方法与1恰好相反,即“异侧对称同侧连”① 若点B A 、位于直线l 的同侧时,连接AB 交于l 点P ,则P 为所求点;② 若点B A 、位于直线的异侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A3 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”;7. 直线过定点问题:① 含有一个未知参数,12)1(-+-=a x a y 1)2(+-+=⇒x x a y 1 令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(-② 含有两个未知参数0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m令⎩⎨⎧-+-=+1203y x y x ⎪⎪⎩⎪⎪⎨⎧=-=⇒7371y x从而该直线必过定点)73,71(-8. 点到几种特殊直线的距离1点00(,)P x y 到x 轴的距离0||d y =; 2点00(,)P x y 到y 轴的距离0||d x =.3点00(,)P x y 到与x 轴平行的直线y=a 的距离0||d y a =-; 4点00(,)P x y 到与y 轴平行的直线x=b 的距离0||d x a =-. 9. 与已知直线平行的直线系有:1平行于直线)(00//C C C By Ax C By Ax ≠=++=++的直线可表示为2平行于直线)(//b b b kx y b kx y ≠+=+=的所有直线为10. 易错辨析:1 讨论斜率的存在性:解题过程中用到斜率,一定要分类讨论:① 斜率不存在时,是否满足题意;② 斜率存在时,斜率会有怎样关系;2注意“截距”可正可负,不能“错认为”截距就是距离,会丢解; 求解直线与坐标轴围成面积时,较为常见; 3 直线到两定点距离相等,有两种情况:① 直线与两定点所在直线平行; ② 直线过两定点的中点;求解过某一定点的直线方程时,较为常见; 4过点),(00y x A ,平行于x 轴的直线方程为0y y = 过点),(00y x A ,平行于y 轴的直线方程为0x x =。
2018届高考数学艺体生文化课复习讲义考点37 直线及其方程
考点三十七 直线及其方程知识梳理1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.5.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x22y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.典例剖析题型一 直线的倾斜角和斜率例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π解析 斜率k =-1-33-(-3)=-33,又∵θ∈[0,π), ∴θ=56π.变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =__________.答案 -3解析 由2y +1-(-3)4-2=2y +42=y +2,得y +2=tan 3π4=-1.∴y =-3.解题要点 求斜率的常见方法:1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-ab 求斜率.题型二 直线方程的求解例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0. 变式训练 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解析 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +(10-5k )=0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.解题要点 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.题型三 直线的截距式方程有关的易错题例3 过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为__________________. 答案 x +y -1=0或3x +2y =0解析 (1)当截距不为0时,设所求直线方程为x a +ya =1,即x +y -a =0.∵点P (-2,3)在直线l 上,∴-2+3-a =0, ∴a =1,所求直线l 的方程为x +y -1=0.(2)当截距为0时,设所求直线方程为y =kx ,则有3=-2k ,即k =-32,此时直线l 的方程为y =-32x ,即3x +2y =0.综上,直线l 的方程为x +y -1=0或3x +2y =0.变式训练 过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________. 答案 y =-53x 或x -y +8=0解析 (1)当直线过原点时,直线方程为y =-53x ;(2)当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.解题要点 1.弄清截距和距离的区别:截距不是距离,而是一个坐标值,纵截距是直线与y 轴交点的纵坐标值,横截距是直线与x 轴交点的横坐标值.截距可为一切实数,而距离是一个非负数.2.在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.3.常见的与截距问题有关的易误点有:“截距互为相反数”“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.当堂练习1.已知直线l :y =x ,则直线l 的倾斜角为__________. 答案 π4解析 ∵k =1.故倾斜角为π4.2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为__________. 答案 2x +y -1=0解析 因所求直线与直线x -2y +3=0垂直,故可设为2x +y +m =0. 又因为所求直线过点(-1,3),所以有2×(-1)+3+m =0,解得m =-1.故所求直线方程为2x +y -1=0.3. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则k 1、k 2、k 3 的大小关系是__________.答案 k 1<k 3<k 2解析 直线l 1的斜率角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.4.(2015山东理)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为__________. 答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 答案 x +y -3=0或x +2y -4=0解析 由题意可设直线方程为x a +yb=1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2.课后作业一、 填空题1.过两点(-1,1)和(0,3)的直线在x 轴上的截距为__________. 答案 -32解析 过两点(-1,1)和(0,3)的直线方程为y -13-1=x -(-1)0-(-1) ,即y =2x +3,令y =0得x =-32,即为所求.2.已知直线l 1:(a -1)x +2y +1=0与l 2:x +ay +3=0平行,则a 等于__________. 答案 -1或2解析 由l 1∥l 2,得(a -1)×a -2×1=0,即a 2-a -2=0,解得a =-1或a =2. 当a =-1时,l 1:-2x +2y +1=0,即2x -2y -1=0,l 2:x -y +3=0,显然l 1∥l 2. 当a =2时,l 1:x +2y +1=0, l 2:x +2y +3=0,显然l 1∥l 2, 综上,a =-1或2.3.已知A (3,4),B (-1,0),则过AB 的中点且倾斜角为120°的直线方程是__________. 答案 3x +y -2-3=0解析 由题意可知A 、B 两点的中点坐标为(1,2),且所求直线的斜率k =tan120°=- 3 ∴直线方程为y -2=-3(x -1),即3x +y -2-3=0.4.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是__________. 答案 -2或1解析 由题意,知a ≠0,令x =0,得y =2+a ;令y =0,得x =a +2a ,故2+a =a +2a ,解得a =-2或a =1.5.直线x cos140°+y sin40°+1=0的倾斜角是__________. 答案 50°解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.6.直线l 过点(-1,2)且与直线2x -3y +4=0平行,则l 的方程是_________________. 答案 2x -3y +8=0解析 ∵2x -3y +4=0的斜率为k =23,∴所求的直线方程为y -2=23(x +1),即2x -3y +8=0.7.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为__________. 答案 1解析 ∵k MN =m -4-2-m=1,∴m =1.8.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为__________. 答案3解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°, tan60°= 3.9.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是__________. 答案 (-2,1)解析 k =tan α=2a -(1+a )3-(1-a ) =a -1a +2. ∵α为钝角,∴a -1a +2<0,即(a -1)(a +2)<0,故-2<a <1. 10.过两直线x +3y -10=0和y =3x 的交点,并且与原点距离为1的直线方程为__________. 答案 x =1或4x -3y +5=0解析 设所求直线为(x +3y -10)+λ(3x -y )=0, 整理得(1+3λ)x +(3-λ)y -10=0. 由点到直线距离公式得|-10|(1+3λ)2+(3-λ)2=1,解得λ=±3.∴所求直线为x =1或4x -3y +5=0.11.直线x cos θ+3y +2=0的倾斜角的范围是________. 答案 [0,π6]∪[56π,π)解析 由题知k =-33cos θ,故k ∈[-33,33],结合正切函数的图象,当k ∈[0,33]时,直线倾斜角α∈[0,π6],当k ∈[-33,0)时,直线倾斜角α∈[56π,π),故直线的倾斜角的范围是[0,π6]∪[56π,π).二、解答题12.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程. 解析 设所求直线方程为x a +yb =1,由已知可得⎩⎨⎧-2a +2b=1,12|a ||b |=1,解得⎩⎪⎨⎪⎧ a =-1b =-2或⎩⎪⎨⎪⎧a =2,b =1., ∴所求直线方程为2x +y +2=0或x +2y -2=0. 13.已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求: (1)△ABC 的平行于BC 边的中位线的一般式方程和截距式方程; (2)BC 边的中线的一般式方程,并化为截距式方程.解析 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三十七 直线及其方程知识梳理1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.5.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x22y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.典例剖析题型一 直线的倾斜角和斜率例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π解析 斜率k =-1-33-(-3)=-33,又∵θ∈[0,π), ∴θ=56π.变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =__________.答案 -3解析 由2y +1-(-3)4-2=2y +42=y +2,得y +2=tan 3π4=-1.∴y =-3.解题要点 求斜率的常见方法:1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-ab 求斜率.题型二 直线方程的求解例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0. 变式训练 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解析 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +(10-5k )=0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.解题要点 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.题型三 直线的截距式方程有关的易错题例3 过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为__________________. 答案 x +y -1=0或3x +2y =0解析 (1)当截距不为0时,设所求直线方程为x a +ya =1,即x +y -a =0.∵点P (-2,3)在直线l 上,∴-2+3-a =0, ∴a =1,所求直线l 的方程为x +y -1=0.(2)当截距为0时,设所求直线方程为y =kx ,则有3=-2k ,即k =-32,此时直线l 的方程为y =-32x ,即3x +2y =0.综上,直线l 的方程为x +y -1=0或3x +2y =0.变式训练 过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________. 答案 y =-53x 或x -y +8=0解析 (1)当直线过原点时,直线方程为y =-53x ;(2)当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.解题要点 1.弄清截距和距离的区别:截距不是距离,而是一个坐标值,纵截距是直线与y 轴交点的纵坐标值,横截距是直线与x 轴交点的横坐标值.截距可为一切实数,而距离是一个非负数.2.在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.3.常见的与截距问题有关的易误点有:“截距互为相反数”“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.当堂练习1.已知直线l :y =x ,则直线l 的倾斜角为__________. 答案 π4解析 ∵k =1.故倾斜角为π4.2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为__________. 答案 2x +y -1=0解析 因所求直线与直线x -2y +3=0垂直,故可设为2x +y +m =0. 又因为所求直线过点(-1,3),所以有2×(-1)+3+m =0,解得m =-1.故所求直线方程为2x +y -1=0.3. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则k 1、k 2、k 3 的大小关系是__________.答案 k 1<k 3<k 2解析 直线l 1的斜率角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.4.(2015山东理)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为__________. 答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 答案 x +y -3=0或x +2y -4=0解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3,或a =4,b =2.课后作业一、 填空题1.过两点(-1,1)和(0,3)的直线在x 轴上的截距为__________. 答案 -32解析 过两点(-1,1)和(0,3)的直线方程为y -13-1=x -(-1)0-(-1) ,即y =2x +3,令y =0得x =-32,即为所求.2.已知直线l 1:(a -1)x +2y +1=0与l 2:x +ay +3=0平行,则a 等于__________. 答案 -1或2解析 由l 1∥l 2,得(a -1)×a -2×1=0,即a 2-a -2=0,解得a =-1或a =2. 当a =-1时,l 1:-2x +2y +1=0,即2x -2y -1=0, l 2:x -y +3=0,显然l 1∥l 2. 当a =2时,l 1:x +2y +1=0, l 2:x +2y +3=0,显然l 1∥l 2, 综上,a =-1或2.3.已知A (3,4),B (-1,0),则过AB 的中点且倾斜角为120°的直线方程是__________. 答案 3x +y -2-3=0解析 由题意可知A 、B 两点的中点坐标为(1,2),且所求直线的斜率k =tan120°=- 3 ∴直线方程为y -2=-3(x -1),即3x +y -2-3=0.4.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是__________. 答案 -2或1解析 由题意,知a ≠0,令x =0,得y =2+a ;令y =0,得x =a +2a ,故2+a =a +2a ,解得a =-2或a =1.5.直线x cos140°+y sin40°+1=0的倾斜角是__________. 答案 50°解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.6.直线l 过点(-1,2)且与直线2x -3y +4=0平行,则l 的方程是_________________. 答案 2x -3y +8=0解析 ∵2x -3y +4=0的斜率为k =23,∴所求的直线方程为y -2=23(x +1),即2x -3y +8=0.7.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为__________. 答案 1解析 ∵k MN =m -4-2-m=1,∴m =1.8.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为__________. 答案3解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°, tan60°= 3.9.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是__________. 答案 (-2,1)解析 k =tan α=2a -(1+a )3-(1-a ) =a -1a +2. ∵α为钝角,∴a -1a +2<0,即(a -1)(a +2)<0,故-2<a <1. 10.过两直线x +3y -10=0和y =3x 的交点,并且与原点距离为1的直线方程为__________. 答案 x =1或4x -3y +5=0解析 设所求直线为(x +3y -10)+λ(3x -y )=0, 整理得(1+3λ)x +(3-λ)y -10=0. 由点到直线距离公式得|-10|(1+3λ)2+(3-λ)2=1,解得λ=±3.∴所求直线为x =1或4x -3y +5=0.11.直线x cos θ+3y +2=0的倾斜角的范围是________. 答案 [0,π6]∪[56π,π)解析 由题知k =-33cos θ,故k ∈[-33,33],结合正切函数的图象,当k ∈[0,33]时,直线倾斜角α∈[0,π6],当k ∈[-33,0)时,直线倾斜角α∈[56π,π),故直线的倾斜角的范围是[0,π6]∪[56π,π).二、解答题12.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程. 解析 设所求直线方程为x a +yb =1,由已知可得⎩⎨⎧-2a +2b=1,12|a ||b |=1,解得⎩⎪⎨⎪⎧ a =-1b =-2或⎩⎪⎨⎪⎧a =2,b =1.,∴所求直线方程为2x +y +2=0或x +2y -2=0. 13.已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求: (1)△ABC 的平行于BC 边的中位线的一般式方程和截距式方程; (2)BC 边的中线的一般式方程,并化为截距式方程.解析 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.。