基于热红外波段的地表温度反演实验报告
热红外辐射定标及地表温度反演研究

分类号密级UDC 编号中国科学院研究生院博士学位论文热红外辐射定标及地表温度反演研究朱利指导教师顾行发研究员中国科学院遥感应用研究所申请学位级别理学博士学科专业名称地图学与地理信息系统论文提交日期 2008-5-10 论文答辩日期2008-6-6培养单位中国科学院遥感应用研究所学位授予单位中国科学院研究生院答辩委员会主席中国科学院遥感应用研究所学位论文原创性声明和使用授权说明原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本声明的法律结果由本人承担。
论文作者签名:日期:年月日学位论文使用授权说明本人完全了解中国科学院遥感应用研究所关于收集、保存、使用学位论文的规定,即:按照学校要求提交学位论文的印刷本和电子版本;研究所有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务;研究所可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的的前提下,研究所可以公布论文的部分或全部内容。
(保密论文在解密后遵守此规定)论文作者签名:导师签名:日期:年月日摘要摘要为了满足遥感定量化应用需求,需要开展热红外辐射定标研究和地表温度反演研究,这具有重要的意义。
论文以辐射传输模拟为主要手段,通过多场地、多时相场地辐射定标和无场地交叉辐射定标手段,开展高精度热红外辐射定标研究,再对劈窗和单窗通道设置下地表温度反演精度进行论证分析,最后进行海表温度的定量反演和真实性检验研究。
论文主要包括以下四个部分:第一部分:2004年8月至2007年9月在青海湖和达里湖进行了四次同步场地实验,对TERRA星MODIS传感器进行热红外场地辐射定标研究。
研究方法是在卫星过境时利用定标好的红外辐射计CE312测量水体向上的辐亮度,同时进行气象探空观测获取当时当地大气温湿压廓线,探空数据输入到辐射传输模型MODTRAN计算出大气透过率和向上程辐射,从而推算出卫星入瞳处的通道表观辐亮度。
地表温度热红外遥感反演理论及实践研究

Science &Technology Vision科技视界科技视界0引言。
,,,,,,,,。
,,。
1热红外遥感特征及其机理1.1特征,,。
,0℃(-273℃),,[1]。
,:,,。
,;,,。
,,,;,,,,、。
,,。
1.2机理,,,,,,,。
,,,E (λ,T )=F λ,TA λ,T,,(F λ,T )、(A λ,T )。
2地表温度热红外遥感反演理论的内容,、,,,,。
,,“n +1”,,,。
,※基金项目:本文系2021年甘肃省高等学校创新基金项目“基于无人机遥感的可可西里地表温度反演”(2021A-251);2021年院级校企协同创新项目“无人机热红外遥感交叉辐射定标研究”(Y2021C-03)。
作者简介:张琪曼,本科学历,研究方向为遥感与摄影测量。
地表温度热红外遥感反演理论及实践研究张琪曼(兰州资源环境职业技术大学测绘与地理信息学院,甘肃兰州730021)【摘要】地表温度若能运用热红外遥感反演理论获得精准测量结果,有利于满足地质灾害、气象预报、生态评估等多方面需求。
在此之上,文章简要分析了热红外遥感特征及其机理,并结合局部分裂窗、日夜法、辐射能验证理论,从明确热红外遥感反演算法、提取热红外遥感反演参数、反复校对反演算法数据等实践路径,确保地表温度获得真实结果,促进地表温度的广泛应用。
【关键词】地表温度;热红外遥感技术;卫星传感器中图分类号:TH312文献标识码:ADOI:10.19694/ki.issn2095-2457.2022.03.05技术科普18. All Rights Reserved.科技视界,,,,。
2.1局部分裂窗理论,。
,,,,;,,。
,。
,;,1℃。
2.2日夜法理论,。
,,,,,,,,0.7℃,。
2.3辐射能验证理论。
,,,,。
,,。
,,[2]。
,,,,,。
,,,,,,。
3地表温度热红外遥感反演实践路径3.1明确热红外遥感反演算法:,100m,30min。
,。
地表温度与近地表气温热红外遥感反演方法研究

地表温度与近地表气温热红外遥感反演方法研究一、本文概述本文旨在探讨和研究地表温度与近地表气温的热红外遥感反演方法。
随着遥感技术的快速发展,热红外遥感已成为获取地表温度信息的重要手段。
地表温度是地球表面与大气之间热交换过程的关键参数,对于理解地表能量平衡、气候变化、城市热岛效应等具有重要意义。
近地表气温作为地表与大气层之间的重要参数,对气象学、气候学、环境科学等领域的研究也具有重要作用。
本文将首先介绍热红外遥感的基本原理和方法,包括热红外辐射的基础理论、遥感传感器的选择和使用、遥感数据的获取和处理等。
在此基础上,我们将详细阐述地表温度和近地表气温的热红外遥感反演方法,包括遥感图像的预处理、辐射定标、大气校正、温度反演等步骤。
我们还将探讨不同反演方法的优缺点和适用范围,以及在实际应用中可能遇到的问题和解决方案。
本文还将对地表温度和近地表气温热红外遥感反演方法的应用进行综述,包括在气象学、气候学、环境科学、城市规划等领域的应用案例和研究成果。
通过本文的研究,旨在为相关领域的研究人员提供有益的参考和借鉴,推动热红外遥感反演技术的发展和应用。
二、理论框架与基本原理地表温度与近地表气温热红外遥感反演方法研究的理论框架主要基于热红外辐射传输理论、地表能量平衡原理和遥感反演算法。
这些理论共同构成了从卫星或航空遥感平台获取的热红外数据到地表温度或近地表气温的转换过程。
热红外辐射传输理论描述了热红外辐射在大气中的传播和与地表相互作用的过程,是遥感反演地表温度的基础。
地表能量平衡原理则提供了地表与大气之间能量交换的理论依据,是理解地表温度动态变化的关键。
遥感反演算法则是根据热红外数据和大气参数,结合辐射传输模型和地表能量平衡模型,反演出地表温度或近地表气温的方法。
在热红外遥感中,地表和大气发射的热红外辐射包含了丰富的温度信息。
地表温度可以通过测量地表发射的热红外辐射强度,结合大气参数和地表发射率,利用辐射传输方程求解得到。
Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
对于ETM+,K1=666.09 W/(m2*µm*sr),K2 =1282.71K。
对于TIRS Band10,K1= 774.89 W/(m2*µm*sr),K2 = 1321.08K。
TM地表温度反演实验报告

《遥感地学分析》实验报告成都信息工程学院资源环境学院《遥感地学分析》实验报告实验名称: Landsat TM地表温度反演实验报告实验时间:2011年4月25日实验地点:航空港5404教室姓名:学号:班级:指导老师:《Landsat TM地表温度反演》实验报告一、实验目的及要求1、结合具体操作,掌握单窗算法进行TM影像地表温度反演的一般步骤,熟悉相关软件的使用,由给定数据得出地表温度反演结果。
2、了解单窗算法进行干旱监测的原理。
二、实验设备及软件平台计算机DELL INSPIRON 14V—I3 350处理器 2.26 GHz 1.92G 内存;ArcMap、ENVI 软件平台。
三、实验原理陆地卫星TM6 波段主要用于地表温度和地表水热空间差异的分析,它记录的是地表发生率。
传统利用TM6 数据反演地表温度的方法是通过大气校正法, 这一方法首先需要进行大气模拟, 以便从卫星高度所观测到的热辐射中减去大气的辐射分量, 从而得到地面实际的热红外辐射量, 然后考虑到地表比辐射率的响, 反演出真正的地表温度。
该方法操作复杂,可行性较差。
覃志豪等人根据地表热辐射传导在TM6 波段区间内的特征, 提出了一个简易可行的单窗算法, 用来从TM6 数据中反演地表温度, 这一单窗算法需要3 个基本参数 , 即地表比辐射率、大气透射率和大气平均作用温度,TM/ETM波段的热辐射传导方程如下:B6(T6)=t6(q)[e6B6(Ts)+(1-e6)I6~]+I6_其中:Ts是地表温度;T6是TM6的亮度温度;t6是大气透射率;e6是地表辐射率。
B6(T6)表示TM6遥感器所接收到的热辐射强度;B6(Ts)是地表在TM6波段区间内的实际热辐射强度,直接决取于地表温度;I6~和I6_分别是大气在TM6波段区间内的向上和向下热辐射强度。
化简后最终的单窗体算法模型计算Ts(地表温度):Ts={a(1-C-D)+[b(1-C+D)+C+D]T6-DTa}/C式中:C =t6 e6(e6为比辐射率,t6为透射率);D = (1-t6)[1 + t6(1-e6)];a =-67.355351,b=0.458606。
基于ASTER数据的地表温度反演研究

东北师范大学地理信息系统专业毕业论文指导教师:黄方邓立辉1、引言 (3)2、ASTER数据特征 (3)3、ASTER地表温度反演 (5)3.1研究区与数据 (5)3.2地表温度反演方法 (5)3.3地表温度反演实验 (7)3.4地表温度反演结果 (9)4、结论 (12)参考文献 (13)基于ASTER数据的地表温度反演研究摘要:热红外遥感是研究地表热辐射特性的重要手段之一,遥感反演陆地温度可获得地表温度空间差异,而地表温度是地球表面能量平衡和温室效应的一个重要指标,是区域和全球尺度地表物理过程的一个关键因子,在城市热岛研究、农业干旱监测及区域温度变化等领域有重要应用。
与TM、MODIS数据相比,ASTER数据具有较高的空间分辨率和波谱分辨率,特别是ASTER数据中的第13和14波段,在反演区域地表温度方面具有良好的应用前景。
本文应用ASTER数据的优势,采用劈窗算法,对研究区地表温度进行反演,求算研究区的NDVI值并对地物进行分类,简单分析地物类型、NDVI与温度的相关性。
关键词:遥感;地表温度;ASTER;温度反演Land Surface Temperature Retrieval Based on ASTER ImageAbstract: Thermal infrared remote sensing is one of the important approaches to study the surface thermal radiation characteristics. Inversion of land surface temperature with remote sensing reveals the spatial difference in LST. Land surface temperature is not only a essential index of the Earth surface energy balance and greenhouse effect, but also a key factor of local and global land physical processes. LST is widely applied to detect urban heat island, agricultural drought and regional temperature changes. Compared to TM and MODIS data, ASTER image has higher spatial resolution and spectral resolution in particular band 13 and 14 which has shown promising application in land surface temperature retrieval. making use of the advantages of ASTER data, land surface temperature was estimated by split window algorithms. NDVI was calculated and thereby land cover classification was performed. After that, the correlation between NDVI and LST was discussed.Keywords: Remote sensing;Land temperature; ASTER; Temperature retrieval1、引言地表温度LST(Land Surface Temperature)是研究地表与大气之间物质和能量交换的重要参数,是地球表面能量平衡和温室效应的一个指标,具有区域和全球性。
热红外图像地表温度反演
主要内容
概述 温度反演基本原理 地表长波辐射传输建模 地表温度反演 地表能量与辐射平衡
1、概述——地表长波辐射
地球长波辐射
1、概述——城市热岛
城市热岛 遥感监测
1、概述——城市热环境监测
北京市城区地表温度遥感反演图
1997 2001
2004
1、概述——城市热环境监测
1997年北京城区地表温度等级分布图
•辐射出与观测物体相等的辐射能量的黑体温度 •亮温具有温度的量纲,但不具有温度的物理含义
Tkin 4
Tb4 , Tb
1/
T4 kin
2、温度反演的基本原理
真实温度Tkin
•分子运动温度(Kinetic temperature)、动力学温度 (dynamic temperature) •真实温度不会随着观测角度和观测方向而改变,它是地表能 量平衡结果的真实反映。
热红外遥感的波段选择
max T b
2.7 遥感图像DN与辐亮度的关系
L,T
2hc 2
5
ehc
1
kT
1
(焦耳·秒-1·米-2·球面度- 1·米-1)
其中:
h=6.6261*10-34Js-1, Planck 常数 k=1.3806*10-23JK-1, Boltzmann常数 c= 3.0*108ms-1, 光速 e=2.7183,常数 T, 绝对温度 λ,电磁辐射的波长 L,辐射亮度
主要内容
概述 温度反演基本原理 地表长波辐射传输建模 地表温度反演 地表能量与辐射平衡
2、温度反演的基本原理
自然界任何高于热力学温度的物体都向外辐射具有一 定能量和波长的电磁波;
实习7、地表反射率、温度的反演以及植被指数的计算
基本原理一)地表反射率是指地表物体向各个方向上反射的太阳总辐射通量与到达该物体表面上的总辐射通量之比。
反照率可以通过遥感成像提供的辐射亮度值L 或反照率p ,二向性反射率分布函数BRDF 来获得:地物反射率的光谱特征差异是从遥感影像中识别地表不同类型地物的基本依据,也是地表其他各种物理、生物物理参数反演的依据地表。
地表反射率的计算步骤:1、辐射定标:根据遥感影像DN 值计算到达传感器的各波段辐射亮度也就是将传感器记录的辐射量化值(Digital Number ,DN )转换成绝对辐射亮度值、表观反射率,或者表观温度的过程。
绝对定标:通过各种标准辐射源,建立辐射亮度值与辐射量化值(DN )之间的定量关系式中,辐射亮度值L 的常用单位为W/(m2.μm.sr),或者μW/(cm2.nm.sr) 。
1W/(m2.μm.sr)=0.1 μW/(cm2.nm.sr)2、各波段表观反射率计算3、大气辐射校正(ENVI FLAASH/QUAC )绝对大气辐射校正:消除大气辐射衰减效应,将遥感影像的DN 值转换为地表反射率、辐亮度、地表温度等的方法,此过程包含了辐射定标。
相对大气辐射校正:将遥感影像的DN 值转换为类似的整型数,同时消除大气辐射衰减效应。
FLAASH 是用数学建模辐射的物理行为,纠正波长在可见光至近红外和短波红外区域,最多3微米。
(对于热地区,使用基本工具>预处理>校准工具>热大气压校正菜单选项。
)不同于预先计算模拟结果的数据库内插辐射传输特性许多其他大气校正程序, FLAASH 采用了MODTRAN4辐射传输代码。
MODTRAN4并入ENVI FLAASH 的版本被修改,以校正在HITRAN -96水行参数的误差。
可以选择任何一种标准MODTRAN 大气模型和气溶胶类型,FLAASH 还包括以下功能:校正邻近效应(像素混合是由于表面反射辐射的散射) 计算场景的平均能见度(气溶胶/雾量)。
地表温度反演实验报告
地表温度反演实验报告一、引言地表温度是指地球表面的温度,它是地球气候系统的重要组成部分,对气候变化和生态系统具有重要影响。
因此,准确地测量和监测地表温度对于气候研究和环境保护至关重要。
然而,直接测量地表温度是困难且昂贵的,因此反演地表温度的方法应运而生。
二、反演地表温度的方法1. 热辐射测量法热辐射测量法是一种常用的反演地表温度的方法。
它利用地表辐射的热能来推算地表温度。
该方法需要使用红外辐射仪器来测量地表辐射的强度,并通过相关的算法将辐射强度转换为地表温度。
这种方法的优点是准确性高,可靠性好,但需要专业仪器和较高的技术水平。
2. 遥感卫星监测法遥感卫星监测法是一种广泛应用于地表温度反演的方法。
通过使用遥感卫星搭载的热红外传感器,可以获取全球范围内的地表温度数据。
这种方法具有测量范围广、周期性强、时效性好等优点,可以实时监测地表温度的变化。
但是,由于遥感数据的分辨率和精度限制,对于小尺度的地表温度反演可能存在一定的误差。
三、地表温度反演实验过程本实验使用了热辐射测量法来反演地表温度。
首先,选择了一个开阔的地面区域作为实验区域,并安装了红外辐射仪器。
然后,在不同时间段内进行了一系列的地表温度测量。
通过测量地表辐射的热能,利用相关的算法将辐射强度转换为地表温度。
最后,将测量得到的地表温度数据进行整理和分析。
四、实验结果与讨论通过实验测量和分析,得到了一系列地表温度数据。
根据这些数据,可以得出地表温度在不同时间段内的变化趋势和空间分布。
结果显示,在白天,地表温度较高,特别是在中午时段;而夜晚,地表温度较低,特别是在凌晨时段。
此外,地表温度在不同地理位置上也存在差异,如山区和平原地区的地表温度差异较大。
五、结论与展望通过热辐射测量法反演地表温度的实验,我们可以准确地获取地表温度数据,并分析其变化趋势和空间分布。
地表温度的变化对气候变化和生态系统具有重要影响,因此对地表温度的监测和研究具有重要意义。
未来,我们可以进一步完善地表温度反演的方法,提高测量精度和时效性,以更好地应对气候变化和环境保护的挑战。
地表温度反演实验报告
遥感原理与及应用地表温度反演实验报告专业:地理信息系统班级: XXXXXXXX姓名: XXX学号: XXXXXX成绩:指导教师: XXX2014年12月17日一. 实验目的1. 根据实际需要,学会在网上(如中国科学院遥感与数字地球研究所数据共享网)下载研究区内的遥感数据;2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。
二. 实验任务1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像;2. 在ENVI中实现简单的地表温度反演算法。
三. 实验数据在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。
四. 实验原理图1 TM 影像地表温度反演流程1. 地表温度(Land Surface Temperature)反演公式为:21(1)K LST K In R ε=+,其中,R m DN d =⨯+,2111607.76K W m sr m μ---=⋅⋅⋅,21260.56K K =。
2. 根据TM 辐射定标原理,热红外波段表观辐亮度可以进一步写作:max min 6min 255L L R DN L -=⨯+,其中LmaxBand6=15.303 , LminBand6=1.238。
3. 地表比辐射率ε为同温度下地表辐射能与黑体辐射能的比率,其可以表示为:1.0090.047(In )(0)NDVI NDVI ε=+>,其中,4343TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。
五. 实验步骤1. TM 数据下载数据查询和下载网址/query.html ,界面如图2所示。
图2 中国科学院遥感与数字地球研究所数据共享网址界面图3 支持的数据查询条件界面在查询条件中选中“行政区”空间条件,选择中国四川成都市郫县,并且在卫星选择条件中勾选Landsat 5、Landsat 7和Landsat 8,然后确认开始查询数据,出现如图4所示的查询结果页面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感原理与应用
地表温度反演
实验报告
专业:地理信息系统
班级: XXXXXXXX
姓名: XXX
学号: XXXXXX
成绩:
指导教师: XXX
2014年12月17日
一. 实验目的
1. 根据实际需要,学会在网上(如中国科学院遥感与数字地球研究所数据共享网)下载研究区内的遥感数据;
2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。
二. 实验任务
1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像;
2. 在ENVI中实现简单的地表温度反演算法。
三. 实验数据
在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。
四. 实验原理
图1 TM影像地表温度反演流程
1. 地表温度(Land Surface Temperature)反演公式为:
2
1(1)K LST K In R ε=+,
其中,R m DN d =⨯+,2111607.76K W m sr m μ---=⋅⋅⋅,21260.56K K =。
2. 根据TM 辐射定标原理,热红外波段表观辐亮度可以进一步写作:
max min 6min 255
L L R DN L -=⨯+, 其中LmaxBand6=15.303 , LminBand6=1.238。
3. 地表比辐射率ε为同温度下地表辐射能与黑体辐射能的比率,其可以表示为:
1.0090.047(In )(0)NDVI NDVI ε=+>, 其中,4343
TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。
五. 实验步骤
1. TM 数据下载
数据查询和下载网址/query.html ,界面如图2所示。
图2 中国科学院遥感与数字地球研究所数据共享网址界面
图3 支持的数据查询条件界面
在查询条件中选中“行政区”空间条件,选择中国四川成都市郫县,并且在卫星选择条件中勾选Landsat 5、Landsat 7和Landsat 8,然后确认开始查询数据,出现如图4所示的查询结果页面。
图4 查询结果页面
在众多结果中选择云覆盖最少,且完整覆盖研究区的影像,如图5所示,并且下载。
图5 结果筛选
2. TM数据头文件添加
File->open external file->Landsat->Fast,在对话框中选择header头文件,所有7个波段全打开了,把这个文件再保存下即获得了头文件添加的TM数据。
图6 添加数据
3. 温度反演
通过波段的运算完成温度反演:
图7 热红外波段表观辅亮度计算
图8 计算NDVI
图9 判断NDVI与0的关系
图10 计算地表比辐射率
图11 地表温度反演
图12 转为摄氏度
图13 成果保存为.tif影像
图14 温度反演结果
六. 实验成果
图15 在ArcMap中生成专题地图
七. 实验总结
经过这次试验,我对地表温度反演的原理与过程有了一定的了解,通过辐射校正和大气校正后消除图形畸变与误差后,通过一定的温度反演模型进行波段计算即可得到地表温度反演的结果。
这次试验过程中遇到了较多问题,其中最主要的是判定植被覆盖指数NDVI 与0的关系,由于对ENVI逻辑表达式的应用不熟悉,所以自己没能解决这问题,在老师的指导下才解决;课后完成作业的过程中,还遇到了包括添加郫县行政区划等问题,但是在大家的商讨下我们最终解决了这些问题。
总的来说,这次实习让我收获颇丰!。