基本不等式的几何意义知识分享
基本不等式知识点

基本不等式知识点基本不等式知识点探究导语:基本不等式作为数学中的一个重要知识点,广泛应用于数学中的各个领域。
掌握基本不等式的性质和运用方法,对于学生提高数学素养具有重要意义。
本文将就基本不等式的定义、证明、应用以及一些特殊情况进行介绍,帮助读者更好地理解和掌握这一知识点。
一. 基本不等式的定义基本不等式是指对于一般的实数x和y,有以下不等式成立:1. 数字不等式:若x > y,则有 x+a > y+a,其中a为任意实数。
2. 绝对值不等式:若x > a,则有 |x| > |a|,其中a为任意实数。
二. 基本不等式的证明基本不等式的证明可通过数学归纳法进行。
以数字不等式为例,我们可以将其分为两个步骤进行证明:1. 首先证明当a > 0时,x > y推出x+a > y+a。
根据a > 0,可知存在实数b,使得a = b^2。
将x、y分别加上b^2,得到 (x + b^2) - (y +b^2) > 0,即(x - y) + b^2 > 0。
由于b^2 > 0,因此(x - y) + b^2 > 0,即x + b^2 > y + b^2,即x+a > y+a。
2. 其次证明当a < 0时,x > y推出x+a > y+a。
与前一步骤相似,我们令a = -b^2,b为任意实数。
同样可以得到 (x - y) + (-b^2) > 0,即 (x + (-b^2)) - (y + (-b^2)) > 0,即x + (- b^2) > y + (- b^2),即x+a > y+a。
三. 基本不等式的应用基本不等式在数学中有广泛的应用,尤其在代数和不等式解题中常被使用。
以下列举几个典型的应用情况:1. 求绝对值不等式的解集:通过运用绝对值不等式可以求解关于绝对值的不等式,例如 |2x + 1| > 3,可以转化为2x + 1 > 3或2x + 1 < -3的形式,然后求出解集即可。
基本不等式

、柯西不等式等。
优化问题
02
在优化问题中,幂平均不等式可以用于寻找最优解或确定最优
解的范围。
统计学应用
03
在统计学中,幂平均不等式可以用于分析数据的分布和离散程
度。
24
06
排序原理与切比雪夫( Chebyshev)不等式
2024/1/26
25
排序原理简介
2024/1/26
01
排序原理是一种基本的数学原理,用于比较和排列一组数的大 小。
2024/1/26
因式分解法
将一元二次不等式因式分解,然后利用不等式的性质进行求解。
14
一元二次不等式组解法
2024/1/26
分别求解法
分别求出每个不等式的解集,然 后取它们的交集作为不等式组的 解集。
图像法
在同一坐标系中画出每个不等式 的图像,然后找出满足所有不等 式的区域作为不等式组的解集。
15
17
算术平均值-几何平均值(AM-GM)不等式
对于所有非负实数 $a_1, a_2, ldots, a_n$,有
$frac{a_1 + a_2 + cdots + a_n}{n} geq sqrt[n]{a_1a_2cdots a_n}$当且仅当 $a_1 = a_2 = ldots = a_n$ 时取等号。
2024/1/26
加权平均值不等式是AM-GM不等式的推广,具有更广泛的应用范围。
19
柯西-施瓦茨(Cauchy-Schwarz)不等式
对于任意实数 $a_1, a_2, ldots, a_n$ 和 $b_1, b_2, ldots, b_n$,有
2024/1/26
$(a_1^2 + a_2^2 + cdots + a_n^2)(b_1^2 + b_2^2 + cdots + b_n^2) geq (a_1b_1 + a_2b_2 + cdots + a_nb_n)^2$当且仅当 $a_i = kb_i (i = 1, 2, ldots, n)$ 时取等号,其中 $k$ 为常数。
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式公开课课件完整版

基本不等式的形式与特点
基本不等式的形式
包括一元一次不等式、一 元二次不等式、分式不等 式等。
2024/1/25
基本不等式的特点
具有普遍性、客观性、可 解性等。
基本不等式的应用
在解决数学问题时,经常 需要运用基本不等式进行 求解或证明。
5
基本不等式的几何意义
1 2
一元一次不等式的几何意义
表示平面直角坐标系中的一条直线将平面分成两 部分,其中一部分为满足不等式的区域。
应用
在证明不等式、求最值等问题中有广泛应用,如利用柯西-施瓦茨不 等式证明均值不等式。
2024/1/25
22
赫尔德不等式
2024/1/25
定义
对于非负实数序列 {a_i} 和正实数 p, q 满足 1/p + 1/q = 1,有 (∑a_i^p)^(1/p) * (∑a_i^q)^(1/q) ≥ ∑a_i,其中“∑”表示求和符号。
感谢观看
2024/1/25
31
26
常见误区与注意事项
2024/1/25
不等式性质理解的误区
学生常常对不等式的基本性质理解不透彻,如反向不等式的错误 使用等。
忽视定义域的问题
在解不等式时,学生有时会忽视定义域的限制,导致解集错误。
解法选择不当
针对不同类型的不等式,应选择适当的解法。学生有时会选择复杂 的解法,导致解题效率低下。
27
例题3
已知函数$f(x) = x^2 - 2ax + 3$在区间$(-infty, 2]$上是减函 数,求$a$的取值范围。
例题4
已知不等式$|x - a| < b$的解集 为${ x | -1 < x < 3 }$,求$a +
《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的形式基本不等式是高中数学中的一个重要知识点,它有两种常见形式:1、对于任意两个正实数 a 和 b,有\(a + b \geq 2\sqrt{ab}\),当且仅当\(a = b\)时,等号成立。
2、如果\(a\gt 0\),\(b\gt 0\),则\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当\(a = b\)时,等号成立。
这两个形式本质上是等价的,它们都反映了两个正数的算术平均数不小于几何平均数的重要关系。
二、基本不等式的证明我们先来证明第一个形式\(a + b \geq 2\sqrt{ab}\)。
因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),展开得到:\\begin{align}a 2\sqrt{ab} +b &\geq 0\\a +b &\geq 2\sqrt{ab}\end{align}\当且仅当\(\sqrt{a} \sqrt{b} = 0\),即\(a = b\)时,等号成立。
对于第二个形式\(\sqrt{ab} \leq \frac{a + b}{2}\),证明如下:因为\((a b)^2 \geq 0\),所以\(a^2 2ab + b^2 \geq 0\),移项得到\(a^2 + 2ab + b^2 \geq 4ab\),即\((a + b)^2 \geq 4ab\)。
因为\(a\gt 0\),\(b\gt 0\),所以\(a + b \gt 0\),两边同时除以 4 得到:\\begin{align}\frac{(a + b)^2}{4} &\geq ab\\\frac{a + b}{2} &\geq \sqrt{ab}\end{align}\当且仅当\(a = b\)时,等号成立。
三、基本不等式的应用1、求最值基本不等式在求最值问题中有着广泛的应用。
例如,求函数\(y = x +\frac{1}{x}\)(\(x\gt 0\))的最小值。
基本不等式知识点归纳总结

基本不等式知识点归纳1.基本不等式2b a ab +≤ (1)基本不等式成立的条件:.0,0>>b a(2)等号成立的条件:当且仅当b a =时取等号.[探究] 1.如何理解基本不等式中“当且仅当”的含义?提示:①当b a =时,ab b a ≥+2取等号,即.2ab b a b a =+⇒= ②仅当b a =时,ab b a ≥+2取等号,即.2b a ab b a =⇒=+ 2.几个重要的不等式).0(2);,(222>≥+∈≥+ab ba ab R b a ab b a ),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为2b a +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大).[探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1+=在2≥x 时的最小值,利用单调性,易知2=x 时.25min =y[自测]1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( )A .18B .36C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.2.若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .43.已知,02,0,0,0=+->>>z y x z y x 则2yxz 的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为184.函数xx y 1+=的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.。
新高考 核心考点与题型 不等式 第2节 基本不等式及其应用 - 解析
第2节 基本不等式及其应用1.重要不等式及几何意义重要不等式:如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”).基本不等式:如果,a b是正数,那么2a b+≥a b =时取等号“=”) 要点诠释:222a b ab +≥和2a b+≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。
(3)222a b ab +≥可以变形为:222a b ab +≤,2a b+≥2()2a b ab +≤. 2.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =这个圆的半径为2ba +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b = 时,等号成立. 3.2211222b a b a ab ba +≤+≤≤+,即平方平均数算数平均数几何平均数调和平均数≤≤≤,(均为正、b a ),可变形如下24)()2(2222b a b a ab b a ab +≤+≤≤+,即上式的平方形式,其中调和不常用。
4.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0>x 求xx y 32+= 的最小值。
此时若直接使用均值不等式,则xx y 32+= x 42≥右侧依然含有x ,则无法找到最值 (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此① 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。
基本不等式知识点归纳
2.基本不等式知识点归纳5性,易知x=2时畑I[自测•牛刀小试已知m >0, n >0,且mn =81,贝U m +n 的最小值为( )解析:选 A 因为 m >0, n >0,所以 m u n >2mn = ^81 = 18.1若函数f (x )=x+ ------ (x>2)在x=a 处取最小值,则 a =(X —21 .基本不等式丿乔 < 葺匕2(1)基本不等式成立的条件: a >0,b >0. ⑵ 等号成立的条件:当且仅当 a =b 时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当心时,宁,寸莎取等号,即a 心苇^=届②仅当a =b 时,丈巴取等号,即 HP a =b.2 22.几个重要的不等式22b aa 2 +b 2>2ab(a,b 壬 R); —+—>2(abA 0). a b 2 a +b 2 a + b 2 a +b ab <(——)2(a,b-R);(——)2<2 2 22 一 ("R)3.算术平均数与几何平均数设a >0,b >0,则a,b 的算术平均数为 ,几何平均数为 Jab ,基本不等式可叙述为:两个正实数的算术2平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知X :>0,y >0,则 ⑴ 如果积xy 是定值P,那么当且仅当 x=y 时,x + y 有最小值是 2/P. (简记:积定和最小).2⑵如果和x+y 是定值P,,那么当且仅当x = y 时,xy 有最大值是—.(简记:和定积最大).4[探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理?提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,y=x+」在x>2时的最小值,利用单调X1. A. 18 B. 36C. 81 D . 243最小值是1 1[例 1] 已知 a >0,b 》0, a +b =1,求证:(1 +丄)(1+丄)>9.a b-規律]利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用 基本不等式条件的可通过“变形”来转换, 常见的变形技巧有: 拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.II 闢代UH 练1.已知 a >0, b >0, C >0,求证:些 +ca+ 亚 >a + b+c. a b cA. D. 43.xz已知 X A 0, y ;>0, z >0, X — y + 2z=0,则弋的(A.1 1最小值为8 B .最大值为8C.最小值为8D-最大值为84.1函数y =x +—的值域为x5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f(x) = 2的图象交于P 、Q 两点,则线段 PQ 长的x保持例题条件不变,证明:利用基本不等式证明不等式b + 2 W2.■^1(1)将该厂家20XX 年该产品的利润 y 万元表示为年促销费用 t 万元的函数;利用基本不等式求最值[例2] (1)(2012 •浙江高考)若x>0,y>0,满足x+3y=5xy,则3x + 4y 的最小值是( )应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件:(1) 一正二定三相等.“一正”就是各项必须为正数;(2) “二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积 的因式的和转化成定值;(3) “三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求 的最值,这也是最容易发生错误的地方.4 d1. (1)函数y = aJ(a :>0,a H 1)的图象过定点A,若点A 在直线mx + ny —1 = 0(m, n >0)上,求一+ —的最小值;m n⑵ 若正数a,b 满足ab = a +b +3,求ab 的取值范围.[例3]为响应国家扩大内需的政策,某厂家拟在20XX 年举行促销活动,经调查测算,该产品的年销量 (即该k厂的年产量)x万件与年促销费用gO)万元满足x=4-齐(k为常数)•如果不搞促销活动,则该产品的年销 量只能是1万件.已知20XX 年生产该产品的固定投入为 6万元,每生产1万件该产品需要再投入 12万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分 )•24 A.亏B.28C . 5 D • 62(2)已知a 》0,b 》0, a+—=1,则a J 1 + b2的最大值为利用基本不等式解决实际问题⑵该厂家20XX 年的年促销费用投入多少万元时,厂家利润最大?[方法■规律]解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;⑵根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值;4有些实际问题中, 要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值II 國代UII 练3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并1 提高定价到x 元.公司拟投入一(X 2-600)万元作为技改费用,投入 50万元作为固定宣传费用,投入6a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1个技巧一一公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+ b 2>2ab 逆用就是ab <a+b(a A0,b >0),逆用就是ab <(a +b )2(a,b >0)等,还要注意“添、拆项”技巧和公式等号成立的条2 2件等.2个变形一一基本不等式的变形⑴晋)2兰于曲a,*当且仅当a 讪取-3在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围 内求.1-X 万元作为 5浮动宣传费用.试问:当该商品明年的销售量 [通法归纳领悟]1.本题具有以下创新点(1) 本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力. 2.解决本题的关键有以下几点正确理解a,b 的几何意义,并能正确用 A 、B 、C 、D 的坐标表示;8能用拼凑法将m +(m A 0)化成利用基本不等式求最值的形式.2m +1[变式训练]21•已知X A0, y :>0, x,a,b, y 成等差数列x, c,d, y 成等比数列,则(a b)的最小值是( )cd一 112.若直线ax —by +2 =0(a :>0,b 》0),被圆x 2+y 2+ 2x-4y+1=0截得的弦长为4,则一+—的最小值为()a bA. 4B . #2c. 3+ 72D . 2 + 2^/23.若X >0, y >0,且勺G + j y 兰a J x + y 恒成立,则a 的最小值是⑵君芦.竽二丁孔吕(a>0,b >0,当且仅当a = b 时取“「)a b3个关注一一利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正” “定” “等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致创新交汇一一基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件.8[典例](2012 •湖南高考)已知两条直线l 1:y=m 和l 2:y =2m+1(m 〉。
第14讲 基本不等式 (解析版)
【高中新知识预习篇】第14讲 基本不等式解析版一、基本知识及其典型例题知识点一 基本不等式1.基本不等式的概念:当a ,b > 0,ab ≤a +b2,当且仅当a =b 时,等号成立. 2.基本不等式的意义:一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数. 两个正数的算术平均数不小于它们的几何平均数,即ab ≤ a +b2. 3.基本不等式的常见推论 :(1) (重要不等式) ∀a ,b ∀R ,有a 2+b 2 ≥ 2ab ,当且仅当a =b 时,等号成立.(2) ab ≤ 2)2(b a +≤ a 2+b 22 (R b a ∈、);(3) b a +ab≥ 2 (a ,b 同号);(4)a 2+b 2+c 2 ≥ ab +bc +ca (R c b a ∈、、). 4.利用基本不等式证明不等式(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2) 注意事项:∀多次使用基本不等式时,要注意等号能否成立;∀累加法是不等式证明中的一种常用方法,证明不等式时注意使用;∀对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例1】证明不等式: a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【证明】∀化简得:2)2(b a ab +≤.0)(,0224,422222222≥-≥+-++≤++≤b a b ab a b ab a ab b ab a ab 即,即即.时取等号当且仅)2(0)(2b a b a ab b a =+≤∴≥-当恒成立,恒成立, ∀)(22,2422)2(22222222222b a b ab a b a b ab a b a b a +≤+++≤+++≤+即化简得:.0)(,02222≥-≥+-b a b ab a 即即.2)2(222时等式成立恒成立,当且仅当同理,b a b a b a =+≤+综上, a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【变式1】已知x ,y 都是正数. 求证:(1)y x +xy ≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3;(3)已知a ,b ,c 为任意的实数,求证:a 2+b 2+c 2≥ab +bc +ca . 【证明】 (1)∀x ,y 都是正数,∀x y > 0,yx > 0,∀y x +xy≥ 2y x ·x y = 2, 即 y x +xy≥ 2, 当且仅当x =y 时,等号成立.(2)∀x ,y 都是正数,∀x +y ≥ 2xy > 0, x 2+y 2 ≥ 2x 2y 2 > 0,x 3+y 3 ≥ 2x 3y 3 > 0.∀(x +y )(x 2+y 2)(x 3+y 3) ≥ 2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即 (x +y )(x 2+y 2)(x 3+y 3) ≥ 8x 3y 3,当且仅当x =y 时,等号成立. (3)∀a 2+b 2≥2ab ;b 2+c 2≥2bc ;c 2+a 2≥2ca , ∀2(a 2+b 2+c 2)≥2(ab +bc +ca ), 即a 2+b 2+c 2≥ab +bc +ca , 当且仅当a =b =c 时,等号成立..1.a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式.“当且仅当…时,取等号”这句话的含义是:当a =b 时,a +b2=ab ;当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.【例2】(多选题)设a >0,b >0,下列不等式中恒成立的有( ) A.a 2+1>a B.4)1)(1(≥++bb a a C.4)11)((≥++ba b a D.a 2+9>6a .【解析】由于a 2+1-a =2)21(-a +34>0,故A 恒成立;由于a +1a ≥2,b +1b≥2,∀4)1)(1(≥++bb a a ,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故4)11)((≥++ba b a ,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立. 综上,恒成立的是ABC.【变式2】下列各式中,对任何实数x 都成立的一个式子是( ). A.x y +≥B .21x x +>2C .2111x ≤+ D .12x x+≥ 【答案】C【分析】取特殊值可得a,b,D 不恒成立,由211x +≥可得C 对应的不等式2111x ≤+恒成立,得解. 【解析】对于A ,当0x <时,根式无意义,故A 不恒成立; 对于B ,当1x =时,212x x +=,故B 不恒成立; 对于C ,211x +≥,所以2111x ≤+成立,故C 成立; 对于D ,当0x <时,12x x+<,故D 恒不成立, 即对任何实数x 都成立的一个式子是2111x ≤+ 【例3】已知,,若,证明:。
《基本不等式》 知识清单
《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当 a = b 时,等号成立。
其中,\(\frac{a + b}{2}\)叫做正数 a,b 的算术平均数,\(\sqrt{ab}\)叫做正数 a,b 的几何平均数。
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。
二、基本不等式的推导对于正数 a,b,有:\((\sqrt{a} \sqrt{b})^2 \geq 0\)\(a 2\sqrt{ab} + b \geq 0\)\(a + b \geq 2\sqrt{ab}\)\(\frac{a + b}{2} \geq \sqrt{ab}\)当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。
三、基本不等式的几何解释以长为 a + b 的线段为直径作圆,在直径 AB 上取点 C,使 AC = a,CB = b。
过点 C 作垂直于直径 AB 的弦 DE,连接 AD,DB。
根据圆的性质,可得\(CD =\sqrt{ab}\),而半径\(\frac{a+ b}{2}\)。
因为半径不小于弦长的一半,所以\(\frac{a + b}{2} \geq \sqrt{ab}\),当且仅当 C 为圆心时,等号成立,即 a = b 。
四、基本不等式的变形1、\(a^2 + b^2 \geq 2ab\)(当且仅当 a = b 时,等号成立)推导:\(a^2 + b^2 2ab =(a b)^2 \geq 0\),所以\(a^2 +b^2 \geq 2ab\)2、\(ab \leq (\frac{a + b}{2})^2\)(当且仅当 a = b 时,等号成立)推导:由基本不等式\(\frac{a + b}{2} \geq \sqrt{ab}\),两边平方可得\(ab \leq (\frac{a + b}{2})^2\)3、\(\frac{b}{a} +\frac{a}{b} \geq 2\)(a,b 同号且不为 0,当且仅当 a = b 时,等号成立)推导:\(\frac{b}{a} +\frac{a}{b} \geq 2\sqrt{\frac{b}{a} \times \frac{a}{b}}= 2\)五、用基本不等式求最值1、若两个正数的和为定值,则当这两个数相等时,它们的积取得最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)对任意a,b R,有a2 b2 2ab, 当且仅当a b时等号成立。
ba
ab 2
基本不等式一:
任意a,b R, a2 b2 2ab当且仅当a b时等号成立。
注意:1)基本不等式一对于任何实数都成立。
2)在使用基本不等式时,一定要指 出等号成立时的情况。 推广:a2 b2 2ab
R,
a
b 3
c
3
abc
当且仅当a b c时等号成立。
例1 (1)周长相等时,长方形与正方形的面 积谁大?
(2)面积相等时,长方形与正方形的周长谁大?
例2已知 x 0,求证x 1 2;x 0,求证x 1 2
x
x
例3 求证:对任意 a,b, c R, 有a2 b2 c2 ab bc ac 当且仅当a=b=c时,等号成立。
A
C
O
B
a
b
基本不等式二:
任意a, b R , a b 2 ab当且仅当a b时等号成立。
注意:1)a,b R+是充分非必要条件,
当 a 0,b 0 时,基本不等式仍成立。
2)在使用基本不等式时,一定要指
出等号成立时的情况。
命名: a b ——算术平均数
2
ab ——几何平均数
推广:任意a,b, c
在不等式的都加上a2 b2
得:2(a2 b2 ) a2 2ab b2 即:2(a2 b2 ) (a b)2
任意a,b R, a2 b2 (a b)2 当且仅当a ቤተ መጻሕፍቲ ባይዱb时等号成立。 2
(2)对任意a,b R ,有 a b ab, 2
当且仅当a b是等号成立。
D
ab
ab 2