常见算子的边缘检测介绍及其算法研究
图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索引言:图像识别技术如今已经广泛应用于各个领域,其关键之一就是图像中的轮廓提取算法。
轮廓提取的准确与否直接影响到图像识别的效果。
本文将探索图像识别中常用的轮廓提取算法,并对其原理和优缺点进行分析。
一、边缘检测算法边缘检测是图像处理中最基础的一步,是进行轮廓提取的前提。
常用的边缘检测算法有Sobel算子、Laplacian算子和Canny算子等。
1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,其原理是通过计算每个像素点的梯度值来判断其是否为边缘点。
然后根据梯度值的大小确定边缘的强度,进而提取轮廓。
Sobel算子的优点是计算简单,对噪声鲁棒性强。
但其缺点也较为明显,容易产生边缘断裂的情况,并且对角线边缘检测效果较差。
2. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,其原理是通过计算图像中每个像素点的二阶导数来判断其是否为边缘点。
Laplacian算子的优点是能够检测出边缘的交叉点,能够更精准地定位边缘。
但其缺点是对噪声比较敏感,容易产生误检。
3. Canny算子Canny算子是一种综合考虑多种因素的边缘检测算法,其原理是通过梯度计算、非极大值抑制和阈值处理来提取目标轮廓。
Canny算子的优点是能够提取清晰且连续的边缘,对噪声抑制效果好。
但其缺点是计算量较大,算法较为复杂。
二、区域生长算法区域生长算法是一种基于种子点的轮廓提取方法,其原理是在图像中选择若干个种子点,然后通过像素点之间的相似性判断来逐渐生长成为一个完整的区域。
区域生长算法的优点是能够提取出连续且相似的轮廓,适用于要求较高的图像识别任务。
但其缺点是对种子点的选择比较敏感,容易受到图像质量和噪声的影响。
三、边缘跟踪算法边缘跟踪算法是一种基于边缘连接的轮廓提取方法,其原理是通过追踪边缘点的连接关系,形成完整的轮廓。
边缘跟踪算法的优点是能够提取出精细的轮廓,并且对噪声抑制效果好。
几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。
常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。
本文将对这几种算法进行比较。
1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。
2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。
3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。
Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。
4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。
Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。
但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。
综上所述,不同的边缘检测算法具有各自的优缺点。
若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。
如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。
另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。
最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。
图像处理中的边缘检测和特征提取方法

图像处理中的边缘检测和特征提取方法图像处理是计算机视觉领域中的关键技术之一,而边缘检测和特征提取是图像处理中重要的基础操作。
边缘检测可以帮助我们分析图像中的轮廓和结构,而特征提取则有助于识别和分类图像。
本文将介绍边缘检测和特征提取的常见方法。
1. 边缘检测方法边缘检测是指在图像中找到不同区域之间的边缘或过渡的技术。
常用的边缘检测方法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于梯度的边缘检测算法,通过对图像进行卷积操作,可以获取图像在水平和垂直方向上的梯度值,并计算获得边缘的强度和方向。
Prewitt算子也是一种基于梯度的边缘检测算法,类似于Sobel算子,但其卷积核的权重设置略有不同。
Prewitt算子同样可以提取图像的边缘信息。
Canny算子是一种常用且经典的边缘检测算法。
它结合了梯度信息和非极大值抑制算法,可以有效地检测到图像中的边缘,并且在边缘检测的同时还能削弱图像中的噪声信号。
这些边缘检测算法在实际应用中常常结合使用,选择合适的算法取决于具体的任务需求和图像特点。
2. 特征提取方法特征提取是指从原始图像中提取出具有代表性的特征,以便进行后续的图像分析、识别或分类等任务。
常用的特征提取方法包括纹理特征、形状特征和颜色特征。
纹理特征描述了图像中的纹理信息,常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和方向梯度直方图(HOG)。
GLCM通过统计图像中像素之间的灰度变化分布来描述纹理特征,LBP通过比较像素与其邻域像素的灰度值来提取纹理特征,HOG则是通过计算图像中梯度的方向和强度来提取纹理特征。
这些纹理特征可以用于图像分类、目标检测等任务。
形状特征描述了图像中物体的形状信息,常用的形状特征包括边界描述子(BDS)、尺度不变特征变换(SIFT)和速度不变特征变换(SURF)。
BDS通过提取物体边界的特征点来描述形状特征,SIFT和SURF则是通过提取图像中的关键点和描述子来描述形状特征。
边缘检测的原理

边缘检测的原理边缘检测是图像处理中的一项重要技术,它可以用于图像分割、物体识别等领域。
本文将从边缘的定义、边缘检测方法、常见算法优缺点等方面详细介绍边缘检测的原理。
一、边缘的定义在图像中,边缘通常被定义为两个不同区域之间的分界线。
这些区域可以是具有不同颜色、纹理或亮度等特征的区域。
在数字图像中,边缘通常表示为像素值突然变化的位置。
二、边缘检测方法目前,常见的边缘检测方法主要包括基于梯度算子、基于模板匹配和基于机器学习等方法。
1. 基于梯度算子基于梯度算子的边缘检测方法是最为常用和经典的方法之一。
该方法通过计算图像灰度值变化率来确定图像中物体与背景之间的分界线。
其中,Sobel算子和Canny算子是最为常用的两种梯度算子。
Sobel算子是一种3x3或5x5大小的卷积核,它可以计算出每个像素点周围8个邻居像素的梯度值,并将这些梯度值进行加权平均。
Sobel 算子通常被用于检测图像中边缘的方向和强度。
Canny算子是一种基于高斯滤波器和非极大值抑制的边缘检测方法。
该算法首先使用高斯滤波器对图像进行平滑处理,然后计算每个像素点的梯度值和方向。
接着,通过非极大值抑制来消除非边缘像素,并使用双阈值法来确定弱边缘和强边缘。
2. 基于模板匹配基于模板匹配的边缘检测方法是一种基于特定形状模板的技术。
该方法通过在图像上移动一个预定义的模板,来寻找与模板匹配的区域。
当模板与图像中某个区域完全匹配时,就可以确定该区域为边缘。
3. 基于机器学习基于机器学习的边缘检测方法是一种新兴技术,它通过训练分类器来自动识别图像中的边缘。
该方法通常需要大量标记数据来训练分类器,并且需要考虑特征选择、分类器设计等问题。
三、常见算法优缺点1. Sobel算子优点:计算简单,速度快,适用于实时处理。
缺点:对噪声敏感,容易产生虚假边缘。
2. Canny算子优点:能够检测到细节和弱边缘,能够消除噪声和虚假边缘。
缺点:计算复杂,速度慢,需要调整参数以获得最佳效果。
边缘检测技术及比较

Gn nG其中
G * f x , y n G * f x , y G / x G G / y n表示边缘方向,G表示梯度矢量,边缘强度由 G * f x, y 决定。
河北工业大学 机械工程学院
三、几种边缘检测算法的比较
3.Krisch算子对8个方向边缘信息进行检测,因此具有较好的边缘定 位能力,并且对噪声有一定的抑制作用,就边缘定位能力和抗噪声 能力来说,该算子的效果比较理想;但Krisch算子和LOG算子提取出 的边缘和细节都比较多,能够提取出对比度弱的边缘,也正因如此, 受噪声的影响较大,虚假边缘较多,边缘较粗。 4.LOG算子首先通过高斯函数对图像作平滑处理,因此对噪声的抑制 作用比较明显,但同时也可能将原有的边缘也平滑了,造成某些边 缘无法检测到。此外高斯函数中方差参数σ的选择,对图像边缘检 测效果有很大的影响。σ越大,检测到的图像细节越丰富,但对噪 声抑制能力相对下降,易出现伪边缘,反之则抗噪声性能提高,但 边缘定位准确性下降,易丢失许多真边缘,因此,对于不同图像应 选择不同参数;
河北工业大学 机械工程学院
1.1 一阶微分算子
f f f x , y i j为图像的梯度,f x, y 可包含灰度变化信息。 x y 记:e x, y f x2 f y2 为f x, y 的梯度幅值,e x, y 可以用作边缘 检测算子,为简化运算也可将e x, y 定义为偏导数f x、f y的绝对值之 和:e x, y f x x, y f y x, y
医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。
边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。
一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。
1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。
常用的算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。
通过计算梯度幅值和方向,可以得到边缘的位置和方向。
Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。
它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。
进一步计算梯度幅值和方向,可以确定边缘的位置和方向。
Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。
首先,对图像进行高斯滤波来减少噪声。
然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。
最后,通过设置双阈值来确定真正的边缘。
2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。
常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。
Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。
它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。
Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。
Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。
通过最小化能量函数,可以得到最佳的边缘位置。
Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。
拉普拉斯边缘检测算法
拉普拉斯边缘检测算法边缘检测是数字图像处理中的一个基本问题,它的任务是从一幅图像中找出物体的边界。
边界的定义是物体内部的灰度变化很大的地方,比如物体与背景之间的边界或者物体内部的边界。
边缘检测可以被广泛应用于计算机视觉、机器人控制、数字信号处理等领域。
本文将介绍一种常用的边缘检测算法——拉普拉斯边缘检测算法。
拉普拉斯边缘检测算法是一种基于二阶微分的算法。
它的基本思想是在图像中寻找像素灰度值变化明显的位置,这些位置就是边缘的位置。
具体来说,该算法使用拉普拉斯算子来进行图像的二阶微分,然后通过对图像进行阈值处理来得到边缘。
在数学上,拉普拉斯算子可以表示为:∇2f(x,y) = ∂2f(x,y)/∂x2 + ∂2f(x,y)/∂y2其中,f(x,y)是图像上的像素灰度值,∂2f(x,y)/∂x2和∂2f(x,y)/∂y2分别是图像在水平和竖直方向上的二阶导数。
我们可以使用卷积运算来实现对图像的二阶微分:L(x,y) = ∑i,j(G(i,j) * f(x+i,y+j))其中,G(i,j)是拉普拉斯算子的离散化矩阵,f(x+i,y+j)是待处理图像在位置(x+i,y+j)的像素灰度值。
卷积运算的结果L(x,y)就是图像在位置(x,y)处的二阶微分。
得到图像的二阶微分之后,我们需要对其进行阈值处理。
一般来说,图像的二阶微分值越大,说明该位置的像素灰度值变化越明显,很有可能是边缘的位置。
因此,我们可以将所有二阶微分值大于一个设定的阈值的位置标记为边缘点。
然而,拉普拉斯边缘检测算法还存在一些问题。
首先,它对噪声比较敏感,因此在使用该算法时需要进行噪声抑制。
其次,拉普拉斯算子的离散化矩阵在处理图像时会引入锐化效果,这可能会导致图像中出现一些不必要的细节。
因此,在实际应用中,我们往往会使用其他算法和技术来对拉普拉斯边缘检测算法进行改进和优化。
拉普拉斯边缘检测算法是一种基于二阶微分的边缘检测算法。
它的基本思想是使用拉普拉斯算子对图像进行二阶微分,然后通过阈值处理来得到边缘。
图像处理中的边缘检测方法与性能评估
图像处理中的边缘检测方法与性能评估边缘检测是图像处理和计算机视觉领域中的一项重要任务。
它主要用于提取图像中物体和背景之间的边界信息,便于后续的图像分割、目标识别和物体测量等应用。
在图像处理领域,边缘被定义为亮度、颜色或纹理等属性上的不连续性。
为了实现准确且可靠的边缘检测,许多不同的方法和算法被提出并广泛应用。
在本文中,我们将介绍几种常见的边缘检测方法,并对它们的性能进行评估。
1. Roberts 算子Roberts 算子是一种基于差分的边缘检测算法,它通过对图像进行水平和垂直方向的差分运算来检测边缘。
这种算法简单且易于实现,但对噪声比较敏感。
2. Sobel 算子Sobel 算子是一种常用的基于梯度的边缘检测算法。
它通过在图像上进行卷积运算,计算像素点的梯度幅值和方向,从而检测边缘。
Sobel 算子可以有效地消除噪声,并在边缘方向上提供更好的响应。
3. Canny 边缘检测Canny 边缘检测是一种经典的边缘检测算法。
它包括多个步骤,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理。
Canny 边缘检测算法具有较高的准确性和鲁棒性,广泛应用于实际图像处理中。
除了以上提到的方法外,还存在许多其他的边缘检测算法,如拉普拉斯算子、积分图像算法等。
这些算法各有优缺点,选择合适的算法需要根据具体应用情况和要求来确定。
对于边缘检测方法的性能评估,通常使用以下几个指标来衡量:1. 精确度精确度是评估边缘检测算法结果与真实边缘之间的差异的指标。
可以通过计算检测结果与真实边缘的重叠率或者平均绝对误差来评估。
2. 召回率召回率是评估边缘检测算法是否能够正确检测到真实边缘的指标。
可以通过计算检测结果中的边缘与真实边缘的重叠率或者正确检测到的边缘像素数量与真实边缘像素数量的比值来评估。
3. 噪声鲁棒性噪声鲁棒性是评估边缘检测算法对图像噪声的抗干扰能力的指标。
可以通过在含有不同噪声水平的图像上进行测试,并比较检测到的边缘结果与真实边缘的差异来评估。
sobel边缘检测算法原理
sobel边缘检测算法原理Sobel边缘检测算法是一种常用的图像处理算法,用于检测图像中的边缘。
它是一种基于图像一阶导数的算子,可以在图像灰度变化较为明显的地方找到边缘的位置。
该算法的原理是基于梯度的计算,对于一副图像的灰度值,它的梯度可以用两个方向的一阶导数来描述。
Sobel算子就是一种常用的一阶导数算子,其中x方向的Sobel算子是:-1 0 1-2 0 2-1 0 1y方向的Sobel算子是:-1 -2 -10 0 01 2 1对于一副灰度图像I(x,y),分别将x方向和y方向的Sobel算子与原图像进行卷积操作,可以得到两个梯度值Gx(x,y)和Gy(x,y):Gx(x,y)=I(x-1,y-1)*(-1)+I(x+1,y-1)*(1)+I(x-1,y)*(-2)+I(x+1,y)*(2)+I(x-1,y+1 )*(-1)+I(x+1,y+1)*(1)Gy(x,y)=I(x-1,y-1)*(-1)+I(x-1,y+1)*(1)+I(x,y-1)*(-2)+I(x,y+1)*(2)+I(x+1,y-1 )*(-1)+I(x+1,y+1)*(1)然后,将Gx和Gy用勾股定理计算出总梯度G(x,y):G(x,y)=sqrt(Gx(x,y)^2+Gy(x,y)^2)最后,根据总梯度大小,可以确定图像中的边缘位置。
如果总梯度很大,则表示该点为边缘点,否则则为非边缘点。
值得注意的是,Sobel算子是一种一阶导数算子,因此它的结果会比较粗略,对于比较细致的边缘,可能会出现一些错误的识别。
此时,可以使用更高阶的导数算子,如拉普拉斯算子,以获取更精细的边缘信息。
总之,Sobel边缘检测算法是一种简单而有效的边缘检测方法,广泛应用于图像处理领域。
尽管它在某些场景下有一些局限性,但是在实际应用中仍然具有很大的价值。
课件经典边缘检测算子
Roberts算子是一种斜向偏差分的梯度计算方法, 梯度的大小代表边缘的强度, 梯度的方向与边缘走 向垂直。用差分代替一阶偏导,算子形式可表示如 下:
x f ( x, y ) f ( x, y ) f ( x 1, y 1) y f ( x, y ) f ( x 1, y ) f ( x, y 1)
-20 0 -13 0 5 0 0 0
边缘检测算子原理及方法
边缘检测算子通常包括方向的确定,大多数都是基 于方向导数模板求卷积的方法进行边缘提取。 在这里,我们讨论四种常见的基于(近似)一阶微 分的边缘检测算子:Roberts边缘算子、Sobel边缘算 子、Prewitt边缘算子、Kirsch边缘算子。
边缘提取
—边缘检测算子
姓名: 学号:
边缘检测算子介绍
物体的边缘是由灰度不连续性所反映的。边缘 提取首先检出的是这种不连续性,然后再将这些不连 续性的边缘像素连成完备的边界,即物体的边缘。
图像灰度的变化情况可以用图像灰度分布的梯
度来反映,因此我们可以用局部图像微分技术来获得 边缘检测算子。
边缘检测算子介绍
5
0 -3 -3 0 5
5
5 -3 -3 3 5 5 5 -3 5 0 -3
-3
-3 -3 -3 5 5 3 3 -3
3
0 -3 -3 0 5
5
5 5 -3 3 3
各个算子边缘提取图比较
(a) 原图
(b) 水平锐化
(c) 垂直锐化
各个算子效果图比较
(a) 原图
(d) Roberts算法
(e) Sobel算法
Roberts(罗伯特)边缘检测算子
设 f ( x, y)是图像灰度分布函数,Roberts算子由下式 给出: 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见算子的边缘检测介绍及其算法研究
图像的边缘是所属于图像最基本的特征,因为它存储着图像的大部分信息,所以实现对图像边缘的检测是我们清晰感观世界的前提。
图像边缘检测是一种非常重要的检测技术,近年来随着国民经济的快速发展,图像边缘检测在图像处理中扮演着重要的角色。
标签:边缘检测;图像;算法
1 图像边缘检测一般的步骤
一般来说,为了分析和识别图像即,分离提取图像边缘检测操作。
在此基础上可以更近一步做这样的操作,对图像进行分析与识别,从而达到对图像的更近一步的理解。
边缘检测的方法总结为:运用边缘所邻近的一阶导数的变化法则或二阶导数的变化法则,对原始图像边缘进行一般性的检测,来获取我们需要的信息。
其本质是用某一种算法来提取出来边界,边缘的地方一般被我们看成是那些图像灰度变化比较大的边界范围,边缘的地方存在着图像的绝大多数信息。
这种梯度分布可以用来表示图像的灰度变化。
滤波:在边缘检测的这些强大的算法中,一般都是依靠图像增强中的一阶和二阶导数来进行运算。
但是在导数运算的过程中很容易出现噪声,由此我们要寻求一种办法如何消除这种噪声,因此要用滤波器滤去这些噪声以达到最佳性能。
2 边缘检测的简介
边缘普遍的切面可分成这样的3种:呈现屋顶状形式、呈现阶梯状形式、呈现脉冲状形式[1];
屋顶状:我们一般所说的屋顶状的边缘是这样的:下落沿和升高沿都是相当舒缓的延伸。
阶梯状:通常情况下,不同的灰度值,该区域中的两个相邻的部分,称为梯状边缘。
脉冲状:灰度值突变区薄带一般显示脉冲状。
边缘检测在人们生活中用处很大,为满足人们对图像有更好深入了解,更好的感知客观世界,因此对图像的边缘有一个很好的了解是有必要的。
边缘即为:图像周围的那些像素灰度变动且不续的像素组合。
边缘检测的目的在于:寻找出数字图像中那些变化特别显然点,图像的方向和幅值是边缘的两个重要特征,因此我们要首先理解图像的这两个特性。
在通常情况下是由两个方向的边缘走向组
成即:铅直于边缘走向、延伸于边缘走向。
变动比较剧烈是铅直边缘方向的,而变动较缓慢则为延伸于边缘方向的。
小波多尺度边缘检测:小波分析方法在边缘检测过程中作用很大,随着我们对边缘检测技术要求的不断提高,小波多尺度边缘检测作为一种很好的工具得到了广泛的应用。
绝大多数情况相当多边缘检测领域都会利用它来进行科研。
3 几种算子的边缘检测方式的比较
我们一般情况下,把图像中周围的像素灰度有阶跃变化的,或者屋顶变化的那像素的组合,称之为边缘,科研成果中为图像边缘检测贡献了很多种算子,比如:Roberts算子、Sobel算子、Kirsch算子、Prewitt算子、Laplace算子和Canny 算子等等[2]。
一般情况下,我们实现该算法的过程中,我们将研究的方向模板作为核和那些我们研究每一个像素的卷积和操作,这样才能计算出结果,然后选择合适的阈值来提取边缘。
在图像平滑步骤后的实施是Canny算子,所以它和其它的算子是有区别的,它是一阶导数的。
对噪有比较敏感的是Laplace算子,它是二阶导数的。
所以要采用一种有效的方式对它进行一种改变,其中它的一种改变方法是先通过对图像采用进行平缓运算,平缓之后再做二阶导数,这样就把它做以改进,称为LOG,是Laplace的一种繁衍。
该Kirsch算子是一种合理的计算由方向模板算子,是这样计算的即:它是利用一组特定方向,我们同意模板来计算相邻不同方向上的差异值为求最大的值作为输出值,范围为边缘方位的最大值,即我们研究的边缘强度。
3.1 Roberts算子
Roberts算子方便,在我们的运用中也是很广泛的一种,它是运用部分差分算子,这是我们实现检测边缘的根基。
Roberts边缘算子所运用的是这样一种方法即:两个相近的像素差值信号变化有相当高的定位,Roberts算子是梯度算子是最方便的,对噪音敏感,检测出精细的边缘。
由于不存在平滑这步,导致去噪能力差。
3.2 Sobel算子
Sobel算子的思想方向是:一阶导数的衍生边缘检测,像素的邻域像素的影响是不同,通过无限逼法的方式来寻求边缘。
当前的这一像素一般会拥有不等的权值,是由于像素所产生的影响与其邻域的像素一般是不对等的,故而说对算子的结果所产生的影响在一般情况下也是不等的。
Sobel算子的依据是通过缘点到达极值点这一现象所进行检测的,算法是比其它算子方便的,并且Sobel算子在微分时要进行加权平均,因此可以平缓与修复噪声,产生更好的边缘效应。
但是由于存在很多的不足点,如定位较低,如果在使用相对高精度实践中,这样的边缘检测方法是不适合的,因此是不能被采用的。
3.3 Laplace算子和LOG(Gauss-Laplace)算子
运用Laplace出现一个尖峰脉冲的部位通常一阶导数在的部位,一阶导数为零的位置,即为其余位置,这是符合逻辑的。
同时尖峰脉冲处也会是二阶导数存在过零点处,这是凭据一阶导数而言的,因此过零点处会是边缘。
说明我们可以利用这种方法:运用二阶导数的过零点来寻找边缘,这也是一个很好的方式,由此过零点和边缘产生了对等的关系。
这样二阶导数就成为了很好的判据。
LOG和拉普拉斯算子,进行相比较,LOG算子是以一种合理的方式:拉普拉斯波束锐化设备和高斯平滑滤波器有序的结合,先做这样的步骤先:滑去除噪声,然后检测边缘。
依次步骤之后,满意的检测结果便显现出来。
从表面上看拉普拉斯算子检测结果不错,可是也存在这样的弊端,二阶差分是拉普拉斯的特性,出现的多于一阶的噪声是避免不了,除此之外,还出现双像素宽度。
因此,检测边缘不连续,不能有全面信息,但各向同性是拉普拉斯的特性,还具有旋转不修改性,这样,因为我们需要信息,是可以检测的。
参考文献:
[1]王秋雨.MATLAB图像处理的几个应用实例[J].福建电脑,2011(11):24.
[2]冯湘.图像分割的计算机实现[J].郑州铁路职业技术学院学报,2007(04):2.
作者简介:文德仲(1995-),四川广安人,本科在读,研究方向:电气工程及其自动化专业。