传递过程原理--课后习题解答
传输原理课后习题答案

传输原理课后习题答案)(196034Pa P P -==)(7644)(g 4545Pa h h P P =--=ρ2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg/m 3,h =0.1m ,a =0.1m 。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:ghg 42油水ρρ-=-P h P b)a g 2++=(水ρP P Agb 4水ρ+=P P B Paga P P P P P B A 1.107942=+-=-=∆水ρ 2-8一水压机如图2.26所示。
已知大活塞直径D =11.785cm ,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =7.5cm ,活塞高度差h =1m 。
当施力F1=98N 时,求大活塞所能克服的载荷F2。
22232D F 2d F ⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛πρπgh解:由杠杆原理知小活塞上受的力为F 3:a F b F *=*3由流体静力学公式知:2223)2/()2/(D F gh d F πρπ=+∴F 2=1195.82N2-10水池的侧壁上,装有一根直径d=0.6m 的圆管,圆管内口切成a =45°的倾角,并在这切口上装了一块可以绕上端铰链旋转的盖板,h=2m ,如图2.28所示。
如果不计盖板自重以及盖板与铰链间的摩擦力,问开起盖板的力T 为若干?(椭圆形面积的J C =πa 3b/4)解:建立如图所示坐标系oxy ,o 点在自由液面上,y 轴沿着盖板壁面斜向下,盖板面为椭圆面,在面上取微元面dA,纵坐标为y ,淹深为h=y * sin θ,微元面受力为A gy A gh F d sin d d θρρ==板受到的总压力为A h A y g A g F c c AA γθρθρ====⎰⎰sin yd sin d F盖板中心在液面下的高度为h c =d/2+h 0=2.3m,y c =a+h 0/sin45°盖板受的静止液体压力为F=γh c A=9810*2.3*πab压力中心距铰链轴的距离为 :X=d=0.6m,由理论力学平衡理论知,当闸门刚刚转动时,力F 和T 对铰链的力矩代数和为零,即:0=-=∑Tx l F M故T=6609.5N2-14有如图2.32所示的曲管AOB 。
中南大学冶金传递过程原理习题解答

1-1-8 50kg密度为1600 kg•m-3的溶液与50kg 25℃的水混合,问混合后溶液的密度为多少?(设混合前后溶液的体积不变)。
解:25°C时水的密度为996kg·m-3。
由得,解得,即混合后溶液的密度为。
1-1-9 如图所示为一平板在油面上作水平运动,已知运动速度u为0.8m•s-1,平板与固定板之间的距离,油的粘度为1.253Pa•s,由平板所带动的油运动速度呈现直线分布,问作用在平板单位面积上的粘性力为多少?解:单位面积上的粘性力即为τ,则即平板单位面积上的粘性力为1002.4 N 。
1-1-10 25℃水在内径为50mm的管内流动,流速为2m•s-1,试求其雷诺准数为若干?解:25°C时水的密度为996kg·m-3,粘度系数μ为89.5×10-5Pa·s。
则1-1-11 运动粘度为4.4cm2•s-1的油在内径为50mm的管道内流动,问:(1)油的流速为0.015m•s-1时,其流动型态如何?解:﹤2300所以其流动型态为层流。
(2)若油的流速增加5倍,其流动型态是否发生变化?解:若油的流速增加5倍,则Re*=5Re=8.5﹤2300所以其流动型态没有发生变化。
1-1-12 某输水管路,水温为20℃,管内径为200mm,试求:(1)管中流量达到多大时,可使水由层流开始向湍流过渡?解:20°C时水的密度为998.2kg·m-3,粘度系数μ为100.42×10-5Pa·s。
水由层流开始向湍流过渡时,Re=2300,则解得v=0.01157m·s-1所以管中流量达到时,可使水由层流开始向湍流过渡。
(2)若管内改送运动粘度为0.14cm2•s-1的某种液体,且保持层流流动,管中最大平均流速为多少?解:所以保持层流流动,管中最大平均流速为。
1-2-3 某地区大气压力为750mmHg。
传输原理课后习题答案

第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解: 流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d =0.1m ,质量M =50kg .在外力F =520N 的作用下压进容器中,当h=0.5m 时达到平衡状态。
求测压管中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ( 代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg /m 3,h =0.1m ,a =0.1m 。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:2-8一水压机如图2.26所示。
已知大活塞直径D =11.785cm ,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =7.5cm ,活塞高度差h =1m 。
传递过程原理第二章习题解

,
10求证流函数 和势函数 满足 方程
据流函数与势函数定义
有
分别对x y求偏导数
对应式相加可得
1.甘油在流道中心处的流速与离中心25mm处的流速:
2.通过单位管长的压力降:
3.管壁面处的剪应力。
2流体在两块无限大平板之间作一维稳态层流,试计算截面上等于主体流速 的点距板壁面的距离。又如流体在管内作一维稳态层流时,该点与壁面的距离为若干?
解:
两无限大平板之间 可得
分离变量并积分有: 得到流线方程得一般形式
当 、 、 时, ,过(1,3)点的流线方程为:
当 、 、 时, ,过(1,3)流线方程仍为:
8已知某不可压缩流体作平面流动时的速度 , ,试导出此情况下的流函数。
解:
,
9某不可压缩流体作二维流动时的流函数可用下式表示:
试导出点(2,1)处的速度值。
第二章
1温度为20℃的甘油以10kg/s的质量流率流过宽度为1m、高为0.1m的的矩形截面管道,流动已充分发展,试求算:
1.甘油在流道中心处的流速与离中心25mm处的流速;
2.通过单位管长的压力降;
3.管壁面处的剪应力。
已知20℃的甘油的密度 ,粘度为
解:
确定流型
流动为层流,处理为两大平板之间稳态层流流动
解:
流动为层流
中心处:
半径中点处:
壁面处:
5常压下,温度为45℃的空气以 的体积流率流过水平套管环隙,套管的内管外径为50mm,外管内径为100mm,试计算:
1.空气最大流速处的径向距离;
2.单位长度的压力降;
3.内外管间中点处的空气流量;
4.空气最大流速;
5. 及 处的壁面剪应力。
传递过程原理--课后习题解答

【1-1】试说明传递现象所遵循的基本原理和基本研究方法。
答:传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的梯度成正比,传递的方向为该物理量下降的方向。
传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。
【1-2】列表说明分子传递现象的数学模型及其通量表达式。
【1-3】阐述普朗特准数、施米特准数和刘易斯准数的物理意义。
答:普朗特准数的物理意义为动量传递的难易程度与热量传递的难易程度之比;施米特准数的物理意义为动量传递的难易程度与质量传递的难易程度之比;刘易斯准数的物理意义为热量传递的难易程度与质量传递的难易程度之比。
【2-1】试写出质量浓度ρ对时间的全导数和随体导数,并由此说明全导数和随体导数的物理意义。
解:质量浓度的全导数的表达式为:d dx dy dzdt t x dt y dt z dt ρρρρρ∂∂∂∂=+++∂∂∂∂,式中t 表示时间 质量浓度的随体导数的表达式为x y z D u u u Dt t x y zρρρρρ∂∂∂∂=+++∂∂∂∂ 全导数的物理意义为,当时间和空间位置都发生变化时,某个物理量的变化速率。
随体导数的物理意义为,当观测点随着流体一起运动时,某个物理量随时间和观测点位置变化而改变的速率。
【2-2】对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
⑴ 在矩形截面管道内,可压缩流体作稳态一维流动; ⑵ 在平板壁面上不可压缩流体作稳态二维流动; ⑶ 在平板壁面上可压缩流体作稳态二维流动;⑷ 不可压缩流体在圆管中作轴对称的轴向稳态流动; ⑸ 不可压缩流体作球心对称的径向稳态流动。
解:⑴ 对于矩形管道,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0t ρ∂=∂,对于一维流动,假设只沿x 方向进行,则0y z u u == 于是,上述方程可简化为()0x u xρ∂=∂ ⑵ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为 0y x zu u u x y z∂∂∂++∂∂∂= 由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,上式还可以进一步简化为0yx u u x y∂∂+∂∂= ⑶ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t xy z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦ 由于流动是稳态的,所以0tρ∂=∂,由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,则上式可以简化为()()0y x u u x yρρ∂∂+∂∂= ⑷ 由于流动是在圆管中进行的,故选用柱坐标系比较方便,柱标系下连续性方程的一般形式为()()()110z r u u ru t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为()()()110r z u ru u r r r zθθ∂∂∂++=∂∂∂由于仅有轴向流动,所以0, 0r z u u u θ==≠,上式可简化为0zu z∂=∂ ⑸ 由于流体是做球心对称的流动,故选用球坐标系比较方便,柱球系下连续性方程的一般形式为22111()(sin )()0sin sin r r u u u t r r r r θϕρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为22111()(sin )()0sin sin r r u u u rr r r θϕθθθθϕ∂∂∂++=∂∂∂ 由于流动是球心对称的,所以0, 0r u u u ϕθ==≠,上式可简化为221()0r r u rr ∂=∂ 整理得:20r ru u r r∂+=∂ 【2-3】加速度向量可表示为DuD θ,试写出直角坐标系中加速度分量的表达式,并指出何者为局部加速度的项,何者为对流加速度的项。
传输原理课后习题答案

2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解:流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:乙E z2豆或P P0gh P0h同一静止液体中单位重量液体的比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d= 0.1m,质量M = 50kg .在外力F= 520N的作用下压进容器中,当h=0.5m时达到平衡状态。
求测压管中水柱高度H = ?解:由平衡状态可知:(F一mg2)g(H h)(d/2)代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl = 0.9m,1.33m。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
P 0(Pa)P2 P gg h2) 4900(Pa)BP g(h3 hj 1960(Pa)F4 P3 1960(Pa)F5 P4 g(h5 h4)7644(Pa)J:u~ i 二=■ ■_- i— 1—用 1.21h2= 0.4m, h3= 1.1m, h4= 0.75m, h5 =2-6两个容器A 、B 充满水,高度差为a o 为测量它们之间的压强差, 用顶部充满油的倒 U 形 管将两容器相连,如图 2.24所示。
已知油的密度p 油=900kg /m 3, h = 0.1m , a = 0.1m 。
求两 容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为 h , B 球中心与油面高度差为 b ;由流体静 力学公式知:水ghP 4 油gh F 3厂F 22gh2d D P A P 2 水g (ab)22F BF 4 水gbPP AP B P 2P 4水ga 1079.1Pa2-8一水压机如图2.26所示。
《传递过程原理》课后习题参考答案

《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。
2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。
《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。
又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。
已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。
试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。
传输原理课后习题答案.pptx

解:流体静力学基本方程为:
Z1
P1
Z2
P2
或P
P0
gh
P0h
同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强 可以互换,比势能总是相等的。 2-4 如图 2-22 所示,一圆柱体 d=0.1m,质量 M=50kg.在外 力 F=520N 的作用下压进容器中,当 h=0.5m 时达到平衡状态。 求测压管中水柱高度H=?
Xl=d=y0c.6my,Jc由cA理 s论inh力405学 平d2衡s理in14论5知,a当闸4门ha0刚3b 刚 转 ab动0.4时4,
F力和 T 对铰链的力矩代数和为零,即 : sin 45
M Fl Tx 0
故 T=6609.5N 2-14 有如图 2.32 所示的曲管AOB。OB 段长L1=0.3m,∠AOB=45°, AO 垂直放置,B 端封闭,管中盛水,其液面到 O 点的距离L2=0.23m, 此管绕 AO 轴旋转。问转速为多少时,B 点的压强与 O 点的压强相 同?OB 段中最低的压强是多少?位于何处?
即:
求解微分方程得过点(3,1,4)的流线方程为: (x 2)3 y 1 3.2 试判断下列平面流场是否连续? u x x s3i(nzy,u3)3yy3x 1co3s y
解:由不可压缩流体流动的空间连续性方程(3-19,20) :
,
知
3
x 3x x
x
y 3
2 sin y
3sin y 3 2 1 xsin y
dF ghdA gysin dA
板受到的总压力为
F dF g sin ydA g sin yc A hc A
A
A
盖板中心在液面下的高度为 hc=d/2+h0=2.3m,yc=a+h0/sin45°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1-1】试说明传递现象所遵循的基本原理和基本研究方法。
答:传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的梯度成正比,传递的方向为该物理量下降的方向。
传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。
【1-2】列表说明分子传递现象的数学模型及其通量表达式。
【1-3】阐述普朗特准数、施米特准数和刘易斯准数的物理意义。
答:普朗特准数的物理意义为动量传递的难易程度与热量传递的难易程度之比;施米特准数的物理意义为动量传递的难易程度与质量传递的难易程度之比;刘易斯准数的物理意义为热量传递的难易程度与质量传递的难易程度之比。
【2-1】试写出质量浓度ρ对时间的全导数和随体导数,并由此说明全导数和随体导数的物理意义。
解:质量浓度的全导数的表达式为:d dx dy dzdt t x dt y dt z dt ρρρρρ∂∂∂∂=+++∂∂∂∂,式中t 表示时间 质量浓度的随体导数的表达式为x y z D u u u Dt t x y zρρρρρ∂∂∂∂=+++∂∂∂∂ 全导数的物理意义为,当时间和空间位置都发生变化时,某个物理量的变化速率。
随体导数的物理意义为,当观测点随着流体一起运动时,某个物理量随时间和观测点位置变化而改变的速率。
【2-2】对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
⑴ 在矩形截面管道内,可压缩流体作稳态一维流动; ⑵ 在平板壁面上不可压缩流体作稳态二维流动; ⑶ 在平板壁面上可压缩流体作稳态二维流动;⑷ 不可压缩流体在圆管中作轴对称的轴向稳态流动; ⑸ 不可压缩流体作球心对称的径向稳态流动。
解:⑴ 对于矩形管道,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0t ρ∂=∂,对于一维流动,假设只沿x 方向进行,则0y z u u == 于是,上述方程可简化为()0x u xρ∂=∂ ⑵ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为 0y x zu u u x y z∂∂∂++∂∂∂= 由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,上式还可以进一步简化为0yx u u x y∂∂+∂∂= ⑶ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t xy z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦ 由于流动是稳态的,所以0tρ∂=∂,由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,则上式可以简化为()()0y x u u x yρρ∂∂+∂∂= ⑷ 由于流动是在圆管中进行的,故选用柱坐标系比较方便,柱标系下连续性方程的一般形式为()()()110z r u u ru t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为()()()110r z u ru u r r r zθθ∂∂∂++=∂∂∂由于仅有轴向流动,所以0, 0r z u u u θ==≠,上式可简化为0zu z∂=∂ ⑸ 由于流体是做球心对称的流动,故选用球坐标系比较方便,柱球系下连续性方程的一般形式为22111()(sin )()0sin sin r r u u u t r r r r θϕρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为22111()(sin )()0sin sin r r u u u rr r r θϕθθθθϕ∂∂∂++=∂∂∂ 由于流动是球心对称的,所以0, 0r u u u ϕθ==≠,上式可简化为221()0r r u rr ∂=∂ 整理得:20r ru u r r∂+=∂ 【2-3】加速度向量可表示为DuD θ,试写出直角坐标系中加速度分量的表达式,并指出何者为局部加速度的项,何者为对流加速度的项。
解:直角坐标系下,速度u 有三个分量,,,x y z u u u ,因此加速度也有三个分量,其表达式分别为x x x x x x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++∂∂∂∂y y y y y xyzDu u u u u u u u Dttxyz∂∂∂∂=+++∂∂∂∂z z z z z x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++∂∂∂∂ 表达式中对时间的偏导数为局部加速度项,即分别为x u t ∂∂、y u t ∂∂和zu t∂∂;对流加速度项为后面的含速度分量的三项之和,即分别为x x x xy z u u uu u u x y z∂∂∂++∂∂∂、y y y xy z u u u u u u x y z ∂∂∂++∂∂∂和z z z xy z u u uu u u x y z∂∂∂++∂∂∂。
【2-4】某一流场的速度向量可以下式表述(,)54x y x y =-u i j试写出该流场随体加速度向量DuD θ的表达式。
解:由速度向量的表达式得:5, 4, 0x y z u x u y u ==-=5, 0, 0x x x u u ux y z ∂∂∂===∂∂∂ 0,4,0y y y u u u xyz ∂∂∂==-=∂∂∂0, 0, 0z z z u u ux y z∂∂∂===∂∂∂ 所以25x x x x x x x y z Du u u u u uu u u x Dt t x y z t ∂∂∂∂∂=+++=+∂∂∂∂∂ 16y y y y y y xyzDu u u u u u u u u y Dtt x y z t ∂∂∂∂∂=+++=+∂∂∂∂∂0z z z z z x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++=∂∂∂∂ 【2-5】试参照以应力分量形式表示的x 方向的运动方程(2-55a)yx x xx zx Du X Dtxyzτττρρ∂∂∂=+++∂∂∂的推导过程,导出y 方向和z 方向的运动方程(2-55b)和(2-55c),即y xy yy zy Du Y Dtxyzτττρρ∂∂∂=+++∂∂∂yz xz zzz Du Z Dt x y zτττρρ∂∂∂=+++∂∂∂ 解:以y 方向上的运动方程为例进行推导,推导过程中采用拉各朗日观点,在流场中选取一长、宽、高分别为d x ,d y ,d z 的流体微元,固定该流体微元的质量,让此流体微元作随波逐流的运动,该流体微元的体积和位置随时间而变,若该流体微元的密度为ρ,则其质量为d d d d m x y z =,根据牛顿第二定律,该流体微元所受的合外力等于流体微元的质量与运动加速度之积,即d d d d d DuF m a x y z Dt ρ=⋅=⋅⋅在y 方向上流体微元所收到的合外力为d d d d d y y Du F m a x y z Dtρ=⋅=⋅⋅接下来分析一下y 方向上微元体的受力情况,微元体上受到的力有体积力和表面力两种,分别用F b和F s 来表示。
体积力又称质量力,它是在物体内部任意一点都起作用的力,如重力、静电力、电磁力等,其在本质上是一种非接触力。
这里用Y 来表示单位质量的流体在y 方向上受到的质量力。
因此,流体微元受到的y 方向上的质量力为,d d d d b y F Y x y z ρ=⋅下面再来看一下微元体受到的表面力。
表面力是流体微元与周围流体或壁面之间产生的相互作用力,本质上是一种接触力。
单位面积上受到的表面力称为表面应力,在y 方向上流体微元受到的,,, x y y yττ独立的表面应力有三个,它们分别为,和,z y τ,其中第一个下标表示与应力作用面相垂直的坐标轴,第二个下标为应力的作用方向。
当两个下标相同时表面应力为压应力,当两个下标不同时表面应力为剪应力。
下面分别对微元体六个面上受到的y 方向上的表面力进行分析。
如右图所示,在下表面上微元体受到的表面应力为剪应力,x y τ,力的作用面积为d y d z ,方向为y 轴的负方向。
因此在下表面上微元体受到的y方向上的表面力为:,d d x y y z τ-;在上表面上微元体受到的表面应力为d ,x x y τ+,其大小与,x y τ有关,可由,x y τ在x +d x 处对x 一阶泰勒展开得到,即,,,d x y x dx y x y x xτττ+∂=+∂,力的作用面积仍为d y d z ,方向为y 轴的正方向,因此在上表面上微元体受到的y 方向上的表面力为:,,d d d x y x y x y z x ττ∂⎡⎤+⎢⎥∂⎣⎦。
于是,这两个面上的力使微元体受到的合外力为,d d d x y x y z xτ∂∂。
再来看左右两个表面上流体微元的受力状况。
在左侧表面上流体微元受到的压应力,y y τ,力的作用面积为d x d z ,方向为y 轴的负方向。
因此在左侧表面上微元体受到的y 方向上的表面力为:,d d y y x z τ-;在右侧表面上微元体受到的表面应力为d ,y y y τ+,其大小与,y y τ有关,可由,y y τ在y +d y处对y 一阶泰勒展开得到,即,d ,,d y y y y y y y y yτττ+∂=+∂,力的作用面积仍为d x d z ,方向为y 轴的正方向,因此在右侧表面上微元体受到的y 方向上的表面力为:,,d d d y y y y y x z y ττ∂⎡⎤+⎢⎥∂⎣⎦。
于是,这两个面上的力使微元体受到的合外力为,d d d y y x y z yτ∂∂。
最后再来看一下前后两个表面上流体微元的受力状况。
在后表面上流体微元受到的应力,z y τ,力的作用面积为d x d y ,方向为y 轴的负方向。
因此在后表面上微元体受到的y 方向上的表面力为:y(/)yy yy y dyττ+∂∂dxdydz/)xy xy x dxττ∂∂(上)(右)(/z)zy zy dzττ+∂∂(前),d d z y x y τ-;在前表面上微元体受到的表面应力为d ,z z y τ+,其大小与,z y τ有关,可由,z y τ在z +d z 处对z 一阶泰勒展开得到,即,d ,,d z y z z y z y z zτττ+∂=+∂,力的作用面积仍为d x d y ,方向为y 轴的正方向,因此在右侧表面上微元体受到的y 方向上的表面力为:,,dz d dy z y z y x z ττ∂⎡⎤+⎢⎥∂⎣⎦。