(完整版)等离子喷涂解析

合集下载

等离子熔射喷涂技术

等离子熔射喷涂技术

等离子熔射喷涂技术
等离子熔射喷涂技术是一种先进的表面涂层技术,其基本原理是利用
高温等离子体使粉末燃烧,并控制燃烧的粉末以射流形式喷射到工件
表面形成涂层。

这种技术具有涂层质量高、工艺稳定、效率高等优点。

等离子熔射喷涂技术可以制备各种金属、陶瓷、复合材料等涂层,适
用于各种表面处理工艺,如电镀、热喷涂、化学镀、真空镀等。

该技
术已经成功应用于航天、航空、能源、机械、电子、生物医学等领域,实现了高效、快速、低成本的表面处理和涂层制备。

另外,在操作等离子熔射喷涂技术时,需要注意各种参数的控制,如
喷涂距离、粉末粒度、气压、喷涂速率、功率等。

同时,需要经过不
断试验和调整,才能获得最佳的涂层质量和工作效率。

如有需要,可以咨询专业人士意见或寻求专业设备的帮助。

等离子喷涂 参数

等离子喷涂 参数

等离子喷涂参数
摘要:
1.等离子喷涂简介
2.等离子喷涂参数的作用
3.常见等离子喷涂参数及其设置
4.参数对等离子喷涂效果的影响
5.合理设置参数的重要性
正文:
等离子喷涂是一种广泛应用于工业领域的表面处理技术,通过将材料以高速喷射的形式沉积在基材表面,从而实现对基材的保护和修复。

在等离子喷涂过程中,参数的设置对于涂层的性能和质量有着至关重要的影响。

本文将详细介绍等离子喷涂参数的相关知识。

等离子喷涂参数主要包括喷涂电压、喷涂电流、喷涂距离、喷涂速度、喷枪与基材的相对位置等。

这些参数会影响到涂层的结构、硬度、耐磨性、耐腐蚀性等性能。

首先,喷涂电压和电流是影响涂层沉积速率的重要参数。

通常情况下,提高喷涂电压和电流可以增加涂层的沉积速率,但过高的电压和电流会导致涂层出现气孔、裂纹等缺陷。

因此,需要根据实际需求和材料特性来合理设置喷涂电压和电流。

其次,喷涂距离和速度也会影响涂层的质量。

喷涂距离过近或过远,都可能导致涂层厚度过大或过小,影响涂层的性能。

喷涂速度过快或过慢,则可能
导致涂层结构不均匀,出现裂纹等缺陷。

因此,需要根据涂层厚度和材料特性来调整喷涂距离和速度。

此外,喷枪与基材的相对位置对于涂层的均匀性和质量也有很大影响。

合理的喷枪与基材的距离和角度,可以保证涂层在喷涂过程中均匀地覆盖在基材表面,避免涂层厚度过大或过小的现象。

总之,等离子喷涂参数设置得当,可以获得性能优异的涂层。

反之,参数设置不合理,可能导致涂层质量不佳,影响等离子喷涂的效果。

低温等离子喷涂技术提高附着力

低温等离子喷涂技术提高附着力

低温等离子喷涂技术提高附着力低温等离子喷涂技术(Low Temperature Plasma Spraying, LTPSS)是一种先进的表面处理技术,它通过将材料加热到等离子状态并喷涂到基材上,以形成具有优异性能的涂层。

这种技术因其在提高附着力方面的显著效果而受到广泛关注。

以下是关于低温等离子喷涂技术提高附着力的详细论述。

一、低温等离子喷涂技术概述低温等离子喷涂技术是一种利用低温等离子体作为热源,将粉末或线材材料熔化并加速到基材表面,形成涂层的过程。

与传统的热喷涂技术相比,LTPSS具有较低的热输入,这有助于减少基材的热影响区域,保持基材的原始性能,同时提高涂层的附着力和整体性能。

1.1 低温等离子喷涂技术的原理LTPSS技术的核心原理是利用等离子体的高温和高速特性,将材料加热至熔融或半熔融状态,并以高速喷射到基材上。

等离子体是一种部分电离的气体,具有高能量和高焓值,能够高效地传递热量,使材料迅速熔化并形成涂层。

1.2 低温等离子喷涂技术的特点LTPSS技术具有以下特点:- 低热输入:与传统的热喷涂技术相比,LTPSS的热输入较低,有助于保护基材不受热损伤。

- 高附着力:由于等离子体的高速喷射作用,涂层与基材之间的界面结合力得到显著增强。

- 优异的涂层性能:LTPSS技术能够制备出具有良好耐磨性、耐腐蚀性和抗氧化性的涂层。

- 广泛的材料适应性:LTPSS技术适用于多种材料的喷涂,包括金属、陶瓷、复合材料等。

二、低温等离子喷涂技术提高附着力的机制低温等离子喷涂技术提高附着力的机制主要包括以下几个方面:2.1 界面结合力的增强LTPSS技术通过高速喷射作用,使涂层材料与基材表面产生强烈的物理和化学作用,形成牢固的界面结合。

这种结合力的增强,主要得益于以下几个因素:- 表面清洁:等离子体的高温可以去除基材表面的氧化层和污染物,提供清洁的表面,有利于涂层与基材的结合。

- 表面活化:等离子体中的活性粒子可以激活基材表面,促进涂层与基材之间的化学键合。

等离子喷涂

等离子喷涂
11
(四) 大气等离子喷涂设备组成
2
3 1 4 5
6 7
8
9
10
图等离子喷涂设备组成示意图 1-冷却水;2-电源;3-控制设备;4-粉末输送设备;5-喷枪;6-等离子焰流;7-工件 ;8-工作气体;9-粉末输送气体;10-电、工作气体、冷却水输入
辅助设备包括喷涂柜,通风除尘装置,带动喷枪及工件运动的机 械装置等。喷涂设备应置于有隔音效果的喷涂室内。喷涂室内还 应有供给压缩空气的管道,在喷涂操作时作冷却气体及向防护头 盔供给新鲜空气。
14
(四) 大气等离子喷涂
(1)基体表面的清洁 1)基体表面油污、氧化膜的清除 基体表面的油污等可以采用氢氧化钠、碳酸钠、丙酮、乙 醇、汽油、三氯化乙烯和过氯乙烷乙烯等溶液,将基体表面的油 污溶解,再加以清除,也可以采用三氯乙烯蒸汽进行清洗,但三 氯乙烯对人体有害。 对于疏松基体的油污去除,需要将其加热到250℃左右, 尽量使渗透到疏松孔中的油污渗出表面,然后再将其清除。 2)基体表面氧化膜的处理 可以采用机械加工的方法,也可以硫酸或盐酸进行酸洗。 (2)基体表面的粗化处理 对基体进行粗化处理,可以提高涂层与基体的结合面积, 提高涂层与基体结合强度,因而粗化处理的效果好坏直接影响到 基层与涂层的结合强度。
自由 电弧
压缩 电弧
电弧燃烧不受任何约束,温度一般在5000~6000K 电弧燃烧由于冷却喷嘴的拘束作用而存在机械压 缩效应、热压缩效应、自磁压缩效应。电弧温度可达 4 3×104K
(一) 等离子弧组成
等离子弧可划分为阴极和阴极区、弧柱区、阳极 和阳极区三个部分,如图所示。 (1)阴极和阴极区 等离子放电的绝大多数电子是由阴极发出的。阴 极表面放电部分的总和称为阴极斑点。其电流密度 高达103~106A/cm2。阴极区是指靠近阴极电场强度 很强的区域,其距阴极约为10-4cm。电位梯度大。

等离子热喷涂

等离子热喷涂
处理及焊接或切割较薄的金属或非金属。等离子喷涂 采用的就是此类非转移弧。
(2)等离子热喷涂
等离子喷涂是采用刚性非转移型等离子弧为 热源, 将欲喷涂粉末材料加热到熔融或半熔 融状态,在经过高速焰流将其雾化加速喷射 到经预处理的工件表面,形成喷涂涂层的一 种热喷涂表面加工方法。
(3)、等离子喷涂的主要特点
1)喷涂过程对基体的热影响小,零件无变形,不改变基
体金属的热处理性质。 2)涂层的种类多。等离子焰流的温度高,可以将各种喷
涂材料加热熔融状态,因而可供等离子喷涂用的材
料非常广泛,可以得到多种性能的喷涂层。 3)工艺稳定,涂层质量高。等离子喷涂层与基体金属的 法向结合强度通常为40~70MPa。涂层孔隙率3~5%。 4) 涂层平整光滑,可精确控制厚度。
2)等离子喷涂:由于等离子喷涂的涂层结 合力通常在40~70MPa之间,很难解决磨 蚀问题,但这一结合力可以很好的解决气蚀 问题,可以对水轮机叶片受沙石冲击面采用 煤油超音速喷涂,以解决磨蚀问题,对于叶 片的背面(以气蚀为主的面)采用等离子超 音速喷涂以解决气蚀问题。这样可以很好的 解决各自的主要问题,并且可以降低成本, 这是由于等离子喷涂的成本只是煤油超音速 喷涂成本的1/3。
(1)对等离子喷涂的陶瓷涂层进行封孔理。 (2)等离子射流中温度场和速度场分布的实 验数据和理论分析的比较还有一定困难。 (3)涂层间的结合、涂层与基体的结合、气 孔率及未融粒子的控制等。
谢 谢!
(4)、等离子喷涂设备:
1)等离子喷枪;
2)电源及控制柜; 3)送粉器 4)热交换器
(5)、等离子喷涂技术的应用
1、耐磨涂层(水轮机中的气蚀问题)
2、耐腐蚀涂层 3、热障涂层 4、生物医学功能陶瓷涂层

等离子喷涂 参数

等离子喷涂 参数

等离子喷涂参数
摘要:
1.等离子喷涂简介
2.等离子喷涂参数分类
3.常见等离子喷涂参数及其影响
4.参数选择与调控对等离子喷涂效果的重要性
正文:
一、等离子喷涂简介
等离子喷涂是一种表面技术,通过高速喷射等离子弧所产生的气流,使涂层材料在工件表面沉积,形成一层具有特定性能的涂层。

等离子喷涂技术广泛应用于机械、电子、航空等领域,以提高工件的耐磨性、抗腐蚀性、抗氧化性等性能。

二、等离子喷涂参数分类
等离子喷涂参数主要包括气体成分、气体流量、喷射速度、喷嘴与工件距离、弧压、电流等。

这些参数对等离子喷涂过程和涂层性能具有重要影响。

三、常见等离子喷涂参数及其影响
1.气体成分:影响涂层的化学成分和结构,选择合适的气体成分可获得优良的涂层性能。

2.气体流量:影响等离子弧的稳定性和涂层的均匀性,需根据具体应用场景选择合适的气体流量。

3.喷射速度:决定涂层厚度和涂层结构的关键参数,不同喷射速度会导致
涂层性能的差异。

4.喷嘴与工件距离:影响等离子弧的形状和涂层的均匀性,需要根据实际情况调整喷嘴与工件的距离。

5.弧压、电流:影响等离子弧的能量,弧压和电流的改变会导致等离子弧形态和涂层性能的变化。

四、参数选择与调控对等离子喷涂效果的重要性
合理选择和调控等离子喷涂参数,可以优化涂层性能,提高工件的使用寿命和可靠性。

等离子喷涂 参数

等离子喷涂参数等离子喷涂是一种先进的表面涂层技术,适用于金属、陶瓷等材料的表面处理和改性。

该技术通过将细粉末通过等离子处理,将其加热熔化后喷涂在工件表面,形成坚固而耐磨的涂层,提高了工件的耐腐蚀、耐磨和高温性能,广泛应用于航空航天、汽车、船舶、能源等领域。

一、等离子喷涂的工艺原理等离子喷涂的工艺原理主要分为等离子产生、粉末输送和喷涂成形三个步骤。

1. 等离子产生等离子喷涂技术是利用等离子体的高能量来使粉末加热融化,并将其喷涂在工件表面。

在喷涂过程中,通过电弧或等离子火花产生高温等离子体,通过等离子体将粉末熔化并喷涂到工件表面。

2. 粉末输送将预先制备好的涂料粉末输送至等离子火花中,利用等离子产生的高温将粉末加热融化,并喷涂到工件表面。

粉末的输送方式对喷涂质量和效率有重要影响。

3. 喷涂成形在粉末融化后,通过气体喷射将粉末喷涂到工件表面形成涂层。

喷涂成形过程需要控制喷涂距离、喷涂速度和喷涂角度等参数,以保证涂层质量和均匀性。

二、等离子喷涂的参数及优化等离子喷涂的参数设置对于涂层的形成和性能起着至关重要的作用。

以下是等离子喷涂中常见的参数及其优化方法。

1. 气体流量气体流量是指喷涂时喷枪喷出的惰性气体(通常是氮气或氩气)的流量,气体流量的大小会影响涂层的密实度和均匀性。

要保证气体流量的稳定,并根据工件材料和形状进行调整,以获得最佳的喷涂效果。

2. 电弧电流和电压电弧电流和电压是产生等离子体的重要参数,它们会影响等离子体的能量和温度,进而影响粉末的熔化和喷涂效果。

合理设置电弧电流和电压能够得到均匀、致密的涂层。

3. 粉末流量粉末流量是指粉末喷涂速度和均匀性,粉末流量的大小会影响涂层的厚度和均匀性。

需要根据工件的具体要求和形状进行合理的调整,以获得符合要求的涂层。

4. 喷涂距离和喷涂速度喷涂距离和喷涂速度是影响喷涂均匀性和涂层成形的重要参数。

合理设定喷涂距离和喷涂速度,能够保证涂层厚度的均匀性和致密性。

等离子喷涂技术简介及其应用前景.

11等离子喷涂技术等离子喷涂技术plasmasprayingtechnologyplasmasprayingtechnology2主要内容主要内容v等离子喷涂介绍等离子喷涂介绍v等离子喷涂技术分类等离子喷涂技术分类v等离子喷涂技术特点等离子喷涂技术特点v等离子喷涂技术应用等离子喷涂技术应用v问题及展望问题及展望3等离子喷涂技术介绍等离子喷涂技术介绍热喷涂技术是表面工程学的重要组成部分它是一种材料表面强化和表面改性的技术可以使基体表面具有耐磨耐蚀耐高温氧化电绝缘隔热防辐射减磨和密封等性能
3
等离子喷涂技术介绍
热喷涂技术
热喷涂的工艺方法有很多种,根据加热源的不同可分为: 火焰喷涂、电弧喷涂、等离子喷涂( APS) 、爆炸喷涂
4
等离子喷涂技术介绍
等离子喷涂技术
等离子喷涂是利用等离子火焰来加热熔化喷涂粉末使之 形成涂层的热喷涂方法。
等离子体:自然界物质的第四态——等离子体。当气体 电离度大于0.1%时,正离子和电子数量增多且相等,其 空间电荷为零,呈中性状态,处于这种状态下的气体称 为等离子体 等离子喷涂工作气体常用Ar 或N2,再加入5% ~ 10% 的 H2,气体进入电极腔的弧状区后,被电弧加热离解形成等 离子体,其温度可达15000 ℃以上。
(2)合理选择喷涂工艺,优化工艺参数 (3)进一步研究涂层的形成机理、孔隙形成机理,寻求消除 或减少孔隙率的方法
(4)研究开发出能有效防止光辐射、高噪音、有害衍生 气体、粉尘及有害物质的新型等离子喷涂机
35
Thank You!
2014年5月22日
36
27
等离子喷涂技术应用
(1)纳米涂层
等离子喷涂技术作为一个传统的涂层制备手段用于喷涂纳 米涂层具有独特的优势。如低成本、高效率,适于工业化 生产,所得涂层硬度高、耐磨性好、与基体结合强度高。

等离子喷涂原理与应用详解 共40页

1942年瑞典的H.阿尔文指出,当理想导电流体处在磁场中,会产生沿磁力线传播的横波(即 阿尔文波)。印度的S.钱德拉塞卡在1942年提出用试探粒子模型来研究弛豫过程。
1946年朗道证明当朗缪尔波传播时,共振电子会吸收波的能量造成波衰减,这称为朗道阻 尼。朗道的这个理论,开创了等离子体中波和粒子相互作用和微观不稳定性这些新的研究 领域。
等离子喷涂的发发展史
19世纪30年代英国的M.法拉第以及其后的J.J.汤姆孙、J.S.E.汤森德等人相继研究气体放 电现象,这实际上是等离子体实验研究的起步时期。
1879年英国的W.克鲁克斯采用“物质第四态”这个名词来描述气体放电管中的电离气体。
美国的I.朗缪尔在1928年首先引入等离子体这个名词,等离子体物理学才正式问世。
2)条件不同 等离子喷涂可以直接在大气环境下 气相沉积必须在高真空下进行
等离子喷涂与其它表面改性技术的区别
3)涂层组织结构与厚度不同 等离子喷涂涂层的组织为层状堆积,涂层存在大量粒子间界面和气孔等
缺陷。 气相沉积涂层是致密的几微米厚的薄膜材料
4)性能上的不同 等离子喷涂在某种程度上提高了涂层的性能, 气相沉积大大提高了材料的性能
等离子喷涂时,喷涂后基体组织不发生变化,工件几乎不产生变形。 4)效率高
等离子喷涂时,生产效率高,采用高能等离子喷涂时,粉末的沉积速率 达8Kg/h。
等离子喷涂与其它表面改性技术的区别
1. 与火焰喷涂的区别 等粒子喷涂技术是继火焰喷涂之后大力发展起来的一种精密喷涂方法。
它具有:①超高温特性,便于进行高熔点材料的喷涂。②喷射粒子的速度高, 涂层致密,粘结强度高。③由于使用惰性气体作为工作气体,所以喷涂材料 不易氧化。
从20世纪30年代起,磁流体力学及等离子体动力论逐步形成。等离子体的速度分布函 数服从福克-普朗克方程。

等离子喷涂失效分析


的温度、热焓和流速。Ar气和H2气流量的增加,导致电弧
电压的增加,功率的增大,有利于获得夹杂物少、致密和均
匀的涂层,涂层的耐磨性能也越好。但是Ar气流量过大,会
使离子浓度减小,焰流温度和热烩会有所降低,等离子焰流
速度变大,粒子在焰流中加热时间变短,粉末熔化不均匀,
涂层组织疏松,孔隙率增大,涂层耐磨性能恶化。
比剥落坑深得多。
12
13
分析认为,接触应力导致的涂层内部剪切应力变化是
涂层产生上述失效的主要原因。低接触应力条件下,涂层
内部和界面处的剪切应力较小,无法有效地破坏涂层的内
聚或涂层与基体的结合,主要发生轻微的表面点蚀或剥落
等近表层失效;高接触应力条件下,涂层与基体界面上的
剪切应力增大,过大的界面剪切应力使涂层界面上的缺陷
效模式的发生。
9
10
5)结合强度
涂层/基体的结合强度是影响涂层服役持久性的重要
指标,通过疲劳试验可以发现,结合强度较低的涂层,以
快速而严重的分层失效为主,涂层寿命较短,且分散程度
高;而结合强度较高的涂层主要发生表面磨损和剥落失效,
涂层寿命较长,且分散程度低,易于进行寿命预测。
11
6)接触应力
涂层表面粗糙度是指涂层工作状态下的接触表面的光
滑程度。粗糙度较高的涂层接触疲劳寿命较低,反之寿命
较高。分析认为,在相同的润滑条件下,粗糙度较大时,
由于涂层润滑不充分,表面微凸体相互挫伤,形成局部裂
纹,裂纹扩展最终导致磨削后涂层中出现表面磨损、剥落
等近表层失效,涂层寿命短;粗糙度较小时,涂层滑条
件良好,对摩副分离充分,表面未受到直接冲击,近表面
防腐、耐高温等性能的表面防护涂层,提高工件的使用寿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、等离子喷涂的应用
❖ 等离子喷涂具有喷涂材料范围广、调节方便、 适应性强、喷涂气氛易控、涂层结合力强、气 孔率可调等优点。
❖ 可喷涂的材料范围不断扩大,从传统的金属粉 末到各种功能陶瓷粉末,从微米粉末到纳米粉 末都可以进行喷涂。等离子喷涂技术在国防、 航空、工业、医学等领域发挥着重要的作用。
❖ 热障是等离子喷涂材料应用最早、最广泛的功能。 使用等离子喷涂制备的热障涂层已经广泛的应用 于航天飞机发动机引擎部件、燃烧室器壁、高效 燃气轮机涡轮叶片、大型钢铁厂轧辊、核反应容 器等方面。据估算,厚度为0.4 mm的氧化锆陶瓷 涂层可使基体温度降低100-300K,从而极大地延 长了材料的使用寿命。
❖ 在提高耐磨性方面,等离子喷涂技术发挥了巨大的作用, 制备的钼基合金、Al2O3-TiO2、CrC-NiCr 等耐磨涂层已 经在汽车、造纸、纺织等领域得到广泛的应用。汽车速 度的不断提高对汽车发动机运动部件的耐磨性提出了更 高的要求,使用等离子喷涂制备的复合涂层可以大大降 低材料的摩擦系数,Fukumasa等人使用特殊的喷枪制备 出银-石墨复合涂层,涂层的摩擦系数仅为青铜的 1/5, 银的 1/2。另外,WC-Co 具有优异的耐磨性能,但在等 离子喷涂过程中容易脱碳,降低了涂层的性能。Li等人 对涂层进行放电等离子体烧结(SPS),成功的恢复了涂 层中的 WC 相,使涂层近表面的硬度提高约 40%。
• Plasma jet can reach very high temperature > 20,000 K • Plasma disassociation 离解effect (ionization) is important to enhance heat transfer • Almost applicable to any materials: ceramics, metal, plastics, etc.
等离子体喷涂 Plasma spray
等离子体分类
极光、日光灯
冷等离子体
电弧、碘钨灯
热等离子体
聚变、太阳核心
低温
高温
等离子体 100000C 等离子体

电子温度
1eV
冷等离子体应用
❖ 等离子体的化学过程
刻蚀 化学气相沉积(成膜)
❖ 等离子体材料处理
表面改性 表面冶金
❖ 光源
冷光源(节能)
❖ 在结构上,连接拖带的只有两根电缆和气管水管,所以 可以方便地装在机器手上,完成各种任务。如果作简单 的等离子体喷涂工作,有时工人就直接握在手里进行工 作。
热等离子体表面处理技术
等离子喷涂
等离子喷涂的原理是: ❖ 气体进入电极腔内,被电弧加热离化电子和离子
的平衡混合物,形成等离子体; ❖ 通过喷嘴时急剧膨胀形成亚音速或超音速的等离
❖ 目前,等离子喷涂技术方面取得的最重要的进 步之一是,在工业领域引进了三阴极喷涂系统。 其技术核心是等离子喷枪有3 个阴极和由几个 被绝缘的环体串联组成的喷嘴组成,只有离阴 极相对远的最后一个环体作为阳极工作。
Plasma Spray
❖ Thermal spray method in which a plasma jet is created by striking an arc between an anode and a cathode with a gas flowing through it. A material (feedstock) is then introduced into the plasma jet where it is highly energized, melted to a molten state and projected onto the substrate of the part being coated.
子流; ❖ 喷涂粉末颗粒被加热熔化,有时还与等离子体发
生复杂的化学反应,随后被雾化成细小的熔滴,喷 射到基体上,快速冷却,形成沉积层。
❖ 等离子喷涂是集熔化—雾化—快淬—固结等工 艺于一体的粉末固结方法,形成的组织致密,晶 粒细小。
❖ 由于等离子束流的高温作用,等离子喷涂特别 适合于喷涂难熔金属、陶瓷和复合材料涂层。
The plasma spray process offers a broad base of materials (powders) including metals, ceramics, polymers and composites.
Plasma Spray Process
•Complete melting of the particle is critical for uniform coating • Residual stress due to uneven thermal expansion is important
等离子体喷涂原理示意图
❖ 在圆锥形的阴极电极和圆筒形的阳极电极间打出电弧(电 流约几十至几百安培),由阴极后方导入的气体(通常是 惰性气体氩气,Ar), 立即被电弧的高温激发,变成等离 子体, 从圆筒形的阳极电极的远阴极的洞口喷出, 形 成等离子体火焰的射流(plasma jet)。
❖ 圆锥形的阴极通常用难熔金属钨制造,而阳极为铜。因 为电弧的根产生在阳极上,阳极电极需要强制水冷。
在医疗器械方面的应用
❖ 在生物医用方面,常采用等离子喷涂HA、 生物活性玻璃等涂层、氧化钛、氧化锆 等涂层,用于牙根种植体和人工关节柄部 等医疗器械的表面改性,提高植入体与 骨组织的结合强度。
低温等离子体应用
热等离子体应用
❖ 高温加热
冶金、焊接、切割
❖ 材料合成、加工
陶瓷烧结、喷涂、三废处理
❖ 光源
强光源
❖ 1、等离子体喷涂概念及原理 ❖ 2、等离子喷涂的应用(包括医疗器械) ❖ 3、等离子喷涂技术
1、等离子体喷涂的概念
等离子喷涂是利用等离子焰流为热源 的热喷涂,利用等离子体枪产生的等离子 体流将粉末加热和加速,在熔融或接近熔 融的状态下喷向基体材料表面形成涂层。 等离子弧产生的温度高达16000℃,喷流速 度达300-400m/s,因而可以喷涂各种高熔 点、耐磨、耐热涂层。
相关文档
最新文档