有机电致发光

合集下载

有机电致发光材料..

有机电致发光材料..

4. 亮度,效率高;
5. 直流驱动电压低,能耗少,可与集成电路驱动相匹配; 6. 制作工艺简单,成本低;
7. 可实现超薄的大面积平板显示;
8. 良好的机械加工性能,可做成柔性显示器。
聚合物电致发光二极管(PLED)
PLED,即第二种有机发光材料为高分子聚合物,也称为高分子发光 二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚 合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子 有机发光二极管。 作为一种发光显示材料,聚合物发光二极管(PLED)材料具有很强的 应用潜力,因为它是一种自发光的材料,并且还具有制作相对容易的优点。 因此在制作有机发光二极管器件(OLEDs)时,PLED材料是一种很好的基 本材料,因为与小分子OLED材料20 ~25的发光效率相比,PLED材料的 发光效率则为30~40。
驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
3). 1987年美国Kodak 公司的邓青云等采用了夹层式的多层器件结构,开创 了有机电致发光的新的时代。
创新点:(1)多功能有机层的结构; (2)超薄的有机层厚度
75nm 60nm驱动Fra bibliotek压小于10V最大外量子效率1%
最大亮度大于1000cd/m2
4).1990年,Burroughs等人将共轭聚合物聚对苯基乙烯(PPV)制作了高 分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域, 即聚合物薄膜电致发光器件。
有机电致发光二极管(OLED)
近十多年里,OLED作为一种新型显示技术已经取得了长足的发展, 就器件的发光亮度、发光效率和寿命而言,OLED器件已经基本达到了 实用的要求。

有机电致发光器件(OLED)课件

有机电致发光器件(OLED)课件

OLED技术的创新与突破
提高效率和稳定性
通过材料和工艺的改进,提高OLED的发光效率和 稳定性,延长使用寿命。
柔性显示技术
进一步研究柔性OLED显示技术,实现更轻薄、可 弯曲的显示产品。
多功能集成
探索将触摸功能、传感器等集成到OLED显示面板 中,实现更多功能。
OLED产业的发展趋势与展望
市场规模持续增长
随着OLED在更多领域的应用,市场规模将持续增长,带动产业的 发展。
技术竞争加剧
随着技术的不断进步,OLED产业将面临激烈的技术竞争,促使企 业加大研发投入。
产业布局优化
随着全球产业格局的变化,OLED产业将进一步优化布局,形成更 加合理的产业链结构。
感谢观看
有机电致发光器件( OLED课件
• OLED基础知识 • OLED器件结构与性能 • OLED制造工艺与设备 • OLED市场与技术发展趋势 • OLED的未来展望
01
OLED基础知识
OLED的定义与特点
总结词
OLED是一种有机电致发光器件,具有自发光的特性,能够实现高对比度、广 视角、快速响应等优点。
OLED在未来的应用前景
显示器技术
随着显示技术的不断进步,OLED 有望成为下一代主流显示技术, 广泛应用于电视、电脑、手机、 平板等电子产品。
照明领域
OLED具有自发光的特性,可以做 成柔性的照明产品,为室内外照明 提供新的解决方案。
可穿戴设备
随着可穿戴设备的普及,OLED的轻 薄、柔性特点使其在智能手表、健 康监测器等设备上具有广阔的应用 前景。
OLED技术的挑战与机遇
挑战
OLED技术的成本较高,良品率较低,且寿命相对较短,这些 问题制约了OLED技术的进一步普及和应用。

有机电致发光

有机电致发光
有机电致发光
主要内容
1 电致发光的简介
2
OLED和器件结构
3
OLED分类及性能参数
4
有机电致发光的应用
发光的主要分类

光致发光 阴极射线发光 电致发光


热释发光
光释发光 辐射发光
电致发光 电致发光又可称电场发光, 简称EL,是通过加在两电极的电 压产生电场,固体在电场的作用 下将电能直接转换为光能的发光 现象
OLED的一些主要参数
一般来讲,有机EL发光材料及器件的 性能可以从发光性能和电学性能两方面来 评价。发光性能主要包括发射光谱、发光 亮度、发光效率、发光色度和寿命;电学 性能主要包括电流与电压的关系、发光亮 度与电压的关系等。这些都是衡量有机EL 材料和器件性能的重要参数,对于发光的 基础理论研究和技术应用极为重要。

总结

现在平板显示产业发展越来越盛,在各个显示 器技术争相竞争的同时,电致发光器件在一些 行业内也取得一定市场,特别是近几年有机电 致发光(OLED)的迅速发展,使得电致发光 在大面积平板显示,照明行业都有很大的发展, 很多人相信,OLED将来会代替LCD成为主流 显示技术,而且随着研究投入的越来越大, OLED技术也会越来越成熟,电致发光产品会 给我们的生产和生活带来巨大变化。
电致发光的种类
(1)注入式电致发光:注入式电致发光的 基本结构是结型二极管(LED); (2)本征型电致发光:又分为高场电致发 光与低能电致发光。 (3)无机电致发光 (4)有机电致发光 (5)薄膜型电致发光 (6)分散型电致发光
有机电致发光(OLED)
有机材料的电致发光属于注入式的复合 发光。有机电致发光材料依据在OLED器件 中的功能及器件结构的不同,又可以区分为 空穴注入层(HIL)、空穴传输层(HTL)、 发光层(EML)、电子传输层(ETL)、电 子注入层(EIL)等材料。 有机电致发光过程由以下几个阶段完成:

有机发光原理

有机发光原理

有机发光原理
有机发光原理是指有机材料在外界电场或光场的作用下产生发光现象的物理过程。

有机发光是一种电致发光(Electroluminescence)现象,它利用有机材料的特性,在外
界电压的激励下,通过电子和空穴的复合过程,发射出可见光。

有机发光的关键是有机发光材料。

一般来说,有机发光材料是一种以碳为主要成分的有机化合物,其分子具有特殊的结构和能级分布。

在有机发光材料中,通常包含一个共轭结构的电子传输区域和一个空穴传输区域。

这两个区域之间存在能级差,当施加电场时,电子和空穴可以在这两个区域之间移动。

在有机发光过程中,首先需要施加电压。

当电场作用于有机发光材料时,电子从低能级跃迁到高能级的传输区域,而空穴从高能级跃迁到低能级的传输区域。

由于电子和空穴的相遇,会发生电子和空穴的复合过程,能量的释放形成了光子,即光的发射。

有机发光原理的核心是通道能级的调控。

通过设计有机发光材料的分子结构,可以调整能级差和传输区域的能带结构。

这种调控能够控制光的颜色和效率,从而实现不同颜色的有机发光材料的制备。

有机发光具有许多优点,比如制备工艺简单、成本较低、发光效率较高、柔性性能好等,因此在显示技术、照明、光电子学等领域有广泛的应用前景。

尽管有机发光在某些方面还存在一些挑战,如光稳定性和长期稳定性等问题,但随着技术的不断
发展和进步,相信有机发光技术将会得到更加广泛的应用和推广。

有机电致发光介绍

有机电致发光介绍
(2) 亮度大、效率高; (3) 直流驱动电压低、能耗少,可以和集成驱动
电路相匹配; (4) 制作工艺简单并且成本低; (5) 可实现超薄的大面积平板显示,响应速度快,
视角大,全固化,抗震性能好,工作温度范围广; (6) 良好的机械加工性能,容易做成不同形状。
最早有机电致发光的报导
是Bernanose等人在蒽单晶片的两 侧加400 V直流电压时观测到的发 光现象。
有机电致发光材料与技术
主要内容
第一章 绪 论 第二章光致发光及电致发光的基本知识 第三章电致发光的器件结构与器件物理 第四章有机电致发光的主要辅助材料
主要内容
第一章 绪 论 第二章光致发光及电致发光的基本知识 第三章电致发光的器件结构与器件物理 第四章有机电致发光的主要辅助材料
电致发光的发展历程
由于单晶厚度达10-20 m,所 以驱动电压较高。
由于蒽单晶作为电致发光材料难以 获得大面积及更低电压下的发光, 并且发光器件的效率也极低,有机 电致发光在当时并没有引起科研工 作者的注意。
N
1987年,以邓青云博士(Dr. Ching W. Tang) 为 首 的 Eastman Kodak公司研究团队, 以芳香二胺(TPD)作为空穴传 输层,以Alq3作为发光层,稳 定 的 低 功 函 材 料 Mg:Ag 合 金 作为阴极,研制出驱动电压 10V、亮度>1000 cd/m2和效 率1.5lm/W的有机电致发光器 件。
后来,Heeger小组又研制出基于 柔性衬底的聚合物有机电致发 光器件,器件在2~3 V下就可以 发光,量子效率大于1%。 这种塑料基聚合物有机电致发 光器件可以卷曲和折叠而不影 响器件的发光性能。 从此对有机电致发光器件的研 究开始向纵深方向发展。

有机电致发光材料ppt课件

有机电致发光材料ppt课件
金属配合物发光材料
有机配合物是最早使用的有机电致发光材料,具有优良的载 流子传输特性和成膜性能,典型的有8-羟基喹啉铝(Alq3)及铍 的络合物Bebq2。
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
基本概念
电致发光(EL)是指发光材料在电场作用下,受到电流电压的激发 而发光的现象,是一种直接将电能转化为光能的过程。
有机电致发光是指由有机光电功能材料制备成的薄膜器件在电场 的激发作用下发光的现象。
发光材料按分子结构特性分为有机小分子荧光材料 和有机金属配合物材料,前者种类最多,典型的小 分子荧光有机电致发光材料如DCM发红光,香豆素 C540发绿光。
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
蒽 单晶层 20厚 m,度 驱动 40V 电 0 压
2). 1982年 Vincett的研究驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
有机电致发光二极管(OLED)

有机电致发光材料及器件导论

有机电致发光材料及器件导论

有机电致发光材料及器件导论1. 电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的一种发光过程(非热转换即不是通过热辐射实现的)。

2. FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。

OLED特点:材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快;器件可弯曲,不受尺寸限制,分辨率高等。

3. 基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。

激发态分子内的物理失活:辐射跃迁和非辐射跃迁。

而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。

导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。

4. 有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。

而掺杂半导体中的载流子浓度大于本征半导体(电子和空穴浓度相同),所以导电性更好5. 直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的现象。

过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。

6. 单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。

7. 单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。

但是单层器件的载流子的注入不平衡,器件发光效率低。

三层器件是目前OLED中最常用的一种。

在实际的器件中,在发光层往往采用掺杂的方式提高器件性能8. 器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄测试表征膜和阴极—取出器件并封装—9. 有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于10^-4Pa)。

有机电致发光

有机电致发光

有机电致发光有机电致发光(Organic Electroluminescence,简称OLED)是一种新型的光电转换技术,通过有机材料在外加电场的作用下产生光辐射。

这项技术不仅具备高亮度、高对比度和广色域等优点,还具备柔性、可曲折和透明等特性,因此在显示器、照明和显示广告等领域有着广阔的应用前景。

首先,有机电致发光具备生动的色彩表现能力。

根据有机材料的不同,OLED可以发出各种各样的颜色,包括红、绿、蓝等基本色以及它们的混合色。

相比于传统的电视或显示器,OLED显示屏具有更加鲜艳、真实的色彩表现,可以给人带来更加生动的观看体验。

其次,有机电致发光在显示器领域具备全面的优势。

OLED显示器可以实现像素点亮度的精确控制,因此可以呈现非常高的对比度,使画面更加清晰锐利。

此外,OLED显示器还具备更宽广的可视角度,无论从哪个角度观看,画面都能保持良好的显示效果,避免了传统液晶显示器的“角度变色”问题。

第三,有机电致发光技术具备极高的响应速度。

OLED的发光原理是光的直接辐射,而不像传统液晶显示器需要经过液晶层的调制才能显示。

这使得OLED可以实现极高的刷新频率,达到毫秒级的响应速度。

这对于电子游戏、电影和体育赛事等需要高帧率的场景非常重要,可以提供更加流畅、真实的视觉效果。

同时,有机电致发光还具备柔性和透明等特性,使得它在照明和显示广告领域具备广泛的应用前景。

相比于传统的光源,OLED可以实现柔性发光,使得照明设备更加灵活,能够满足更多特殊空间需求。

例如,OLED可以制成可卷曲照明设备,适用于曲面照明或个性化灯光设计。

此外,透明OLED还可以应用于显示广告领域,创造出更具吸引力的产品宣传效果。

综上所述,有机电致发光技术不仅具备生动的色彩表现能力,还在显示器领域具备全面的优势。

它的高亮度、高对比度和广色域,使得图像更加清晰、真实;极高的响应速度,带来流畅的观看体验。

同时,它的柔性和透明特性,为照明和显示广告领域带来了新的机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已有90多家公司在开发OEL,而且每个月都有新公司加入。 • 国内公司有:京东方科技集团股份有限公司、维信诺公司(南风化工集团
股份有限公司是清华大学企业集团、清华创业投资公司、咸阳彩虹集团等 在北京注册成立维信诺科技有限公司)、清华大学与彩虹集团合作已在建 立1条小试实验线、廊坊市锡丰化工有限公司、上海大学、吉林大学与有 关公司合作开发的谈判也在积极进行之中等。 • 这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命。
激发态停留时间短、返回速度快的途径,发生的几率大,发光强度相对大;
辐射跃迁(发光)可分为:荧光、磷光、延迟荧光。 荧光:第一激发单重态的最低振动能级→基态;寿命: 10-7~ 10 -9 s。 磷光:第一激发三重态的最低振动能级→基态;寿命: 10-4~ 10s。 延迟荧光(delayed fluorescence)也被称为缓发荧光:它来源 于从第一激发三重态(T1)重新生成的S1态的辐射跃迁。其寿 命与该物质的分子磷光相当。
作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。
• 1997年,单色有机电致发光显示器件首先在日本产品化, • 1999年,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机
电致发光显示器面板,并开始量产, • 同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大
批量上市。 • 近年来,OEL的突破性进展,并引起产业界的高度重视,在世界范围内,
内转换
振动弛豫
内转换
S2
系间跨越
S1
能 量
吸 收

射 荧
外转换

T1 T2
发 射 磷 光 振动弛豫
S0
l3
l1
l2
l 2
3、小分子OLED材料
(1)、空穴传输材料 传输空穴的空穴传输材料应该具备以下条件: • 具有良好的空穴传输特性; • 具有较低的Ip(离化势),易于由阳极注入空穴; • 激发能量高于发光层的激发能量; • 不能与发光层形成激基复合物; • 具有良好的成膜性和较高的玻璃化温度,热稳定性好,可以用真空蒸发
• 发光机理 • 载流子的注入:电子和空穴分别从阴极和阳极注入夹在电极间的有机功能薄
膜层; • 载流子的迁移:载流子分别从电子传输层和空穴传输层向发光层迁移; • 激子的形成和扩散:电子和空穴在发光层中相遇,形成激子,激子复合并将
能量传递给发光材料,使其从基态能级跃迁为激发态; • 发光:激发态能量通过辐射驰豫过程产生光子,释放出光能。
有机电致发光
1、OLED发展历程 2、OLED的分类 3、小分子OLED的结构、原理与材料 4、 OLED的发展现状及应用和前景
1、OLED发展历程
• 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最 早的电致发光器件。
• 20 世纪50年代,人们就开始用有机材料制作电致发光器件的探索, A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现 象,单晶厚10mm~20mm,所以驱动电压较高。
N O
N Al O
O
N
Alq3
DPVBi
• 发光材料原子的最外层电子吸 收这些能量后将处于激发态, 电 子处于激发态是不稳定状态,将 返回基态。
激发态→基态的能量传递途径
电子处于激发态是不稳定状态,返回基态时,通过辐射跃迁(发光)和无辐射 跃迁等方式失去能量;
传递途径
辐射跃迁
无辐射跃迁
荧光 延迟荧光 磷光
系间跨越 内转移 外转移 振动弛预
法形成致密的薄膜,不易结晶。 空穴传输材料主要是芳香胺类。
目前最常用的小分子空穴传输材料TPD和α-NPB
N
N
CH3
H3C
TPD
N
CH3
N
N
N
H3C
CH3
MTD ATA
N
N
α NPD
N
N
芳二胺
MeO
N N
CH3 CHC3H3
吡唑啉类化合物
N N
OCH3
(2)、电子传输材料 传输电子的电子传输材料应满足以下要求: (1)具有良好的电子传输特性; (2)具有较低的Ea(电子亲和势),易于由阴极注入电子; (3)激发能量高于发光层的激发能量; (4)不能与发光层形成激基复合物; (5)成膜性和化学稳定性良好,不易结晶。 目前最常使用的电子传输材料是OXD-7和许多有机金属螯合 物如Alq3
• 1963年,M. Pope等人也获得了蒽单晶的电致发光。 • 70年代,宾夕法尼亚大学的Heeger探索了合成金属。 • 1987年,Kodak公司的邓青云首次研制出具有实用价值的低驱动电压
(<10V,>1000cd/m2)OLED器件(Alq作为发光层)。 • 1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV
2、OLED分的类分类
• 一是以有机染料和颜料等为发光材料的小分子一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高 分子发光材料为PPV。
33.、1小1小分分子子OLOELDED的的结结构 构
• RGB和白色EL器件的结构为: • 器件R:
LUMO
••• •••
阳极
HTL
EML
ETL
•••
阴极
HOMO
三层结构的OLED的能带图
Name:电 子
EML

HTL

ETL 阴 极
And I am: 空穴
• 当器件加正向偏压时,电子和 空穴分别从阴极和阳极注入到有 机材料中,外场的作用使它们迁 移至发光层
• 电子和空穴在发光层相遇后, 由于库仑作用形成暂态激子,处 于不稳定态.其中大部分发生复 合,电子落入空穴,释放出能量
ITO/CuPc/NPB/Alq3:DCJTB/MgAg • 器件G: ITO/CuPc/NPB/Alq3:QA/MgAg • 器件B:
ITO/CuPc/NPB/DPVBi:Perylene/Alq3/M gAg • 器件W:
3、2发光原理
能带理论模型: 相对晶体固体的能带模型来说: 价带顶 HOMO (分子最高占据分子轨道 ) 导带底 LUMO(分子最低未占据轨道 ) • 带隙Eg是HOMO与LUMO之间的宽度,离化能 • Ip是真空能级与HOMO之间的能量差, • 电子亲和势Ea是真空能级与LUMO之间的能量差
相关文档
最新文档