氧化铜矿薄层堆浸实例
氧化铜矿堆浸工程设计实践

2020年 6月下 世界有色金属39采矿工程M ining engineering氧化铜矿堆浸工程设计实践池文荣(中国恩菲工程技术有限公司,北京 100038)摘 要:采用堆浸技术,不受地理位置和气候条件的限制[2],可以以较低的成本、较高的回收率回收其中的铜。
本文基于某堆浸工程设计实践的基础上,对该堆浸工程设计中的若干工艺参数、设备选型等进行了归纳和总结。
关键词:堆浸工程;工艺参数;厂房配置中图分类号: TU512.1 文献标识码: A 文章编号:1002-5065(2020)12-0039-2Engineering design practice of heap leaching on copper oxide oreCHI Wen-rong(China Enfi Engineering Corp. Beijing 100038)Abstract: With heap leaching technology, The copper in the oxide ore can be recovered at a lower cast and high recovery rate, regardless of geographical location and climatic conditions. Based on a heap leaching project in China, the main parameters of heap leaching, equipments selection and arrangement are introduced in this paper.Key words: heap leaching; process parameter; plant configuration 将矿石或者废石输送至一个永久或非永久的防渗地面筑堆,并且通过浇灌浸出液,将矿石中的有价金属提取出来的过程称之为堆浸。
某金铜氧化矿石堆浸浸铜一氰化浸金试验研究

究,考察了堆浸粒度、硫酸用量等堆浸条件及磨矿细度、氢氧化钠用量等氰化浸金条件对回收指标
的影响。结果表明:在最佳条件下,采用硫酸法堆浸浸铜—氰化浸金工艺,铜浸出率为 81.79%,金
浸出率为 95.00%。
关 键 词 : 金 铜 氧 化 矿 石 ;堆 浸 ; 氰 化 ;矽 卡 岩 型 ; 硫 酸
中图分类号:TD953
100.00
对矿石中主要铜矿物的嵌布状态进行了镜下统 计分析,结果表明:氧化铜矿物多嵌布在脉石矿物裂 隙,部分呈粒状嵌布在脉石矿物粒间及脉石矿物中, 其次为嵌布在氧化铁矿物裂隙及粒间或被氧化铁矿 物包裹。黄铜矿主要嵌布在氧化铁矿物中。主要铜 矿物嵌布状态分析结果见表 3。 1.3 金矿物工艺特征
经扫描电镜能谱成分分析,矿石中金矿物为自然金 及少量银金矿。经检测,自然金平均成色为 877.4‰,银 金矿平均成色为 723.5‰。根据测量统计结果,矿石 中金矿物嵌布粒度主要小于 0.037mm。通过对光片 进行镜下检测发现,矿石中金矿物主要与脉石矿物及
68 选 矿 与 冶 炼
黄 金 GOLD
2020年第 7期 /第 41卷
某金铜氧化矿石堆浸浸铜—氰化浸金试验研究
苑宏倩,郑艳平
(长春黄金研究院有限公司)
摘要:某金铜氧化矿石铜品位 0.88%,金品位 1.76g/t,矿石氧化率为 87.50%。金矿物主要
为自然金、银金矿,铜矿物以氧化铜矿物为主。针对矿石性质,进行了堆浸浸铜、氰化浸金试验研
12.02
28.30
25.66
74.6720.715.47 7.8413.31
100.00
氧化矿物嵌布密切,见金矿物嵌布在脉石矿物与氧化 2.1 堆浸浸铜条件试验
矿物粒间或裂隙。金矿物嵌布状态分析结果见表 4。 2.1.1 堆浸粒度
酸浸—沉淀—浮选法工艺实例

世上无难事,只要肯攀登酸浸—沉淀—浮选法工艺实例此法在我国的应用尚不够广泛,主要原因是我国氧化铜矿的原矿性质大部分不适于用酸浸出,但在个别矿山或矿点,仍然存在着应用此法的可能性。
有的矿山已经进行过试验,取得了一定的成果。
此法在国外已有大量应用成功的实例,如美国比尤特酸浸厂、津巴布韦曼古拉堆浸厂等。
一、比尤特酸浸厂(美国)比尤特(Butte)选厂于1964 年投产,开始是选金矿,已开采了3.3 亿吨矿石,目前储量还有3 亿吨。
因母岩和断层四周所产矿石中含有硫酸铜,平均含量为0.18%Cu。
为回收这部分铜建立了酸浸—沉淀—浮选车间,工艺流程如图1 所示。
图1 美国比尤特酸浸—沉淀—浮选流程从矿仓出来的矿石进入衬有耐酸材料的转鼓式解磨机中,由于磨机的摩擦粉碎作用,脉石中的细泥和氧化物成为分散状态。
向解磨机中加入约1.5 公斤/吨的硫酸使pH=2。
在解磨过程中,有70%的氧化铜转入溶液,溶液中的铜离子浓度达1.1 克/升,经过解磨后,矿砂再经两段磨矿,用双黄药进行浮选;溢流用海绵铁沉淀铜;然后用双黄药、松油和醇类起泡剂浮选沉淀铜。
海绵铁用磁选法回收循环使用。
矿砂部分的最终精矿品位为15%Cu。
浮选除用双黄药外,还添加了少量的硫醇、起泡剂和石灰乳。
沉淀铜的粗选作业加入14 克/吨双黄药和90 克/吨起泡剂(50%松油和50%醇类),扫选作业补加一定量的捕收剂。
选厂附近建立了制酸厂和海绵铁厂。
硫酸是由黄铜矿精矿焙烧产生的二氧化硫制取,海绵铁则由黄铁矿焙烧产生的烧渣经过处理而成。
二、曼古拉堆浸厂(津巴布韦)曼古拉(Mangula)是津巴布韦的大型矿山之一,该矿床上部被白云砂岩、长石片岩和绿泥石等所覆盖,地表24 米以上为氧化矿,以下为硫化矿。
氧化铜矿物有孔雀石、硅孔雀石、假孔雀石、蓝铜矿,偶见少量蓝磷铜矿和赤铜矿。
硫化铜。
用硫酸从氧化铜矿石中浸出铜试验研究

第42卷第5期(总第191期)2023年10月湿法冶金H y d r o m e t a l l u r g y ofC h i n a V o l .42N o .5(S u m.191)O c t .2023用硫酸从氧化铜矿石中浸出铜试验研究孙建军,杨枝露(新疆有色金属研究所,新疆乌鲁木齐 830000)摘要:研究了用硫酸从氧化铜矿石中浸出铜,考察了矿石粒径㊁硫酸浓度㊁浸出温度㊁浸出时间㊁双氧水添加量㊁搅拌速度和液固体积质量比对铜浸出率的影响㊂结果表明:在矿石粒径 74μm 占80%,硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n ㊁双氧水添加量100m L /k g ㊁搅拌速度100r /m i n ㊁液固体积质量比6ʒ1条件下,铜浸出率可达95.1%;浸出渣中仅有少量被脉石包裹的铜矿物未反应,其余大量铜矿物基本反应完全生成硫酸铜,浸出效果较好㊂关键词:氧化铜矿石;硫酸;浸出;铜中图分类号:T F 803.21;T F 811 文献标识码:A 文章编号:1009-2617(2023)05-0464-05D O I :10.13355/j .c n k i .s f y j.2023.05.005收稿日期:2023-05-24基金项目:新疆自治区重点研发计划项目(2022B 03016-2)㊂第一作者简介:孙建军(1989 ),男,硕士,工程师,主要研究方向为有色金属回收利用㊂通信作者简介:杨枝露(1983 ),女,硕士,高级工程师,主要研究方向为有色金属回收利用㊂E -m a i l :30599087@q q .c o m ㊂引用格式:孙建军,杨枝露.用硫酸从氧化铜矿石中浸出铜试验研究[J ].湿法冶金,2023,42(5):464-468.铜广泛应用于电气㊁机械制造㊁国防等领域,在有色金属消耗中仅次于铝[1-3],在国民经济发展中发挥着极其重要作用㊂全球已探明铜资源储量约为7.9亿t ,我国铜资源储量约占3.4%[4]㊂我国铜资源富矿少㊁贫矿多,随着高品位易浮选硫化铜矿逐渐减少,氧化铜矿的综合利用日益得到重视[5]㊂浸出法以低成本㊁低污染㊁工艺简单㊁效益显著等优势,广泛用于处理低品位及复杂难处理矿石[6--11]㊂目前,从氧化铜矿石中浸出铜主要有酸浸法和氨浸法,常用的浸出剂为硫酸与氨[12]㊂氨浸法具有选择性好㊁腐蚀性低㊁浸出剂耗量少等优点,但也存在常压下浸出剂易挥发㊁铜浸出率低,高压下能耗高㊁设备腐蚀严重等问题[13-14]㊂因此,氨浸法尚未应用于大规模工业化堆浸;酸浸法在处理氧化铜时具有一定优势,矿石中的碳酸盐脉石矿物虽会消耗酸,但其具有工艺简单㊁浸出剂不易挥发㊁反应速度快㊁能耗低等优点,因此在大规模工业化堆浸中得到了广泛应用[12]㊂试验用氧化铜矿石中含有部分硫化铜矿物,硫化铜矿物无法与稀硫酸直接反应生成硫酸铜,需要借助氧化剂才能发生氧化还原反应,因此,试验研究了以双氧水为氧化剂,用硫酸从氧化铜矿石中浸出铜,考察了各因素对铜浸出率的影响,以期为工业化实践提供一定的理论参考㊂1 试验部分1.1 试验原料㊁试剂及设备氧化铜矿石:取自江西省某铜矿,氧化铜矿石的X R D 图谱如图1所示,主要元素组成见表1,铜矿物化学物相分析结果见表2㊂可以看出:铜矿物氧化率为81.7%,结合率达68.8%,脉石矿物的主要存在形式为二氧化硅,其次为三氧化二铝㊂图1 氧化铜矿石的X R D 图谱第42卷第5期孙建军,等:用硫酸从氧化铜矿石中浸出铜试验研究表1氧化铜矿石的主要元素组成%C u C o F e S S i O2C a O M g O A l2O3N a2O1.670.383.050.0971.21.217.317.010.23表2氧化铜矿石的物相分析结果铜物相w(铜)/%分布率/%结合氧化铜1.1568.8游离氧化铜0.2212.9原生硫化铜0.1710.2次生硫化铜0.138.1总铜1.67100.0试剂:硫酸,信阳化学试剂有限公司;双氧水,四川西陇科学有限公司㊂均为分析纯㊂主要设备:锥形球磨机,X MQ-ϕ240ˑ90型,武汉探矿机械厂;振动磨样机,X Z M-100型,武汉探矿机械厂;电子天平,M P1002型,上海横屏科技有限公司;恒温水浴锅,D F-101S型,上海普渡生化科技有限公司;电动搅拌器,J J-1型,常州国华电器有限公司㊂1.2试验原理及方法氧化铜矿石中铜的主要存在形式为孔雀石(C u2(O H)2C O3)㊁硅孔雀石(主要成分C u S i O3和C u2(O H)2C O3)及蓝铜矿(C u3(C O3)2(O H)2),作为碳酸盐矿物,可与稀硫酸反应生成硫酸铜;还有少量铜以赤铜矿和硫化铜形式存在,赤铜矿和硫化铜无法直接与稀硫酸反应,因此,浸出时添加双氧水,主要作用有两方面:一是促进赤铜矿及硫化铜与稀硫酸反应生成硫酸铜;二是将浸出过程中生成的亚硫酸氧化为硫酸,节约硫酸用量㊂除此之外,还含有氧化铜㊂浸出过程可能发生的反应如下: C u2(O H)2C O3+2H2S O4 2C u S O4+C O2ʏ+3H2O;C u S i O3+H2S O4 C u S O4+S i O2+H2O;C u3(C O3)2(O H)2+3H2S O4 3C u S O4+2C O2ʏ+4H2O;2C u2O+4H2S O4+2H2O2 4C u S O4+6H2O;C u S+2H2S O4+2H2O2 C u S O4+2H2S O3+2H2O;H2S O3+2H2O2 H2S O4+2H2O;C u O+H2S O4 C u S O4+H2O㊂试验方法:浸出反应在烧杯中进行,将矿物磨矿至不同细度加入烧杯中,加入一定量稀硫酸和双氧水,置于恒温水浴锅中,用电动大功率搅拌器搅拌,浸出一定时间后用真空抽滤机固液分离,浸出渣用蒸馏水反复清洗5次,之后置于烘箱中烘干,分析铜品位并计算铜浸出率,计算公式为η=1-m1w1m wˑ100%㊂式中:η 铜浸出率,%;m 氧化铜矿石质量,g; w 氧化铜款式中铜质量分数,%;m1 浸出渣质量,g;w1 浸出渣中铜质量分数,%㊂2试验结果与讨论2.1矿石粒径对铜浸出率的影响在硫酸浓度2m o l/L㊁浸出温度55ħ㊁浸出时间120m i n㊁双氧水添加量100m L/k g㊁搅拌速度150r/m i n㊁液固体积质量比6ʒ1条件下,考察矿石粒径 74μm占比对铜浸出率的影响,试验结果如图2所示㊂图2矿石粒径对铜浸出率的影响由图2看出:矿石颗粒越细,铜浸出率越高,这主要是因为颗粒越细,其比表面积越大,颗粒与浸出液接触概率越大,浸出反应越充分;矿石粒径-74μm占比从80%增大90%时,铜浸出率升幅趋缓,这是由于颗粒过细易导致矿浆黏度增大,固液相扩散阻力增加,同时颗粒越细杂质活度越强,酸耗越大,给后续除杂㊁过滤带来困难㊂磨矿细度决定矿物单体解离度,适宜磨矿细度是获得良好浸出指标的先决条件㊂综合考虑,确定适宜的磨矿细度为矿石粒径-74μm占比为80%㊂2.2硫酸浓度对铜浸出率的影响在矿石粒径-74μm占80%㊁浸出温度55ħ㊁浸出时间120m i n㊁双氧水添加量100m L/k g㊁搅拌速度150r/m i n㊁液固体积质量比6ʒ1条件下,考察硫酸浓度对铜浸出率的影响,试验结果如图3所示㊂㊃564㊃湿法冶金 2023年10月图3 硫酸浓度对铜浸出率的影响由图3看出:随硫酸浓度增大,铜浸出率逐渐升高㊂这是因为硫酸浓度增大,矿石与硫酸接触概率增大,有利于反应进行㊂但硫酸浓度从2.5m o l /L 增至3m o l /L 时,铜浸出率升幅较小,趋于稳定,这是因为矿石表面的铜已与硫酸充分反应生成硫酸铜,而部分被脉石矿物包裹的铜则难以与硫酸发生反应,导致铜浸出率无明显变化㊂综合考虑,确定适宜硫酸浓度为2.5m o l /L ㊂2.3 浸出温度对铜浸出率的影响在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出时间120m i n ㊁搅拌速度150r /m i n㊁双氧水添加量100m L /k g ㊁液固体积质量比6ʒ1条件下,考察浸出温度对铜浸出率的影响,试验结果如图4所示㊂图4 浸出温度对铜浸出率的影响由图4看出:随浸出温度升高,铜浸出率显著提高,温度升至60ħ,铜浸出率升幅放缓,趋于稳定㊂这是因为温度升高可使分子间相对运动速率加快,缩短浸出剂扩散至矿物表面的时间,加快浸出反应速率;同时升高温度还能提高矿物在浸出液中的溶解度,显著提高铜浸出率㊂考虑到温度越高,能耗越大,确定适宜浸出温度为60ħ㊂2.4 浸出时间对铜浸出率的影响在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁搅拌速度150r /m i n㊁双氧水添加量100m L /k g ㊁液固体积质量比6ʒ1的条件下,考察浸出时间对铜浸出率的影响,试验结果如图5所示㊂图5 浸出时间对铜浸出率的影响由图5看出:随浸出时间延长,铜浸出率显著升高;浸出超过150m i n ,铜浸出率升高幅度变缓,表明浸出时间150m i n 时反应已基本完成㊂综合考虑,确定适宜浸出时间为150m i n㊂2.5 双氧水添加量对铜浸出率的影响在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n㊁搅拌速度150r /m i n ㊁液固体积质量比6ʒ1条件下,考察双氧水添加量对铜浸出率的影响,试验结果如图6所示㊂图6 双氧水添加量对铜浸出率的影响由图6看出:未添加双氧水时,铜浸出率较低,仅为83.5%,这是因为铜矿中含有一定量的硫化铜,其在稀硫酸中无法浸出;随双氧水添加量增大,铜浸出率明显上升,这是因为双氧水是一种强氧化剂,可促使硫化铜和赤铜矿与稀硫酸发生㊃664㊃第42卷第5期孙建军,等:用硫酸从氧化铜矿石中浸出铜试验研究反应生成硫酸铜,还能将浸出液中生成的亚硫酸氧化成硫酸,从而节约硫酸用量;双氧水添加量增至100m L /k g 时,铜浸出率达95%左右,继续增加添加量,铜浸出率升幅减缓,表明此时硫化铜和赤铜矿已基本转化为硫酸铜㊂综合考虑,确定适宜双氧水添加量为100m L /k g㊂2.6 搅拌速度对铜浸出率的影响在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n㊁双氧水添加量100m L /k g ㊁液固体积质量比6ʒ1条件下,考察搅拌速度对铜浸出率的影响,试验结果如图7所示㊂图7 搅拌速度对铜浸出率的影响由图7看出:随搅拌速度增大,铜浸出率先升高后趋于稳定㊂这是因为随搅拌速度增大,传质速度加快:一方面通过颗粒间碰撞使矿物颗粒表面的矿泥及杂质脱落,以暴露出更多新鲜的矿物表面,另一方面可强化固液相间的扩散作用㊂考虑到搅拌速度过大,会增大能耗,且矿浆会沿杯壁高速转动做周期性的离心运动,易破坏矿浆流动性,因此,确定适宜搅拌速度为100r /m i n ㊂2.7 液固体积质量比对铜浸出率的影响在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n㊁双氧水添加量100m L /k g ㊁搅拌速度100r /m i n 条件下,考察液固体积质量比对铜浸出率的影响,试验结果如图8所示㊂可以看出:液固体积质量比从2ʒ1增至6ʒ1时,铜浸出率快速升高,这是因为随液固体积质量比增大,浸出体系黏度下降,固液相间扩散阻力减小,有利于铜的浸出;液固体积质量比从6ʒ1增至10ʒ1时,铜浸出率仅从95.3%增加至96.3%,变化不大,表明大部分可溶性铜矿物已生成硫酸铜㊂综合考虑,确定适宜液固体积质量比为6ʒ1,此时铜浸出率为95.3%㊂图8 液固体积质量比对铜浸出率的影响2.8 综合试验在矿石粒径-74μm 占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n ㊁双氧水添加量100m L /k g ㊁搅拌速度100r /m i n ㊁液固体积质量比6ʒ1优化试验条件下,进行3组重复试验;其他条件相同,不加双氧水条件下,进行另外3组重复试验㊂对比结果见表3㊂可以看出:相同浸出条件下,加入双氧水能有效提高铜矿浸出率,使铜平均浸出率从82.4%提高到95.1%㊂表3 添加双氧水与未添加双氧水条件下的铜浸出率对比试验编号铜浸出率/%添加双氧水未添加双氧水195.182.5295.482.9394.881.9平均95.182.43 结论在加入强氧化剂双氧水条件下,用硫酸从含硫化铜矿物的氧化铜矿石中浸出铜是可行的㊂双氧水能促使硫化铜和赤铜矿与稀硫酸反应生成硫酸铜,有效提高铜浸出率㊂在矿石粒径-74μm占比80%㊁硫酸浓度2.5m o l /L ㊁浸出温度60ħ㊁浸出时间150m i n ㊁双氧水添加量100m L /k g ㊁搅拌速度100r /m i n ㊁液固体积质量比6ʒ1最佳工艺条件下,铜平均浸出率为95.1%,添加双氧水后铜浸出率可提高约12.7%㊂㊃764㊃湿法冶金 2023年10月参考文献:[1] 石玉臣,张恩普,张骄,等.刚果(金)某难处理氧化铜钴矿硫酸浸出试验研究[J ].有色金属工程,2021,11(5):45-51.[2] 王成彦,尹飞,王忠,等.低硫高硅低品位铜钴混合精矿的处理[C ]//中国有色金属学会冶金物理化学学术委员会.2008年全国湿法冶金学术会议论文集.北京:科学出版社,2008:60-65.[3] 王瑞祥,曾斌,余攀,等.含多金属复杂金精矿焙烧预处理-提取金㊁银㊁铜研究[J ].稀有金属,2014,38(1):86-92.[4] 高昭伟,曹成超,李耀山,等.高钙型低品位铜矿酸性浸出动力学研究[J ].矿冶工程,2021,41(6):170-173.[5] 孙敬锋,廖璐,李红立,等.某氧化铜矿石的硫酸搅拌浸出试验研究[J ].湿法冶金,2014,33(2):101-103.[6] 何海洋,方建军,董继发,等.氧化铜浸出工艺研究进展[J ].湿法冶金,2022,41(5):377-383.[7] 吴爱祥,王洪江,杨保华,等.溶浸采矿技术的进展与展望[J ].采矿技术,2006(3):39-48.[8] K ÜN K ÜL A ,MUH T A R -K O C A K E R I M M ,Y A P I C I S,e t a l .L e a c h i n g k i n e t i c so fm a l a c h i t e i na m m o n i as o l u t i o n s [J ].I n t e r n a t i o n a l J o u r n a lo f M i n e r a lP r o c e s s i n g ,1994,41(3/4):167-182.[9] B I N G ÖL D ,C A N B A Z OG ㊅L U M.D i s s o l u t i o n k i n e t i c s o fm a l a c h i t e i ns u l p h u r i ca c i d [J ].H y d r o m e t a l l u r g y ,2003,72(1):159-165.[10] B I N G ÖL D ,C A N B A Z O G ㊅L UM ,A Y D O G ㊅A N S .D i s s o l u t i o nk i n e t i c so f m a l a c h i t ei na m m o n i a /a m m o n i u mc a r b o n a t el e a c h i n g [J ].H yd r o me t a l l u r g y,2004,76(1):55-62.[11] L I UZX ,Y I N Z L ,HU H P ,e ta l .L e a c h i n g ki n e t i c so f l o w -g r a d e c o p p e r o r e c o n t a i n i n g c a l c i u m -m a g n e s i u m c a r b o n a t ei n a m m o n i a -a m m o n i u m s u l f a t e s o l u t i o n w i t h p e r s u l f a t e [J ].T r a n s a c t i o n so fN o n f e r r o u s M e t a l sS o c i e t yo fC h i n a ,2012,22(11):2822-2830.[12] 吴爱祥,胡凯建,王贻明,等.含碳酸盐脉石氧化铜矿的酸浸动力学[J ].工程科学学报,2016,38(6):760-766.[13] E KM E K Y A P A R A ,A K T A S E ,K ÜN K ÜL A ,e t a l .I n v e s t i g a t i o no f l e a c h i n g k i n e t i c s o f c o p p e r f r o m m a l a c h i t e o r e i na m m o n i u m n i t r a t es o l u t i o n s [J ].M e t a l l u r g i c a la n d M a t e r i a l sT r a n s a c t i o n s ,2012,43(4):764-772.[14] 纪翠翠.高碱性氧化铜矿石的氨浸[D ].昆明:昆明理工大学,2009.L e a c h i n g o fC o p p e r f r o m O x i d eC o p p e rO r e sU s i n g Su l f u r i cA c i d S U NJ i a n ju n ,Y A N GZ h i l u (X i n j i a n g N o n f e r r o u sM e t a l sR e a s e a c hI n s t i t u d e ,U r u m qi 830000,C h i n a )A b s t r a c t :T h e l e a c h i n g o f c o p p e r f r o mc o p p e r o x i d e o r e s u s i n g su l f u r i c a c i dw a s s t u d i e d .T h e e f f e c t s o f o r e p a r t i c l e s i z e ,s u l f u r c o n c e n t r a t i o n ,l e a c h i n g t e m p e r a t u r e ,l e a c h i n g t i m e ,a d d i t i o no fH 2O 2,a g i t a t i o n s p e e d a n d l i q u i dv o l u m e /s o l i dm a s s r a t i oo nc o p p e r l e a c h i n g r a t ew e r e i n v e s t i ga t e d .T h e r e s u l t s h o w s t h a t t h e l e a c h i n g r a t eo f c o p p e r i s95.1%u n d e r t h ec o n d i t i o n so f t h ec o n t e n to f -74μm o f 80%,s u l f u r c o n c e n t r a t i o no f 2.5m o l /L ,l e a c h i n g t e m p e r a t u r e o f 60ħ,l e a c h i n gt i m e o f 150m i n ,a d d i t i o no f H 2O 2of 100m L /kg ,a g i t a t i o ns p e e do f 100r /m i na n d l i q u i dv o l u m e -s o l i dm a s s r a t i oo f 6ʒ1.O n l y a s m a l l a m o u n t o f c o p p e rm i n e r a l s i n c l u s e db yg a n g u e c a nn o t r e a c t i n th e l e a c hi n g s l a g,a n d t h e r e s t o f t h e c o p p e rm i n e r a l s b a s i c a l l y r e a c t t o f o r mc o p p e r s u l f a t e .A n d t h e l e a c h i n g ef f e c t i sg o o d .K e y wo r d s :c o p p e r o x i d e o r e ;s u l f u r i c a c i d ;l e a c h i n g ;c o p p e r ㊃864㊃。
赞比亚复杂氧化铜矿堆浸技术研究及实践

赞比亚复杂氧化铜矿堆浸技术研究及实践刘媛媛张学锋(中色卢安夏铜业有限公司北京 100029)摘要:针对赞比亚复杂氧化矿进行试验研究,证明采用堆浸方式可有效回收资源。
但由于当地降雨量大,矿石粉矿率高、且易于泥化等因素,导致浸出渗透性差、生产无法连续,以及矿堆边坡不稳定等问题。
通过技术创新,实现了全年连续性浸出生产,各项经济指标均得到大幅提升。
浸出率由66.41%提高到77.90%,比设计值高出5.9个百分点,每年多产铜3000吨;酸耗由4.61t/t降低到2.87t/t,吨铜成本可节约近200美元;同时,闭堆周期由695天降到407天,大大提高了浸出效率。
该项目的成功应用,开创了非洲大陆的堆浸技术先河。
关键词:复杂氧化矿;堆浸;技术措施Zambia Complex Oxide Ore Heap Leach Technical Studyand Industrial PracticeLiu Yuanyuan, ZhangXuefeng(CNMC Luanshya Copper Mines Plc.,Beijing 100029,China)ABSTRAC T:Laboratory tests were conducted on the complex Muliashi ore and favorable recovery rate was achieved. However, because of the high prevalent rainfall, the ore was found to be disintegrating into fines resulting in difficulty of percolation of irrigation solution through the heap pad thereby seriously affecting continous production. With technological innovations implemented, it was possible to ensure continous production with remarkable productivity. Copper recovery improved from 66.41% to 77.90%. This is equivalent to 5.9% above the design value. This results in increase of copper production by 3000 tonnes per annum. Sulphuric acid consumption was reduced from 4.61 t/t to 2.87 t/t copper. The overall cost of production was reduced by an equivalent of US$200. The irrigation period was also reduced from 695 days to only 407 days. There was also a remarkable increase in the leaching efficiency.This has presented a new operating model that has not been tried previously on the African continent.KEY WOR DS:Complex Oxide Ore, Heap Leaching ,Technical Measures1.前言中国有色集团积极响应国家“走出去”战略,继1998年收购并恢复赞比亚谦比希铜矿后,又以2008年全球经济危机为契机,成功收购了卢安夏铜矿。
兰鸟铜矿矿石堆浸采矿技术实例(美国)

书山有路勤为径,学海无涯苦作舟兰鸟铜矿矿石堆浸采矿技术实例(美国)该矿矿石为氧化矿,含铜矿物以硅孔雀石为主,脉石为花岗岩与片岩,储量为1800 万吨矿石,品位0.52%,日产矿石1.2~1.4 万吨,废石产量为矿石的1.5 倍。
1968 年以前采用堆浸-置换流程,后改堆浸-萃取-电积流程,年产铜7500t;堆浸场为经过修整、压实的自然地面,可容22 个矿堆,经常保持11~12 堆作业。
铲运机将矿石运来后分层堆放筑堆,层高6.1m,逐层浸出,浸完再堆,共堆10 层,总高61m,宽183m,每堆矿量约12 万吨,占地8360m2,浸出周期120~180 天。
溶浸液成分:Cu2+0.2g/L,Fe2+0.03g/L,Fe3+0.63g/L,H2SO46g/L。
总流量9505L/min。
浸出富液成分:Cu2+1.8g/L,Fe2+0.03g/L,Fe3+0.63g/L,H2SO43g/L。
布液管道为聚氯乙烯管,总管直径100mm;支管直径50mm,按中心距2.4m 排列;布液强度为0.134L/m2·min。
富液经澄清、过滤并加热至24℃,送入萃取车间,萃取段由三级萃取,两级反萃组成。
澄清器为混凝土制,内衬玻璃纤维聚酯板,共分五格,一格即为一澄清器,其平面尺寸为44×5m。
每一澄清器联接一外部混合器,其尺寸用于萃取时为ø4×4m,用于反萃时为ø3.4×4m,有机相组成为LIX64N12%+煤油88%。
有机相与水相之相比,萃取为1∶1、反萃为2∶1。
进入萃取段的料液含Cu2+1.9~2.1g/L,H2SO43~4g/L。
萃余液含Cu2+0.4~0.8g/L(实际只有0.2g/L),pH=1.0,反萃后富液含Cu2+46~48g/L,H2SO4140~150g/L。
用四系列共48 个电积槽。
每槽有41 片铅锑阳极,40 片阴极;电流强度为12500A。
紫金山铜矿生物堆浸工业案例分析

紫金山铜矿生物堆浸工业案例分析生物堆浸-萃取-电积提铜技术是上世纪80年代发展的低品位铜资源短流程提取技术,目前在全球得到广泛应用,已有20个以上生物提铜矿山在运行。
我国第一座万吨级生物提铜矿山紫金山铜矿于2005年底投入运行,由于矿石性质、当地气候和工程措施等原因,紫金山铜矿生物堆浸系统形成有别于国外同类实践的温度高、铁浓度高和pH值低等特点的浸出体系,并获得良好的技术经济指标。
本论文以紫金山铜矿生物堆浸实践为背景,在硫化矿物溶解、亚铁氧化和铁矾生成动力学研究基础上,通过多因素匹配的柱浸实验验证,揭示了紫金山铜矿中铜矿物高效溶解和低成本酸铁平衡的关键控制因素,为次生硫化铜矿生物堆浸实践的优化提供系统的理论依据。
紫金山铜矿中主要铜矿物为蓝辉铜矿和铜蓝。
在硫酸高铁介质中,蓝辉铜矿第二阶段和铜蓝的活化能较高,因此升温可显著促进其溶解;Fe3+浓度在达到0.1M后,对铜矿物溶解速率的促进作用很小;高温(60℃)下,氧化还原电位对铜矿物溶解速率影响亦很小。
因此,在较高的Fe3+浓度下,尽可能提高浸出体系的温度是促进铜矿物溶解的关键路径。
紫金山铜矿中黄铁矿含量较高,黄铁矿是浸出体系中酸、铁主要来源,黄铁矿在硫酸高铁介质中的溶解速率与氧化还原电位强相关,氧化还原电位较低时,提高温度对铁矿溶解的促进作用有限。
因此,在较高温度下,降低氧化还原电位是紫金山铜矿实现选择性浸出的关键。
生物浸出体系中氧化还原电位受浸矿微生物亚铁氧化能力的控制,紫金山铜矿浸矿微生物亚铁氧化动力学研究结果表明,铁浓度、pH值和温度均为浸矿微生物亚铁氧化能力的重要影响因素,高温、高铁浓度和低pH值抑制微生物亚铁氧化活性是紫金铜矿实现低电位的生物学基础;成矾热力学分析和动力学研究结果表明,温度是促进草铁矾生成的关键因素,在紫金山铜矿浸出体系,通过成矾可以将黄铁矿溶解的铁全部转移至矿堆,草铁矾除铁是生物提铜低成本的铁平衡法;柱浸实验结果表明,通过合理匹配温度、铁浓度和pH值,可以实现铜的高效浸出和低成本酸铁平衡。
某氧化铜矿浸出工艺方案试验及经济比较

有硫 化物 均 已氧化 , 而2 0 0 m 以下 基本 不 存 在 氧 化
物, 在 5 0 —2 0 0 m 中 间, 氧 化 作 用 随 深 度 变
化而 变化 , 存在 一个 1 0— 2 0 m的氧化 物 与硫化 物 的混
卢安 夏矿 区地 表岩石 风化 严重 , 主要 为 软岩 , 其
深度一 般 不超过 8 0 m; 深 部 为风 化相 对 不严 重 的岩 层, 主要 为硬 岩 。氧 化 深 度 变 化 明显 , 5 0 m 以上 所
要 以交代 溶蚀 结构 和片状 结构 取代 黄铜矿 和其他 硫 化矿 并在 其周 围形成 环 状 , 常与 硅 孔雀 石 连 生 。硅 孔 雀石 也是 主要 的氧化 铜矿物 , 常 为水泡 状和层 状 , 其通 常无 定形 结构 , 但偶 尔 以放射 环状 出现 , 孔 雀石 和硅 孔 雀石 以少量 连续 和 间断相互 充填 。赤铜 矿是
行 了硬 岩 矿 的柱浸 、 软岩 矿加 温和 常温 搅拌 浸 出的试 验研 究 。根 据 试 验 结 果 , 经分 析 比较 , 确 定 采 用堆浸一 加 温搅拌 浸 出联 合 工 艺 , 并 与全部 加 温搅拌 浸 出工 艺方 案进 行 经 济 比较 , 比较 结果 表 明 ,
堆浸一加温搅拌浸 出联合工艺不仅在技术上可靠, 而且在经济上具有明显的优势。 关键 词 氧化 铜矿 堆 浸一加 温搅 拌 浸 出联 合 工艺 浸 出率 净现值
际是 由铜 被云母 包 裹 的蛭 石 和 水 黑 云母 组 成 , 呈 金
79
王莉 萌( 1 9 6 2 一), 女, 高级工程师 , 3 3 0 0 3 1江西省南昌市红角洲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立志当早,存高远
氧化铜矿薄层堆浸实例
美国霍尔姆斯和拿弗尔公司(Holmes&Narver Inc.)开发了一种叫做“薄层堆浸”的方法,近年得到很大发展,整个过程包括以下几个工序
一、矿石破碎
矿石需破碎至大约8mm,以保证浸取液可以以均匀的速度透过矿堆,获得较高的浸取率。
过分破碎,反而会降低浸取液透过矿堆的速度。
二、加酸处理
破碎的矿石先经一转鼓用酸拌和,达到含湿8%~13%,在鼓中的停留时间约
0.5~1min,用酸量是根据实验结果和整个流程的酸平衡来确定的。
三、堆放熟化
加酸矿石堆放熟化,让其发热、活化,使部分金属溶解,同时增加矿石的可
渗透性。
熟化与堆浸分别进行,这样可以将熟化时产生的结块打碎,防止产生沟流。
四、筑堆浸取
经熟化后的矿石近乎是干的而且易碎,用铲车输送到预先准备好的堆场筑
堆,堆高lm 左右,这样可以在整个浸取周期中维持较好的透过性。
增加堆
高,使浸取周期延长,反而增加操作费用。
这正是“薄层浸取”的方法特点。
五、喷淋
用循环浸取液喷淋即可获得合格的浸取液,喷淋速度约每吨矿石每天1.2m3
溶液。
铜的浸取率如下图1 所示。
第一阶段是淋洗熟化阶段产生的硫酸铜,浓度较高,这个过程持续约三天,而后是矿铜的浸出。
实际操作中常采用逆流浸取,即将前一堆的后期低浓度浸取液用于新堆浸取,产出的富浸取液直接送萃取料液储槽。
后期浸取液与萃余液一起储存(见图2)。
当达到预期的回收率。