23.1 图形的旋转 第2课时
人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图

6.如图,正方形 OABC 在平面直角坐标系中,点 A 的坐标为(2,0),
将正方形 OABC 绕点 O 顺时针旋转 45°,得到正方形 OA′B′C′,则
点 C′的坐标为( A.( 2 , 2 )
A) B.(- 2 , 2 )
C.( 2 ,- 2 ) D.(2 2 ,2 2 )
7.(2020·烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6), 连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合 (点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4_,__2_)___.
8.如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到, 则点P的坐标为__________(_1_,__-__1_)___________.
易错点:对图形的旋转方式考虑不全面 9.如图,如果正方形CDEF经过旋转后能与正方形ABCD重合,那么 图形所在的平面上可作为旋转中心的点共有_3___个.
角形.
解:如图
4.如图,△ABC绕点O旋转,顶点A的对应点为A′,请画出旋转后的
图形.
解:如图
知识点2:在平面直角坐标系中的图形旋转
5.(孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时
针旋转90°得到点P′,则P′的坐标为(
)D
A.(3,2) B.(3,-1) C.(2,-3) D.(3,-2)
解:(1)如图所示,△A1B1C1 即为所求 (2)如图所示,△A2B2C2 即为所 求 (3)三角形的形状为等腰直角三角形 ,OB=OA1= 16+1 =
17 ,A1B= 25+9 = 34 ,即 OB2+OA12=A1B2,∴三角形的形 状为等腰直角三角形
23.1 图形的旋转 第2课时 旋转作图

O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°
23.1图形的旋转(第二课时)

(
(3)求四边形OAA1B1 的面积?
2.已知:如图,在△ABC中,∠BAC=1200,以BC为边向 形外作等边三角形△BCD,把△ABD绕着点D按顺时针 方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD 的度数与AD的长. E
A
1.已知线段A000后的图形. M
B′ A′ N B
O A
例4.在等腰直角△ABC中,∠C=900,BC=2cm,如果 以AC的中点O为旋转中心,将这个三角形旋转1800, 点B落在点B′处,求BB′的长度.
B′
O
C′ C
A A′
B
练一练
如图,在正方形ABCD中,E是CB延长线上一 点,△ABE经过旋转后得到△ADF,请按图回答:
简单的旋转作图
例3
如图,△ABC绕C点旋转后,
顶点A得对应点为点D. 试确定顶点 B对应点的位置以及旋转后的三角
形.
A
E
D
B
C
则△DEC即为所求作.
3、如图,ΔDEF是由△ABC绕某一中心 旋转一定的角度得到,请你找出这旋转 中心. A C
D B E F
旋转中心在对应点连线的垂直平分线上。
.O
简单的旋转作图
C
B
D
(二)、新知学习: 自学教材 P60 例题,画出旋转后的 图形,并写出画法,写出理由。
简单的旋转作图
例1 : 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
B
B点即为所求作.
A O
简单的旋转作图
例2 将线段AB绕O点沿顺时针方向旋转60˚.
线段的旋转作法
C
人教版初中九年级上册数学《旋转作图》精品课件

教学研讨
感谢你的参与 期待下次再见
甲
还可以用 什么方法把甲 图案变成乙图 案?
可以先将甲图案绕图上的
A点旋转,使得图案被
B 乙
A
“扶直”,然后,再沿AB
方向将所得图案平移到B
甲 点位置,即可得到乙图案
B
A
二、旋转设计作图
合作探究
1.选择不同的___旋__转__中__心_、不同的_旋__转__角_旋转同一个图案,会出 现不同的效果. (1)两个旋转中,旋转中心不变, 旋__转__角__ 改变了,产生了 __不__同___的旋转效果.
方法归纳 旋转作图的基本步骤:
(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
A E
F
B
D
考考你:
C
借助上图,如何确定它们的旋转中心位置?
答:找到两条对应点连线段的垂直平分线的交点.
例2. 怎样将甲图案变成乙图案? 乙
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
则△ABE′为旋转后的图形.
想一想:
A
D
还有其他方法确定点E的
对应点E′吗?
E
答:延长CB,以点A为圆心,AE 的
长为半径画弧,交CB的延长线于E', B
C
连接AE',则△ABE'为旋转后的图形.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。
本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。
教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。
但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。
因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。
三. 教学目标1.理解旋转的定义,掌握旋转的性质。
2.学会对图形进行旋转,并能运用旋转解决一些实际问题。
3.培养学生的空间想象能力和抽象思维能力。
4.提高学生的合作交流能力和问题解决能力。
四. 教学重难点1.旋转的性质的理解和运用。
2.对图形进行旋转的方法和技巧。
五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。
2.利用多媒体辅助教学,直观展示图形的旋转过程。
3.采用合作交流的方式,让学生在实践中掌握旋转的方法。
4.通过解决实际问题,培养学生运用旋转解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.旋转的相关教具和模型。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。
2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。
同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。
3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。
然后,各组汇报实验结果,共同总结旋转的性质。
4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。
《图形的旋转(第二课时)》教案

《图形的旋转(第二课时)》教案
画旋转后图形
例:如图,E是正方形ABCD中CD边上一点,以点A为中心,把△ADE顺时针旋转90°.
(1)画出旋转后的图形;
(2)若AD = 4,DE = 3,点E旋转后的对应点
为E’,求EE’的长.
教师出示问题,学生独立完成. 教师展示学生的多种解法,并提示学生思考每种解法的依据,最终引导学生认识到画旋转后图形的本质:画出旋转前各顶点的对应点,确定对应点的依据就是旋转的性质.
旋转设计图案
教师展示图片,学生观察图片,体会把一个图案进行旋转,选择不同的旋转中心,不同点的旋转角,出现不同的效果.
教师给出旋转对称的定义,并介绍实际生活中的应用实例.
小结教师和学生一起回顾本节课所学主要内容.。
人教版初中九年级上册数学《旋转作图》精品课件

C
·F O
D
E
课堂小结
旋转的 作图
作旋转图形
作图基本步骤五步
确定旋转中心
找两条对应点 连线段的垂直 平分线的交点
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
下课了!
四边形EFGH就是四边形ABCD绕O点旋转后的图形.
2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使 正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解: 方案一: 把正方形ABCD绕点D
顺时针旋转90°.
B
方案二: 把正方形ABCD绕点C
逆时针旋转90°.
A
方案三: 把正方形ABCD绕CD的 中点O旋转180°.
(5)旋转中心是唯一不动的点;
一、简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后
的线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使 得∠BAX=60°. (2)在射线AX上取点C,使得AC=AB.线段AC为所求.
试一试 画出下图所示的四边形 ABCD 以 O为中心,
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
B
O
拓展提升
平移和旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中
人教版九年级数学上册第23章:旋转作图

(4)连结EF、FG、GH、HE,四边形EFGH就是四边
形ABCD绕点O旋转后的图形.
随堂即练
2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正 方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解: 方案一: 把正方形ABCD绕点D
新课讲解
1 简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后的
线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得 ∠BAX=60°; (2)在射线AX上取点C,使得AC=AB,线段AC即为所求.
新课讲解
试一试
画出下图所示的四边形 ABCD 以 O为中心,旋转角都为 60°的旋转图形.
顺时针旋转90°;
B
方案二: 把正方形ABCD绕点C
逆时针旋转90°;
A
方案三: 把正方形ABCD绕CD的
中点O旋转180°.
C
·F O
D
E
课堂总结
旋转的 作图
作旋转图形
作图基本步骤五步
确定旋转中心
找两条对应点 连线段的垂直 平分线的交点
B
C
BE′= DE ,
∴ 在CB的延长线上截取点E′,使BE ′=DE .
则△ABE′为旋转后的图形.
新课讲解
想一想:
还有其他方法确定点E的
A
D
对应点E′吗? E
答:延长CB,以点A为圆心,AE 的长
为半径画弧,交CB的延长线于E',连 B
C
结AE',则△ABE'为旋转后的图形.
★旋转作图的基本步骤: (1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.