Matlab笔记——模糊聚类分析原理及实现023
聚类分析MATLAB

聚类分析MATLAB§8.利⽤Matlab和SPSS软件实现聚类分析1. ⽤Matlab编程实现运⽤Matlab中的⼀些基本矩阵计算⽅法,通过⾃⼰编程实现聚类算法,在此只讨论根据最短距离规则聚类的⽅法。
调⽤函数:min1.m——求矩阵最⼩值,返回最⼩值所在⾏和列以及值的⼤⼩min2.m——⽐较两数⼤⼩,返回较⼩值std1.m——⽤极差标准化法标准化矩阵ds1.m——⽤绝对值距离法求距离矩阵cluster.m——应⽤最短距离聚类法进⾏聚类分析print1.m——调⽤各⼦函数,显⽰聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最⼤值为max,令矩阵上三⾓元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最⼩值,返回最⼩值所在⾏e和列f以及值的⼤⼩gfor l=1:c,为vector(c+1,l)赋值,产⽣新类令第c+1列元素,第e⾏和第f⾏所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,⽤极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最⼤值min=min(vector);[a,b]=size(vector); %矩阵⼤⼩,a为⾏数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,⽤绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最⼩值,并返回⾏列数及其值function [v1,v2,v3]=min1(vector);%v1为⾏数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,⽐较两数⼤⼩,返回较⼩的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最⼩值=%g,将第%g区和第%g区并为⼀类,记作G%g\n\n',g,e,f,c+1); for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调⽤各⼦函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调⽤Matlab函数实现2.1调⽤函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含⼀个样本;③合并距离最近的两类为⼀新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调⽤函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的⽬标为⼆元群的层次树pdist 计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵 X 进⾏标准化处理各种命令解释1、T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。
利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。
Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。
本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。
一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。
1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。
- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。
- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。
- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。
二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。
通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。
2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。
首先,将数据集读入Matlab并进行必要的归一化处理。
然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。
最后,根据聚类结果进行数据可视化或进一步的分析。
2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。
将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。
该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。
2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。
DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。
模糊C均值聚类

主 单
讲:周润景 教授 位:电子信息工程学院
目 录
模糊C均值聚类应用背景 模糊C均值算法 模糊C均值聚类的MATLAB实现 模糊C均值聚类结果分析
一.模糊C均值聚类应用背景
传统的聚类分析是一种硬划分(Crisp Partition),它把每个待辨识的对 象严格地划分到某类中,具有“非此即彼”的性质,因此这种类别划分的界限 是分明的。然而实际上大多数对象并没有严格的属性,它们在性质和类属方面 存在着中介性,具有“亦此亦彼”的性质,因此适合进行软划分。Zadeh提出 的模糊集理论为这种软划分提供了有力的分析工具,人们开始用模糊方法来处 理聚类问题,并称之为模糊聚类分析。模糊聚类得到了样本属于各个类别的不 确定性程度,表达了样本类属的中介性,建立起了样本对于类别的不确定性的
三.模糊C均值聚类的MATLAB实现
426.31 3105.29 2057.8 1507.13 1556.89 1954.51 343.07 3271.72 2036.94 2201.94 3196.22 935.53 2232.43 3077.87 1298.87 1580.1 1752.07 2463.04 1962.4 1594.97 1835.95 1495.18 1957.44 3498.02 1125.17 1594.39 2937.73 24.22 3447.31 2145.01 1269.07 1910.72 2701.97 1802.07 1725.81 1966.35 1817.36 1927.4 2328.79 1860.45 1782.88 1875.13]; [center,U,obj_fcn] = fcm(data,4); plot3(data(:,1),data(:,2),data(:,3),'o');
模糊聚类分析方法

模糊聚类分析方法对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统 计“物以类聚”的一种分类方法。
载科学技术、经济管理中常常要按一定的标准 (相似程度或亲疏关系)进行分类。
例如,根据生物的某些性状可对生物分类, 根据土壤的性质可对土壤分类等。
由于科学技术、经济管理中的分类界限往往不 分明,因此采用模糊聚类方法通常比较符合实际。
一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1)数据矩阵设论域U ={X i ,X 2,||l,X n }为被分类对象,每个对象又有m 个指标表示其性状,于是,得到原始数据矩阵为Xm 1X m2bI-Xnm」其中X nm 表示第n 个分类对象的第m 个指标的原始数据(2)数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行 比较,通常需要对数据做适当的变换。
但是,即使这样,得到的数据也不一定在 区间[0,1]上。
因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据 压缩到区间[0,1]上。
通常有以下几种变换: ① 平移•标准差变换X i = {x i1, X i2,川,X m }X i 1X2 1X n2 IHxik -(i 一 1,21 n, k_;HL 2mS k其中-1 n1 n_ 2xkxi , 2(xik~'兀)。
n i 4: n i 4经过变换后,每个变量的均值为 0,标准差为1,且消除了量纲的影响。
但是,再用得到的x k 还不一定在区间[0,1]上。
② 平移•极差变换显然有0乞x ik 乞1,而且也消除了量纲的影响 ③ 对数变换xk- lg x ik (i = 1,n , k; l [L 2 m取对数以缩小变量间的数量级。
2、第二步:标定(建立模糊相似矩阵)设论域U ={为公2,川,人} , X i ={为1必2,川,心},依照传统聚类方法确定相似 系数,建立模糊相似矩阵,x i 与X j 的相似程度用=R(X j ,X j )。
在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。
通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。
本文将介绍在Matlab中使用FCM进行图像分析的技巧。
首先,让我们简要了解一下FCM算法。
FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。
与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。
在Matlab中使用FCM进行图像分析的第一步是加载图像。
可以使用imread函数将图像加载到Matlab的工作区中。
例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。
这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。
这是因为FCM算法通常用于灰度图像分析。
可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。
预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。
常用的图像预处理方法包括平滑、锐化和边缘检测等。
Matlab中提供了许多图像预处理函数。
例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。
常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。
模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];[center, U, obj_fcn] = FCMClust(Data,N_cluster,options)data=[94.4304 98 60 0 8592.8068 70 70 0 75.286.3522 100 75 24.87 91.580.5512 50 90 0 65.480.494 76 100 0 9888.1528 100 60 80 78.484.567 55 80 0 8587.722 30 60 0 4988.0056 95 70 46.459 45.885.948 100 60 0 55.683.9578 10 90 0 78.490.0822 5 60 0 58.876.7448 10 60 0 39.295.062 100 70 62.37 94.8];N_cluster=4;options(1)=[2];options(2)=[100];options(3)=[1e-5];options(4)=[1];。
模糊聚类算法的原理和实现方法

模糊聚类算法的原理和实现方法模糊聚类算法是一种数据分类和聚类方法,它在实际问题中有着广泛的应用。
本文将介绍模糊聚类算法的原理和实现方法,包括模糊C均值(FCM)算法和模糊神经网络(FNN)算法。
一、模糊聚类算法的原理模糊聚类算法是基于模糊理论的一种聚类方法,它的原理是通过对数据进行模糊分割,将每个数据点对应到多个聚类中心上,从而得到每个数据点属于各个聚类的置信度。
模糊聚类算法的原理可以用数学公式进行描述。
设有n个数据样本点X={x1, x2, ..., xn},以及m个聚类中心V={v1, v2, ..., vm}。
对于每个数据样本点xi,令uij为其属于第j个聚类中心的置信度,其中j=1,2,..., m,满足0≤uij≤1,且∑uij=1。
根据模糊理论,uij的取值表示了xi属于第j个聚类中心的隶属度。
为了达到聚类的目的,我们需要对聚类中心进行调整,使得目标函数最小化。
目标函数的定义如下:J = ∑∑(uij)^m * d(xi,vj)^2其中,m为模糊度参数,d(xi,vj)为数据点xi与聚类中心vj之间的距离,常用的距离度量方法有欧氏距离和曼哈顿距离。
通过不断调整聚类中心的位置,最小化目标函数J,即可得到模糊聚类的结果。
二、模糊C均值(FCM)算法的实现方法模糊C均值算法是模糊聚类算法中最经典的一种方法。
其具体实现过程如下:1. 初始化聚类中心:随机选取m个数据点作为初始聚类中心。
2. 计算隶属度矩阵:根据当前聚类中心,计算每个数据点属于各个聚类中心的隶属度。
3. 更新聚类中心:根据隶属度矩阵,更新聚类中心的位置。
4. 判断是否收敛:判断聚类中心的变化是否小于设定的阈值,如果是则停止迭代,否则返回第2步。
5. 输出聚类结果:将每个数据点分配到最终确定的聚类中心,得到最终的聚类结果。
三、模糊神经网络(FNN)算法的实现方法模糊神经网络算法是一种基于模糊理论和神经网络的聚类方法。
其实现过程和传统的神经网络类似,主要包括以下几个步骤:1. 网络结构设计:确定模糊神经网络的层数和每层神经元的个数。
如何在Matlab中进行模糊聚类分析

如何在Matlab中进行模糊聚类分析在数据分析领域,模糊聚类分析是一种常用的技术,它可以应用于各种领域的数据处理和模式识别问题。
而Matlab作为一种功能强大的数据分析工具,也提供了丰富的函数和工具箱,以支持模糊聚类分析的实施。
1. 引言模糊聚类分析是一种基于模糊集理论的聚类方法,与传统的硬聚类方法不同,它允许样本属于多个聚类中心。
这种方法的优势在于可以更好地应对数据中的不确定性和复杂性,对于某些模糊或模糊边界问题具有更好的解释能力。
2. 模糊聚类算法概述Matlab提供了多种模糊聚类算法的实现,其中最常用的是基于模糊C均值(Fuzzy C-Means,FCM)算法。
FCM算法的基本思想是通过最小化聚类后的模糊划分矩阵与原始数据之间的距离来确定每个样本所属的聚类中心。
3. 数据预处理与特征提取在进行模糊聚类分析之前,需要对原始数据进行预处理和特征提取。
预处理包括数据清洗、缺失值处理和异常值处理等;特征提取则是从原始数据中抽取出具有代表性和区分性的特征,用于模糊聚类分析。
4. 模糊聚类分析步骤在Matlab中,进行模糊聚类分析通常包括以下步骤:(1) 初始化聚类中心:通过随机选择或基于某种准则的方法初始化聚类中心。
(2) 计算模糊划分矩阵:根据当前的聚类中心,计算每个样本属于各个聚类中心的隶属度。
(3) 更新聚类中心:根据当前的模糊划分矩阵,更新聚类中心的位置。
(4) 判断终止条件:通过设置一定的终止条件,判断是否达到停止迭代的条件。
(5) 输出最终结果:得到最终的聚类结果和每个样本所属的隶属度。
5. 模糊聚类结果评估在进行模糊聚类分析后,需要对聚类结果进行评估以验证其有效性和可解释性。
常用的评估指标包括模糊划分矩阵的聚类有效性指标、外部指标和内部指标等。
通过这些指标的比较和分析,可以选择合适的模糊聚类算法和参数设置。
6. 模糊聚类的应用模糊聚类分析在诸多领域中都有广泛的应用。
例如,在图像处理中,可以利用模糊聚类方法对图像进行分割和识别;在生物信息学中,可以应用于基因表达数据的分类和模式识别等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23. 模糊聚类分析原理及实现聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。
传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。
随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。
由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。
本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。
(一)预备知识一、模糊等价矩阵定义1设R=(r ij )n ×n 为模糊矩阵,I 为n 阶单位矩阵,若R 满足 i) 自反性:I ≤R (等价于r ii =1); ii) 对称性:R T =R;则称R 为模糊相似矩阵,若再满足iii) 传递性:R 2≤R (等价于1()nik kj ij k r r r =∨∧≤)则称R 为模糊等价矩阵。
定理1设R 为n 阶模糊相似矩阵,则存在一个最小的自然数k(k <n ), 使得R k 为模糊等价矩阵,且对一切大于k 的自然数l ,恒有R l =R k . R k 称为R 的传递闭包矩阵,记为t(R). 二、模糊矩阵的λ-截矩阵定义2设A =(a ij )n ×m 为模糊矩阵,对任意的λ∈[0,1], 作矩阵()()ij n mA a λλ⨯=其中,()1, 0, ij ijij a aa λλλ≥⎧=⎨<⎩称为模糊矩阵A 的λ-截矩阵。
显然,A λ为布尔矩阵,且其等价性与与A 一致。
意义:将模糊等价矩阵转化为等价的布尔矩阵,可以得到有限论域上的普通等价关系,而等价关系是可以分类的。
因此,当λ在[0,1]上变动时,由A λ得到不同的分类。
若λ1<λ2, 则A λ1≥A λ2, 从而由A λ2确定的分类是由A λ1确定的分类的加细。
当λ从1递减变化到0时,A λ的分类由细变粗,逐渐归并,形成一个分级聚类树。
例1设U={u 1, u 2, u 3, u 4, u 5}, 对给定的U 上的模糊等价关系让λ从1到0变化,观察分类过程。
(1) 当λ=1时,110000 01000 00100 00010 00001R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为5类:(每行代表一类,1代表对应元素在该类){u1}, {u2}, {u3}, {u4}, {u5}(2) 当λ=0.8时,0.810100 01000 10100 00010 00001R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为4类:{u1, u3}, {u2}, {u4}, {u5}(3) 当λ=0.6时,0.610100 01000 10100 00011 00011R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为3类:{u1, u3}, {u2}, {u4, u5}(4) 当λ=0.5时,0.510111 01000 10111 10111 10111R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为2类:{u1, u3, u4, u5}, {u2}(4) 当λ=0.4(R 中的最小值)时,0.41111111111111111111111111R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为1类:{u 1, u 2, u 3, u 4, u 5}整个动态分类过程如下:(二)基于择近原则的模糊聚类择近原则就是利用贴近度来实现分类操作,贴近度用来衡量两个模糊集A 和B 的接近程度,用N (A ,B )表示。
贴近度越大,表明二者越接近。
设论域有限或者在一定区间,即U={u 1, u 2, …, u n }或U=[a,b], 常用的贴近度有以下三种: (1) 海明贴近度11(,)1|()()|ni i i N A B A u B u n ==--∑1(,)1|()()|d bi i a N A B A u B u u b a=---⎰ (2) 欧氏贴近度1221(,)1[()()]ni iiN A B A u B u=⎫=--⎪⎭∑)122(,)1[()()]dbi iaN A B A u B u u=--⎰(3) 格贴近度(,)()()c cN A B A B A B=∧o o其中,()1()()ni iiA B A u B u==∨∧o.Matlab实现:格贴近度的实现函数fuz_closing.mfunction y=fuz_closing(A,B,type)%要求A与B列数相同的行向量[m,n]=size(A);switch typecase 1 %海明贴近度y=1-sum(abs(A-B))/n;case 2 %欧氏贴近度y=1-(sum(A-B).^2)^(1/2)/sqrt(n);case 3 %格贴近度y1=max(min(ones(m,n)-A,ones(m,n)-B));%ones(m,n)-A等于A^cy2=max(min(A,B));y=min(y1,y2);end例2设某产品的质量等级分为5级,其中一级有5种评判因素u1, u2, u3, u4, u5. 每一等级的模糊集为B1={0.5 0.5 0.6 0.4 0.3}B2={0.3 0.3 0.4 0.2 0.2}B3={0.2 0.2 0.3 0.1 0.1}B4={0.1 0.1 0.2 0.1 0}B5={0.1 0.1 0.1 0.1 0}假设某产品各评判因素的值为A={0.4 0.3 0.2 0.1 0.2}, 问该产品属于哪个等级?代码:A=[0.4 0.3 0.2 0.1 0.2];B=[0.5 0.5 0.6 0.4 0.3;0.3 0.3 0.4 0.2 0.2;0.2 0.2 0.3 0.1 0.1;0.1 0.1 0.2 0.1 0;0.1 0.1 0.1 0.1 0];for i=1:5haiming(i)=fuz_closing(A,B(i,:),1);oushi(i)=fuz_closing(A,B(i,:),2);ge(i)=fuz_closing(A,B(i,:),3);endhaimingoushige运行结果:haiming = 0.7800 0.9200 0.9000 0.8600 0.8400 oushi = 0.5081 0.9106 0.8658 0.6870 0.6422ge = 0.4000 0.3000 0.2000 0.2000 0.1000可见样本A与各等级的格贴近度分别为0.4, 0.3, 0.2, 0.2, 0.1, 故可认为该产品属于B1等级。
若按令两种贴近度判断,该产品属于B2等级。
(三)基于模糊等价关系的模糊聚类一、算法步骤1. 样本数据归一化设X={x 1, x 2, …, x n }为要分类的n 个样本,每个样本有m 个指标,即x i ={ x i 1, x i 2, …, x im }, i =1,2,..,n得到原始数据矩阵X=(x ij )n ×m .由于不同指标的数据量纲不同,为了使数据能够比较,要先对X 做归一化处理。
2. 建立模糊相似矩阵R先建立样本x i 与x j 相似程度r ij , 进而构造模糊相似矩阵R=(r ij )n ×n建立r ij 常用的方法有:(1) 相似系数法①夹角余弦法:mikjkij xx r ⋅=∑②相关系数法:||||miki jk j ij xx x x r -⋅-=∑(2)距离法一般取r ij =1-c (d (x i ,x j ))α, 其中c 和α为适当选取的参数,使得 0≤r ij ≤1. 常用的距离有:①海明距离:1(,)||mi j ik jk k d x x x x ==-∑②欧氏距离:(,)i j d x x =③切比雪夫距离:1(,)max ||i j ik jk k md x x x x ≤≤=- (3) 贴近度法①最大最小法:11()()mikjk k ij mikjk k x x r xx ==∧=∨∑∑②算术平均最小法:11()1()2mikjk k ij m ik jk k xx r x x ==∧=+∑∑③几何平均最小法:11()mikjk k ij mk xx r ==∧=∑3. 求出R 的传递闭包t(R)即改造相似关系为等价关系:令2R R R =o , 再令422R R R =o , …, 直到满足2l l l R R R =o 与R l 相等,即为t(R), 仍记为R.4. 选取合适的λ, 利用λ-截矩阵R λ进行分类(参考例1)。
二、Matlab 实现求模糊相似矩阵R 的函数:fuz_distance.mfunction R=fuz_distance(x,type)%x 为归一化的数据矩阵, type 选择计算相似程度的方法 %返回模糊相似矩阵R[n,m]=size(x);%距离法的选择参数c和a, 需要根据具体情况修改以保证R(i,j)属于[0,1]c=0.1;a=1;for i=1:nfor j=1:nswitch typecase 1 %夹角余弦法R(i,j)=(x(i,:)*x(j,:)')/(norm(x(i,:),2)*norm(x(j,:),2));case 2 %相关系数法Dxi=abs(x(i,:)-mean(x(i,:)));Dxj=abs(x(j,:)-mean(x(j,:)));R(i,j)=(Dxi*Dxj')/(norm(Dxi,2)*norm(Dxj,2));case 3 %海明距离法d=sum(abs(x(i,:)-x(j,:)));R(i,j)=1-c*d^a;case 4 %欧氏距离法d=norm(x(i,:)-x(j,:),2);R(i,j)=1-c*d^a;case 5 %切比雪夫距离法d=max(abs(x(i,:)-x(j,:)));R(i,j)=1-c*d^a;case 6 最大最小(贴近度)法R(i,j)=sum(min([x(i,:);x(j,:)]))/sum(max([x(i,:);x(j,:)]));case 7 算术平均最小(贴近度)法R(i,j)=2*sum(min([x(i,:);x(j,:)]))/sum(x(i,:)+x(j,:));case 8 %几何平均最小(贴近度)法R(i,j)=sum(min([x(i,:);x(j,:)]))/sum(sqrt(x(i,:).*x(j,:)));endendend求R的传递闭包t(R)的函数:tran_R.mfunction [B,k]=tran_R(R)%R为模糊相似矩阵, 循环构造满足传递性的t(R)%k为满足R^2k = R^k的最小的自然数kn=length(R);B=zeros(n,n);flag=0;k=1/2;while flag==0B=fco(R,R); %做模糊合成运算k=2*k;if B==Rflag=1;elseR=B; %循环计算R传递闭包endend上面的函数tran_R.m调用函数矩阵模糊合成算子函数:fco.m function B=fco(Q,R)%实现模糊合成算子的计算, 要求Q的列数等于R的行数[n,m]=size(Q);[m,l]=size(R);B=zeros(n,l);for i=1:nfor k=1:lB(i,k)=max(min([Q(i,:);R(:,k)'])); endend求t(R)的λ-截矩阵的函数:fuz_lamda.mfunction y=fuz_lamda(X,m)%用λ-截矩阵将样本分成m类, m≤总样本数lamda=unique(X)'; %根据R中的值取λ值%unique函数取矩阵不重复元素组成向量并从小到大排好序X(find(X<lamda(m)))=0;X(find(X>=lamda(m)))=1;y=X;例3某地区设有11个雨量站,其分布如图所示:10年来各雨量站测得的年降雨量表如下:现因经费问题,希望撤销几个雨量站,问撤销哪些雨量站而不会太多地减少降雨信息?分析:对11个雨量站进行模糊聚类,同一类的只需保留一个即可。