雷达接收机技术基本理论

合集下载

雷达信号处理基础理论与应用

雷达信号处理基础理论与应用

雷达信号处理基础理论与应用雷达信号处理是现代雷达技术的核心,是将雷达接收到的回波信号转换为目标信息的过程。

因此,对于雷达信号处理的理论和应用的研究具有重要的现实意义和应用价值。

一、雷达基础理论1.1 雷达系统基础原理雷达系统的基础原理是通过发射电磁波,在目标物体上产生散射回波信号,并接收并处理回波信号,从而实现目标位置、速度、方位等信息的测量。

雷达系统的核心构成包括发射机、天线、接收机和信号处理器。

其中,发射机产生电磁信号,通过天线发射;接收机接收回波信号,信号处理器对回波信号进行处理后提取目标信息。

1.2 雷达信号理论雷达信号的理论表述是指雷达系统中涉及到各种信号处理算法的基础理论和应用。

雷达信号通常具有高频段、窄带和受干扰的特点,因此需要对信号进行复杂的处理。

雷达信号处理中涉及到的主要理论包括多普勒效应、回波信号分析、信号干扰、雷达成像等。

1.3 雷达系统性能参数雷达系统性能参数通常包括雷达探测能力、定位精度、分辨率、探测距离、反射截面等。

其中,雷达探测能力是指雷达系统可以发现目标的能力;定位精度是指雷达系统可以测量目标在空间中的位置;分辨率是指雷达系统可以将多个目标区分开来的能力;探测距离是指雷达系统可以探测到目标的最远距离;反射截面是指雷达系统接收到的目标回波信号对应的物体截面。

二、雷达信号处理应用2.1 雷达成像雷达成像是一种基于微波辐射的成像技术。

它通过对反射回波信号进行处理,实现目标在三维空间中的图像展示。

在雷达成像过程中,通常需要采用多个角度的发射和接收,以实现更准确的成像效果。

雷达成像技术在军事、航天、地质勘探等各个领域都得到了广泛的应用。

2.2 多普勒雷达多普勒雷达是一种测量目标速度的传感器。

它基于多普勒效应,利用目标运动产生的频移信息,对目标速度进行测量。

多普勒雷达的应用领域非常广泛,包括交通监控、地震预警、气象预报等。

2.3 监测雷达监测雷达是一种通过对目标进行连续观测,实时监测目标的运动和变化的雷达系统。

雷达基本工作原理课件

雷达基本工作原理课件

雷达的分类
01
脉冲雷达
发射脉冲信号,通过测量脉冲 信号往返时间计算目标距离。
02
连续波雷达
发射连续波信号,通过测量信 号频率变化计算目标距离和速
度。
03
合成孔径雷达
利用高速平台对目标区域进行 扫描,形成高分辨率的合成孔
径图像。
雷达的应用
军事侦察
利用雷达探测敌方军事目标,如飞机、 坦克等。
气象观测
指雷达在存在欺骗干扰的情况下,仍能正常工作并检测到目标的能力 ,通常由信号鉴别和抗干扰算法决定。
多目标处理能力
跟踪能力
指雷达在同一时间内能够跟踪的 目标数量,通常由数据处理能力 和硬件资源决定。
分辨能力
指雷达在同一时间内能够分辨的 目标数量,通常由信号处理算法 和天线波束宽度决定。
05
雷达技术的发展趋势
天线是雷达系统的辐射和接收单元,负责发射和接收电磁波。
波束形成是天线的重要技术,通过控制天线阵列的相位和幅度,形成具有特定形状 和方向的波束。
天线的性能指标包括方向图、增益、副瓣电平和极化方式等。
信号处理与数据处理
信号处理是雷达系统的关键技术之一,负责对接收到的回波信号进行处 理和分析。
数据处理负责对雷达系统获取的数据进行进一步的处理、分析和利用。
当目标相对于雷达移动时,反 射的电磁波频率会发生变化, 这种变化被雷达接收并转换为 目标的相对速度。
速度测量的精度受到多普勒效 应的影响,而分辨率则受到雷 达工作频率和采样率的影响。
03
雷达系统组成
发射机
发射机是雷达系统的核心组件之 一,负责产生高功率的射频信号

它通常包括振荡器、功率放大器 和调制器等组件,用于将低功率 信号放大并调制为所需的波形。

雷达系统工作原理详解

雷达系统工作原理详解

雷达系统工作原理详解雷达是一种广泛应用于军事、航空、气象等领域的设备,其工作原理基于电磁波的传播和反射。

本文将详细解释雷达系统的工作原理,并探讨其在不同领域的应用。

一、基本原理雷达系统通过向目标发射脉冲电磁波,并接收目标反射回来的回波来确定目标的位置、距离、速度等信息。

雷达系统由发射机、接收机、天线和信号处理器组成。

1. 发射机发射机产生一系列高频脉冲信号,并通过天线发射出去。

这些脉冲信号的频率通常在微波到毫米波段,具有较高的能量和较短的脉冲宽度。

2. 接收机接收机接收目标反射回来的回波信号,并将其放大和处理,以提取有效的信息。

接收机必须能够有效地区分回波信号和背景噪声,并能够处理不同强度和频率的信号。

3. 天线天线是雷达系统的重要组成部分,它负责发射和接收电磁波。

天线的设计要满足较高的增益和较窄的波束宽度,以便提高目标检测的准确性和精度。

4. 信号处理器信号处理器对接收到的回波信号进行分析和处理,以提取目标的相关信息。

信号处理器可以采用数字信号处理技术,对信号进行滤波、幅度测量、频率分析等操作。

二、工作流程雷达系统的工作流程可分为发射和接收两个主要阶段。

1. 发射阶段在发射阶段,雷达系统通过发射机发射一系列脉冲信号。

这些脉冲信号经过天线发射出去,并传播到目标物体上。

2. 接收阶段目标物体会将部分电磁波回射回雷达系统。

接收机接收到这些回波信号后,通过天线传输到信号处理器。

信号处理器分析回波信号,并提取目标的相关信息。

三、应用领域雷达系统在军事、航空、气象等领域有着广泛的应用。

1. 军事应用军事雷达系统可用于侦察、追踪和指挥控制等。

雷达系统可以用于监测敌方舰艇、飞机和导弹等目标,提供战场情报和目标定位信息。

2. 航空应用航空雷达系统常用于飞行器的导航和避障。

它可以帮助飞行器在恶劣天气条件下准确控制航向,并检测和避免与其他飞行器或地形障碍物的碰撞。

3. 气象应用气象雷达系统可以用于监测天气现象,如降雨、雷暴等。

雷达基础理论试题及答案

雷达基础理论试题及答案

雷达基础理论试题及答案一、单选题(每题2分,共20分)1. 雷达系统的基本组成部分不包括以下哪一项?A. 发射机B. 天线C. 接收机D. 显示器答案:D2. 雷达的工作原理是基于以下哪种物理现象?A. 电磁波的反射B. 电磁波的折射C. 电磁波的衍射D. 电磁波的干涉答案:A3. 下列哪种波不能用于雷达?A. 微波B. 无线电波C. 声波D. 光波答案:C4. 雷达的探测距离主要取决于以下哪个因素?A. 目标的大小B. 雷达发射的功率C. 天气条件D. 以上都是答案:D5. 雷达天线的主要功能是什么?A. 发射电磁波B. 接收电磁波C. 转换电能为电磁能D. 以上都是答案:D6. 雷达的分辨率主要取决于以下哪个参数?A. 波长B. 带宽C. 脉冲宽度D. 以上都是答案:D7. 雷达的多普勒效应可以用于测量目标的什么?A. 速度B. 方向C. 距离D. 以上都不是答案:A8. 雷达的脉冲压缩技术可以提高哪种性能?A. 分辨率B. 探测距离C. 抗干扰能力D. 以上都是答案:A9. 雷达的隐身技术主要是通过以下哪种方式实现的?A. 吸收电磁波B. 反射电磁波C. 散射电磁波D. 以上都是答案:A10. 雷达的干扰技术中,哪种方式是通过发射虚假信号来欺骗雷达?A. 噪声干扰B. 欺骗干扰C. 脉冲干扰D. 以上都不是答案:B二、多选题(每题3分,共15分)1. 雷达的基本工作模式包括以下哪些?A. 搜索模式B. 跟踪模式C. 引导模式D. 干扰模式答案:ABC2. 雷达的天线类型主要有以下哪些?A. 抛物面天线B. 阵列天线C. 相控阵天线D. 螺旋天线答案:ABC3. 雷达的信号处理技术包括以下哪些?A. 脉冲压缩B. 频率捷变C. 多普勒滤波D. 目标识别答案:ABCD4. 雷达的抗干扰措施包括以下哪些?A. 频率捷变B. 功率控制C. 信号编码D. 空间滤波答案:ABCD5. 雷达的目标识别技术包括以下哪些?A. 形状识别B. 速度识别C. 频率识别D. 模式识别答案:ABD三、判断题(每题1分,共10分)1. 雷达的发射功率越大,其探测距离就越远。

雷达原理介绍ppt课件

雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个

雷达基本理论与基本原理

雷达基本理论与基本原理

雷达基本理论与基本原理一、雷达的基本理论1、雷达工作的基本过程发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。

向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。

2、雷达工作的基本原理一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。

目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。

如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。

该频率的漂移与目标相对于雷达的速度成正比,根据f =工,即d九可得到目标的速度。

3、雷达的主要性能参数和技术参数3.1雷达的主要性能参数3.1.1雷达的探测范围雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。

3.1.2测量目标参数的精确度和误差精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。

3.1.3分辨力指雷达对两个相邻目标的分辨能力。

可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。

距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:(△ R)=巴。

因此,min 2脉宽越小,距离分辨力越好3.1.4数据率雷达对整个威力范围完成一次探测所需时间的倒数。

3.1.5抗干扰能力指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。

3.1.6雷达可靠性分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。

3.1.7体积和重量体积和重量决定于雷达的任务要求、所用的器件和材料。

雷达技术原理

雷达技术原理

雷达技术原理本文将介绍雷达技术的工作原理。

雷达是一种主动式无线电测距测速系统,可以探测和跟踪远距离目标,并提供其位置、速度、大小等基本信息。

雷达技术在天文学、气象学、军事、民用航空等领域都有广泛的应用。

雷达的基本原理是利用电磁波在目标与雷达之间的传输、散射或反射,从而实现距离、方位和速度测量的目的。

雷达技术的工作原理雷达技术的工作原理涉及到电磁波的产生、传输、接收和处理等多个环节。

下面将分别介绍雷达系统中各部分的工作原理。

电磁波的产生雷达系统需要产生电磁波,以便进行测量。

为了产生电磁波,可以使用不同类型的电源,例如发电机、电池或光纤。

一般情况下,雷达系统会使用一台特殊的能够产生高频电磁波的设备,称为雷达发射机。

雷达发射机可以接收电源的电能,并将其转换成高频电磁波,然后将其输出到天线。

电磁波的传输电磁波在传输过程中会受到各种环境因素的干扰,例如气候、大气层、障碍物等。

电磁波的传播距离也会受到其频率和波长的影响。

雷达系统中常用的电磁波频率范围是从1 GHz到100 GHz,对应波长从30厘米到3毫米。

雷达系统一般会使用天线将产生的电磁波传输到目标,并接收其反射或散射回来的信号。

天线可以将电磁波转换为电流信号,并将其发送到雷达接收器进行处理。

电磁波的接收雷达系统的接收器需要能够接收反射或散射回来的电磁波信号,并将其转换为电流信号。

一般情况下,雷达系统会使用一台特殊的接收器,称为雷达接收机。

雷达接收机可以将接收到的电流信号转换为数字信号,并通过信号处理算法来提取目标的距离、方位和速度等信息。

电磁波的处理通过信号处理算法,雷达系统可以对接收到的电磁波信号进行分析,并提取出目标的距离、方位和速度等信息。

雷达系统会将上述信息通过显示屏、电子设备或计算机等方式传送给用户或操作员。

根据用户或操作员的需要,雷达系统可以实现不同的功能,例如探测、识别、追踪、导航或通信等。

雷达技术的应用雷达技术在天文学、气象学、军事和民用航空等领域都有广泛的应用。

雷达知识点总结

雷达知识点总结

雷达知识点总结一、雷达的基本原理雷达是利用无线电波进行探测的设备,其工作原理基于无线电波的发射和接收。

雷达基本原理包括以下几个关键环节:1. 无线电波的发射雷达发射机产生高频的无线电波,并将这些无线电波转化为一束射向待测目标的电磁波。

雷达发射机工作时,关键是通过天线把电能转换成电磁波,并辐射出去。

2. 无线电波的传播和反射发射出的无线电波在空间中传播,当遇到目标时部分被目标表面反射回来,这些反射回来的波被雷达的接收天线接收到。

3. 无线电波的接收和处理接收天线捕捉到反射回来的波,雷达接收机将这些波进行放大、滤波、解调处理,提取出有用的信息。

4. 目标信息的测量和分析通过分析接收到的信号的时间延迟、频率变化等信息,雷达系统可以确定目标的距离、速度、方位角等参数。

5. 显示和报警最后,雷达系统将分析得到的目标信息显示在操作员的监视屏幕上,同时进行报警和跟踪。

以上就是雷达基本的工作原理,根据这些原理,雷达系统可以实现对目标的探测和识别。

二、雷达的工作方式雷达可以根据工作方式的不同分为主动雷达和被动雷达两种类型。

1. 主动雷达主动雷达是指雷达发射机和接收机分开的雷达系统,发射机发射的信号由发送天线发射出去,接收机则由接收天线接收目标反射回来的信号,该方式下,雷达系统不需要等待传感器的使用权就能发射信号和接收目标信息。

2. 被动雷达被动雷达是指发射机和接收机是同一部分,这种雷达系统利用目标本身辐射的电磁波进行探测,通常是利用目标自身的雷达反射特性进行探测。

雷达的工作方式直接影响着其使用场景、性能和应用对象。

三、雷达系统的组成雷达系统是由多个部分组成的,主要包括以下几个组成部分:1. 发射和接收天线:发射和接收天线是雷达系统的核心部件,用于发射和接收电磁波。

2. 雷达发射机:雷达发射机负责产生和放大载频的高频信号,并将其送到发射天线。

3. 雷达接收机:雷达接收机负责接收目标反射回来的信号,并进行放大、解调、滤波等处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 雷达接收机的基本理论
• 内容 1. 噪声特性; 2. 采样定理; 3. 频率稳定度。
1.雷达接收机的噪声特性 1) 噪声的概率特性
1.雷达接收机的噪声特性 1) 噪声的概率特性
1.雷达接收机的噪声特性 1) 噪声的概率特性
1.雷达接收机的噪声特性 1) 噪声的概率特性
1.雷达接收机的噪声特性 1) 噪声的概率特性
(3.2.7)

Bn
0 pno ( f )df pno ( f )
| H ( f ) |2 df
0
H 2( f0)
式中, H2(f0)为线性电路在谐振频率f0处的功率传输系数。
(2) 天线噪声
天线噪声是外部噪声, 它包括天线的热噪声和宇宙噪声, 前 者是由天线周围介质微粒的热运动产生的噪声, 后者是由太阳及 银河星系产生的噪声, 这种起伏噪声被天线吸收后进入接收机, 就呈现为天线的热起伏噪声。天线噪声的大小用天线噪声温度 TA表示, 其电压均方值为
un2A 4kTARABn
式中, RA为天线等效电阻。
天线噪声温度TA决定于接收天线方向图中(包括旁瓣和尾瓣) 各辐射源的噪声温度, 它与波瓣仰角θ和工作频率f等因素有关, 如图3.6所示。图中天线噪声温度T′A是假设天线为理想的(无损 耗、无旁瓣指向地面), 但是大多数情况下必须考虑地面噪声温 度Tg, 在旁瓣指向地面的典型情况下, Tg=36 K, 因此修正后的天 线总噪声温度为
1.雷达接收机的噪声特性
2) 接收机的噪声和噪声系数
(1)
它是由于导体中自由电子的无规则热运动形成的噪声。因 为导体具有一定的温度, 导体中每个自由电子的热运动方向和速 度不规则地变化, 因而在导体中形成了起伏噪声电流, 在导体两 端呈现起伏电压。
根据奈奎斯特定律, 电阻产生的起伏噪声电压均方值
un2 4kTRB
接收机的馈线、放电器、移相器等属于无源四端网络, 其示 意图见图3.9, 图中G a为额定功率传输系数。由于具有损耗电 阻, 因此也会产生噪声, 下面求其噪声系数。
噪声系数的说明见图3.8。 根据定义, 噪声系数可用下式表
示:
F Si / Ni So / No
(3.2.9)
式 中 , Si 为 输 入 额 定 信 号 功 率 ; Ni 为 输 入 额 定 噪 声 功 率 (Ni =kT0Bn); So为输出额定信号功率; No为输出额定噪声功率。
EsA ~ Esi ~
(3.2.1)
式中,k为玻尔兹曼常数, k=1.38×10-23J/K; T为电阻温度, 以绝 对温度(K)计量, 对于室温17℃, T=T0=290K; R为电阻的阻值; Bn 为测试设备的通带。
式(3.2.1)表明电阻热噪声的大小与电阻的阻值R、温度T和 测试设备的通带Bn成正比。
电阻热噪声的功率谱密度p(f)是表示噪声频谱分布的重要统 计特性, 其表示式可直接由式(3.2.1)求得
将No代入式(3.2.10)可得
F 1 N
k T0 BnGa
(3.2.11) (3.2.12)
从上式可更明显地看出噪声系数与接收机内部噪声的关系, 实际 接收机总会有内部噪声(ΔN>0), 因此F>1, 只有当接收机是“理 想接收机”时, 才会有F=1。
下面对噪声系数作几点说明:
① 噪声系数只适用于接收机的线性电路和准线性电路, 即 检波器以前部分。检波器是非线性电路, 而混频器可看成是准 线性电路, 因其输入信号和噪声都比本振电压小很多, 输入信号 与噪声间的相互作用可以忽略。
10 0
10
1 10 0
= 0°

90 °10 00来自10 000f / MHz
0° 5° 90 °
100 000
图3.6 天线噪声温度与频率‘波瓣仰角的关系
1.雷达接收机的噪声特性
2) 接收机的噪声和噪声系数
(3)
(4)噪声系数和噪声温度 1.
噪声系数的定义是: 接收机输入端信号噪声比与输出端信号 噪声比的比值。
p(f)=4kTR
(3.2.2)
显然, 电阻热噪声的功率谱密度是与频率无关的常数。 通常 把功率谱密度为常数的噪声称为“白噪声”, 电阻热噪声在无线 电频率范围内就是白噪声的一个典型例子。
Pno ( f )
Pno (f0)
o
Bn
f
图3.7 噪声带宽的示意图
功率谱均匀的白噪声, 通过具有频率选择性的接收线性系统
② 为使噪声系数具有单值确定性, 规定输入噪声以天线等 效电阻RA在室温T0=290K时产生的热噪声为标准, 所以由式 (3.2.12)可以看出, 噪声系数只由接收机本身参数确定。
③ 噪声系数F是没有单位的数值, 通常用分贝表示
F=10 lg F(dB)
(3.2.13)
④ 噪声系数的概念与定义, 可推广到任何无源或有源的四端网络。
后, 输出的功率谱pno(f)就不再是均匀的了, 如图3.7的实曲线所示。 为了分析和计算方便, 通常把这个不均匀的噪声功率谱等效为
在一定频带Bn内是均匀的功率谱。这个频带Bn称为“等效噪声
功率谱宽度”, 一般简称“噪声带宽”。 因此, 噪声带宽可由下
式求得:
0 pno ( f )df pno ( f0 )Bn
因此噪声系数的另一定义为: 实际接收机输出的额定噪声功 率No与“理想接收机”输出的额定噪声功率NiGa之比。
实际接收机的输出额定噪声功率No由两部分组成, 其中一部 分是NiGa(NiGa=kT0BnGa), 另一部分是接收机内部噪声在输出端 所呈现的额定噪声功率ΔN, 即
No=NiGa+ΔN=kT0BnGa+ΔN
TA 0.876TA' 36(K )
由图3.6可以看出, 天线噪声与频率f有关, 它并非真正白噪声, 但 在接收机通带内可近似为白噪声。毫米波段的天线噪声温度比 微波段要高些, 22.2GHz和60GHz的噪声温度最大, 这是由于水 蒸气和氧气吸收谐振引起的。
10 000 10 00
T ′A/K
RA
Si Ni
接收机
线性电路
Ga
So
RL
No
图3.8 噪声系数的说明图
噪声系数F有明确的物理意义: 它表示由于接收机内部噪声 的影响, 使接收机输出端的信噪比相对其输入端的信噪比变差的 倍数。
式(3.2.9)可以改写为
F No N iGa
(3.2.10)
式中,Ga为接收机的额定功率增益; NiGa是输入端噪声通过“理 想接收机”后, 在输出端呈现的额定噪声功率。
相关文档
最新文档