天然气水合物的研究与开发
天然气水合物的提取和利用技术研究

天然气水合物的提取和利用技术研究第一章概述天然气水合物(NGHs)是一种深海沉积物,是天然气分子和水结晶形成的复合物。
它是一种新型的汇集能源,含天然气的量很大,如果能够高效开采和利用,可以成为世界能源结构中不可或缺的一部分。
然而,由于NGHs的存在为深海采矿提供了极大的技术难度和高昂的成本,因此现阶段的NGHs研究大多数集中在其提取和利用技术的探索上。
第二章 NGHs提取技术研究2.1 密闭式开采技术密闭式开采技术系指在海底将NGHs裹入一定直径的交错提取管道中,使用泵将钻井液(或原生水)通过提取管道的间隙进入NGHs发现区域,从而将NGHs推上交错管道。
这种技术相对于传统的盘管提取技术更加高效、可靠,因而受到越来越多的关注。
2.2 静压式开采技术静压技术是利用一个持续以恒定压力向海底NGHs发现区域供压的装置进行开采,过程中用水或空气将NGHs冲刷到管顶,保证气体和水不分离,避免结构损害,使得NGHs得以高效提取。
这种技术可行性高,可适用于各种NGHs沉积情况和组织形态,因此备受关注。
2.3 盘管提取技术盘管提取技术是指将一系列钢制盘管下潜至海底NGHs层埋藏区通过旋转盘管进行泵送等方式将NGHs推上盘管,最终通过提取管道将NGHs送上地面。
虽然该技术的开采效率较低,但是其成本相对较低,配合钻井技术可以减少生产成本和风险,因此一直以来都是研究的热点方向之一。
第三章 NGHs利用技术研究3.1 燃气发电NGHs是一种清洁的燃料,它燃烧产生的CO2带来的环境污染相对较低。
因此,使用NGHs发电是一种较为可靠且环保的方式,这种方式在欧美已经不是新鲜事物。
近年来,中国也在推进这种技术的应用范围和开采总量以减少对煤炭、石油和天然气等能源的依赖性。
3.2 工业加氢NGHs除了可以燃烧之外,利用其轻碳链结构和高热值也可进行加氢处理,得到丰富的烃类化学品,如乙烯、丙烯和芳香烃等。
利用NGHs进行的工业加氢目前正在快速发展,未来将成为石油化学工业的重要组成部分。
天然气水合物开采技术研究进展

天然气水合物开采技术研究进展天然气水合物是指天然气和水分子在高压、低温下形成的结晶体,是天然气的一种新形式。
天然气水合物的丰富储量和广泛分布,在能源领域具有非常重要的战略意义。
目前,天然气水合物开采技术研究已经取得了一些进展,本文将从四个方面进行分析。
一、天然气水合物开采技术研究现状天然气水合物开采技术一直是石油天然气领域的研究焦点,当前主要包括以下方面:1、水合物钻探技术:研究水合物在钻探过程中的动力学行为和物理性质,并开发出适合于水合物探测的传感器、仪器等设备。
2、水合物开采技术:通过人工或自然措施改变温度、压力、浓度等环境因素,使水合物分解,达到开采目的。
3、水合物输送技术:在水合物开采后,需要将天然气输送到加工厂进行加工处理,目前研究正在进行中。
4、水合物加工技术:水合物加工技术是将开采的水合物转换成生产能用的商品气体,主要涉及水合物裂解、去除杂质、压缩储存等方面。
二、天然气水合物开采技术研究现状目前,世界各国均在加速水合物开采技术的探索,例如日本在2013年成功进行了深层水合物开采实验,韩国也在2016年成功进行了大规模天然气水合物探测试验。
而我国则于2017年成功进行了天然气水合物试采。
在这些实践中,研究者们不断探索优化开采技术,提高开采效率。
1、温度管理技术天然气水合物开采需要在压力较高的环境下进行,为使水合物分解,需要通过温度管理技术来控制水合物的热解温度。
目前,研究者们主要通过水淬、电热、压缩利用等方法来达到控制温度的目的。
2、压裂技术在水合物开采过程中,如果仅仅靠温度变化来改变水合物体积、压力,开采效率较低。
因此,需要依托压裂技术,通过向水合物区域注入压缩空气、水等物质来达到改变水合物体积的目的。
3、高效减阻剂技术在输送天然气的过程中,水合物会因发生极性相互作用而粘附在输送管道及設备表面,严重影响输送效率。
高效减阻剂技术可将水合物与管道表面分离,提高天然气输送效率。
三、天然气水合物开采技术成果目前,天然气水合物开采的有效储量还未被准确评估。
天然气水合物研究进展与开发技术概述

未来发展方向
未来发展方向
随着科技的不断进步,天然气水合物的研究和开发将迎来更多的发展机遇。 未来,天然气水合物的研究将更加深入,涉及的领域将更加广泛。在开发技术方 面,将会发展更加环保、高效、低成本的技术,如微生物法、化学试剂法和纳米 技术等。同时,加强天然气水合物全产业链的研发和优化,推动其在能源、化工、 制冷、航空航天等领域的应用。
研究进展
研究进展
天然气水合物是指在一定条件下,甲烷等气体分子与水分子形成的笼形化合 物。其形成和稳定主要受温度、压力、气体成分和盐度等多种因素影响。近年来, 随着地球科学、地质工程、能源工程等领域的发展,人们对天然气水合物的研究 逐步深入。
研究进展
目前,全球范围内天然气水合物的研究主要集中在以下几个方面:(1)形成 机理与分布规律;(2)物理性质与化学性质;(3)开采技术与经济性;(4) 环境影响与安全性。尽管取得了许多重要成果,但仍存在许多挑战,如天然气水 合物的稳定性和开采过程中的环境风险等。
天然气水合物储运技术的研究现状
2、高效开采技术研究:针对天然气水合物的开采,研究者们开发出了一系列 新型的高效开采技术,如水平井技术、多分支井技术等,大大提高了开采效率。
天然气水合物储运技术的研究现状
3、储运安全技术研究:针对天然气水合物储运过程中的安全问题,研究者们 通过模拟和分析不同情况下的风险因素,提出了一系列有效的安全防技术概述
天然气水合物储运技术概述
天然气水合物,又称可燃冰,是由天然气(主要是甲烷)与水在高压、低温 条件下形成的笼形结晶化合物。由于其储存量大、燃烧清洁、开采成本低等优势, 被视为一种具有巨大潜力的能源。然而,这种化合物的非稳定性以及难以运输的 问题,一直是阻碍其开发利用的主要难题。因此,天然气水合物的储运技术成为 近年来研究的热点和难点。
天然气水合物的研究与开发

天然气水合物的研究与开发天然气水合物(Natural Gas Hydrates,简称NGHs)是一种在特定条件下形成的固态结构,由天然气分子以水分子形成的晶体结构。
在自然界中,NGHs广泛分布于陆地和海洋之中,是一种重要的新能源资源。
本文将从NGHs的形成机制、地理分布、开发前景以及研究与开发进展等方面进行详细阐述,以加深对NGHs的认识。
首先,NGHs的形成机制是指在一定的温度和压力条件下,天然气分子与水分子形成稳定的晶体结构。
NGHs的形成需要特定的压力和温度条件,一般在深海及寒冷地区的沉积物中存在较为丰富。
在这些地区,水合物可通过天然气溶解在水中并与水形成晶体而形成。
NGHs的形成条件相对较为苛刻,通常要求温度低于0°C和压力高于零度压力。
NGHs的地理分布广泛,主要存在于深海和季节性寒冷地区的沉积物中。
据估计,全球水合物资源量巨大,达到约2.8×1017立方米的天然气,相当于传统石油和天然气资源储量的数倍。
深海中的NGHs资源最为丰富,其中包括大西洋、太平洋、印度洋和北冰洋等深海区域。
此外,季节性寒冷地区,如北极和西伯利亚,也是重要的NGHs资源区。
NGHs作为一种潜在的能源资源,具有巨大的开发前景。
首先,NGHs的资源量巨大,可为全球能源消耗提供巨大的补充;其次,NGHs的燃烧产物相对于传统燃煤和石油相对清洁,减少大气污染物净排放。
此外,NGHs的开采和利用对环境影响相对较低,对全球气候变化具有积极的影响。
因此,NGHs的开发是当前能源领域的研究热点之一。
目前,关于NGHs的研究与开发已经取得了一定的进展。
在研究方面,人们对NGHs的形成机制、分布规律及资源量进行了深入研究。
通过实验室模拟和航次观测等手段,开展了大量的水合物研究。
在开发方面,人们提出了多种开发利用技术,如钻井开采、热解开采和化学开采等。
此外,还积极推动国际合作,加强技术交流与合作,在NGHs的开发与利用方面取得了一定的进展。
天然气水合物的开发利用技术分析

天然气水合物的开发利用技术分析天然气水合物是一种天然气的新型储存形式,是由甲烷和水分子结晶形成的,储存量极其巨大。
因此,发掘和利用这种天然气储量已成为全球能源界和科技界的研究热点之一。
本文将对天然气水合物的开发利用技术进行分析。
一、天然气水合物的开采技术天然气水合物的开采技术主要有以下几种:钻孔法、注水法、热解法和超声波荡涤法。
1. 钻孔法钻孔法是使用钻探设备在海底或陆地上开采水合物的一种方法。
通过钻孔设备将泥沙层和水合物层分离,然后以泥浆或水将水合物层中的水分冲刷掉,从而破坏了水合物的晶体结构,使之变化成气体。
这种方法适用于水合物分布较为均匀、饱和度高的海域和陆地。
2. 注水法注水法是将淡水或高压水注入到水合物层中,使之溶解成气体,然后通过开采口抽取天然气。
该方法不仅可用于海底,也可用于陆地上,但它在开采效率、生产成本等方面存在一定的局限性。
3. 热解法热解法是利用热量将水合物层的结构破坏,从而释放天然气的一种方法。
发展迅速、效果明显,但是热能的使用成本较高。
目前这种方法还处于研究阶段。
4. 超声波荡涤法超声波荡涤法是利用超声波对水合物层进行荡涤,从而使天然气释放。
这种方法可以在不破坏水合物结构的情况下实现气体释放,不会对环境造成不良影响。
然而,该技术的高成本和复杂性限制了其应用范围。
二、天然气水合物的输送技术天然气水合物采集后需要输送至加工厂进行加工和利用,主要的输送技术有管道输送、船运输和悬浮巨型平台输送。
1. 管道输送管道输送是一种传统的气体输送方式,它是将水合物压缩成气态后装入管道中,通过锚定在海底的管道输送至加工厂。
该方法可靠性高、成本低,但需要大规模基建,而且对环境产生一定影响。
2. 船运输船运输是将水合物转运至市场的一种常见方式。
这种方法适用于水合物储量分布较为分散的海域,便于灵活调配资源。
但是它的运输成本较高,需要专门的运输船只。
3. 悬浮巨型平台输送悬浮巨型平台输送是一种新型的输送方式,它可以充分利用海洋空间,通过巨型平台将水合物输送至加工厂。
天然气水合物开采与利用的技术研究和前景分析

天然气水合物开采与利用的技术研究和前景分析天然气水合物是一种新兴的可再生能源,它是由天然气分子和水分子在高压、低温环境下结晶形成的。
天然气水合物储量巨大,被认为是未来能源革命的重要组成部分。
随着科技的进步和对能源安全的重视,天然气水合物的开采与利用将成为研究的重点之一。
一、天然气水合物开采技术天然气水合物分布于地球深海、海洋海底和北极等寒冷地带,因此开采难度大、成本高。
对于天然气水合物的开采,目前主要有以下几种技术:1.水下开采技术水下开采技术主要包括水下钻井、水下采样、水下生产等技术。
通过水下开采技术,可以实现对水合物的单独开采,同时也可以有效减少与海水混合的可能。
2.钻井模式开采技术钻井模式开采技术是利用井口周围的压差对水合物进行开采。
该技术需要在水合物储层进行井钻开洞,确保井眼与水合物储层的隔离,然后通过抽吸泵将矿物质和水合物从井眼排入井下。
3.膨胀法开采技术膨胀法开采技术是通过注入物质如液态二氧化碳使水合物脱离,在其结构中形成空气泡从而破坏水合物结构,实现开采。
二、天然气水合物利用技术天然气水合物的利用技术主要包括化学转化、物理加工、燃烧利用、液化气等技术。
其中,液化气技术是天然气水合物利用的一个重要方向。
通过液化气技术,可以降低天然气水合物的储存和运输成本,使其更便捷地运输和使用。
目前在日本、中国等国家已经开始建设天然气水合物的试验项目,尽管只是处于试验阶段,但天然气水合物开采与利用的前景是十分广阔的。
三、天然气水合物开采与利用的前景分析随着全球能源需求的不断增长,传统石油、天然气等能源的供应面临着日趋匮乏的困境。
而天然气水合物的储量巨大,可以为全球能源供应带来新的可能。
越来越多的国家开始加强天然气水合物的研究,推动技术的发展和应用。
在减少对传统石油、天然气等能源的依赖的同时,天然气水合物的开采与利用也为我们提供了更多的可再生能源资源。
值得注意的是,天然气水合物的开采和利用需要高端科技和先进设备的支持,同时也需要具备丰富的资金和技术积累,因此,在未来的发展中,需要各国政府和企业加强合作,共同推动天然气水合物的研究和利用,实现能源的可持续发展。
天然气水合物的研究与开发

天然气水合物的研究与开发引言天然气水合物是一种具有广泛应用前景的天然能源资源。
它是在高压、低温条件下,天然气分子和水分子结合形成的晶体物质。
天然气水合物具有高能量含量、相对低的碳排放以及丰富的储量等优点,因此受到了研究和开发的广泛关注。
本文将介绍天然气水合物的研究与开发现状,并探讨其应用前景和挑战。
天然气水合物的形成与特性形成过程天然气水合物的形成需要天然气和水分子在适当的压力和温度条件下结合形成。
当水分子的结构具有空腔时,天然气分子可以进入这些空腔,形成天然气水合物。
一般情况下,天然气水合物的形成需要较低的温度和较高的压力,通常发生在海洋和陆地沉积物中。
特性天然气水合物具有以下特性:•高能量含量:因为天然气水合物中含有大量的天然气分子,所以其能量含量相对较高。
•低碳排放:与传统燃烧燃料相比,天然气水合物燃烧释放的二氧化碳较少,对环境的影响较小。
•储量丰富:据估计,全球天然气水合物储量约为20万亿立方米,远远超过常规天然气储量。
•相对稳定:天然气水合物在适当的压力和温度条件下相对稳定,有利于储存和运输。
天然气水合物的研究与开发现状研究状况天然气水合物的研究始于20世纪30年代,但直到最近几十年才受到广泛关注。
目前的研究主要集中在以下几个方面:1.形成机制:研究人员通过实验和模拟,深入研究天然气水合物的形成机制,以便更好地理解其在自然界中的分布规律。
2.存储与运输:天然气水合物的储存和运输是其应用的关键问题,目前的研究主要集中在提高储存和运输效率,以及探索新的存储和运输技术。
3.开发利用技术:天然气水合物的开发利用是一个复杂的过程,涉及到开采、提取和转化等方面的技术。
目前,研究人员致力于改进开发技术,以提高天然气水合物的利用效率。
开发现状天然气水合物的开发目前还处于初级阶段,但已经有一些开发项目取得了一定的进展。
例如,日本、韩国和加拿大等国家都在海洋天然气水合物的开发上进行了一系列试验和项目。
这些项目主要集中在水合物开采、提取和转化等方面,以解决天然气水合物的开发与利用问题。
天然气水合物资源的开发利用

天然气水合物资源的开发利用天然气水合物是一种新兴的天然气资源,也被称为“冰燃料”。
它以水的形式存在,在高压和低温的条件下形成,是一种结晶的、类黑色固体物质,其中包含着天然气分子。
随着全球天然气产量逐渐减少和对清洁能源需求的增加,水合物资源的开发利用成为国际上一个备受关注的热点。
本文将从以下几个方面来探讨天然气水合物资源的开发利用。
一、天然气水合物资源的状况天然气水合物被广泛分布于大洋中的海底和极地海域,是一种富含能源的重要天然气资源。
据测算,全球水合物储量约为1.5万亿立方米,是世界天然气资源总储量的数倍。
其中,日本、中国、美国等国家都有较为丰富的水合物资源储量。
但由于其开采难度和成本较高,目前全球尚未对其进行大规模的商业开发利用。
二、天然气水合物的开采技术天然气水合物由于存在于深海等艰苦的环境中,因此其开采难度和风险明显高于传统的天然气资源。
目前,普遍采用的天然气水合物开采技术主要有两种:下行式钻井与钻井完井联合体技术。
下行式钻井是在水合物层通过钻井作业,然后将管道连接到井口和固定平台上,最后通过管道输送天然气。
钻井完井联合体技术是利用专用的水合物采集器吸收水合物,然后再通过管道输送天然气。
虽然两种方法各有优劣,但是技术难度都比较大,在开采中需要不断创新和完善。
三、天然气水合物的市场前景天然气水合物作为一种新兴的能源资源,其市场前景非常广阔,具有巨大的经济增长潜力。
首先,天然气水合物的储量丰富,能够满足全球能源需求的日益增长。
其次,天然气水合物的燃烧产生的二氧化碳和其他有害物质较少,与传统化石燃料相比,可以降低环境污染和温室气体的排放。
此外,随着技术的不断进步和成本的降低,天然气水合物的开采利用成本将逐渐降低,有望成为一种更为可行的清洁能源。
四、我国天然气水合物开发利用现状我国是天然气水合物资源比较丰富的国家之一,目前也在积极开展有关的开发利用工作。
截至2021年初,我国已经建成南海天然气水合物试采井,取得了明显进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物的研究与开发
天然气水合物的研究与开发
作者: 金翔龙.方银霞(国家海洋局海底科学重点实验室) 收录来源: 中国新能源网人类的生存发展离不开能源。
当人类学会使用第一个火种时便开始了能源应用的漫长历史。
几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。
主体能源的更替充分反映出人类社会和经济的进步与发展。
第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。
实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。
人类的生存发展离不开能源。
当人类学会使用第一个火种时便开始了能源应用的漫长历史。
几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。
主体能源的更替充分反映出人类社会和经济的进步与发展。
第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。
实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。
核聚变能主要寄希望于3He,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。
氢能是清洁
、高效的理想能源,燃烧耐仅产生水(H2O),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。
天然气水合物的主要成分是甲烷(C4H)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。
天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。
天然气水合物由水分子和燃气分
子构戚,外层是水分子格架,核心是燃气分子(图
1)。
燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(C4H),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。
据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和0.8m3的水。
这种固体水合物只能存在于一定的温度
和压力条件下,一般它要求温度低于0~10℃,压力高于10MPa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。
天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。
埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。
但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。
储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。
煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。
从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。
因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为1.8×108
亿m3,约合11万亿t(11×1012t)。
数冀如此巨大的矿物能源是人类未来动力的希望。
世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。
世界海洋里天然气水合物的资源量是陆地上的
100倍以上。
到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的
布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南中国海、苏拉威西海和新西兰北部海域等,东太平洋海域的中美海槽、加州滨外、秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
陆上寒冷永冻土中的天然气水合物主要分布在西伯利亚、阿拉斯加和加拿大的北极圈内。
我国最有希望的天然气水合物储存区可能是南海和东海的深水海底。
天然气水合物固然给人类带来了新的能源希望,但它也可对全球气侯和生态环境甚至人类的生存环境造成严重的威胁。
近年来,人们不断讨论地球大气层的温室效应,认为其造成的异常气候(全球变暖)和海面上升可能正威胁着人类的生存。
主导大气温室效应的因子,普遍认为是水气和二氧化碳气。
水气是大自然循环中的.活跃分子,难以凋控,于是二氧化碳便成为人们严重关注的对象。
许多国际会议讨论二氧化碳的温室效应,并决定限制各国二氧化碳废气的排放量。
要知遣,当前大气中的二氧化碳气以每年0.3%的速率在增加,而大气中的甲烷气却以每年0.9%的逮率在更为迅速地增加着。
更为重要的是,甲烷气的温室效应为二氧化碳气温室效应的20倍。
全球海底天然气水合物中的甲烷总量约为地球大气中甲烷量的3000倍,这么巨大量的甲烷气如果释放,将对全球环境产生巨大的影响,严重地影响全球的气候与海平面。
另外,固结在海底沉积物中的水合物,一旦条件发生变化,释出甲烷气,将会明显改变海底沉积物的物理性质。
其后果是降低海底沉积物的工程力学特性,引发大规模的海底滑坡,毁坏一些海底的重要工程设施,如海底输电或通信电缆、海洋石油钻井平台等。
水合物的崩解造成海底滑坡,而海底滑坡又进一步激发水合物的崩解,如此连锁反应,将造成雪崩式的大规模海底滑坡,并使大量的甲烷气逸散到大气中去,造成极大的灾难与经济损失。
基于天然气水合物是21世纪的重要后续能源,并可能对人类生存环境及海底工程设施产生灾害性影响,全球科学家和各国政府都予以高度关注。
早在20世纪30年代,天然气水合物就在远东地区的天然气输送管道内被发现。
一直到70年
代初,苏联学者论证了自然界有可能存在水合物生成带,并在陆地冻土带首先发现了第一个具有商业开采价值的麦索亚哈气田之后,才真正引起世界各国科学家和政府的重视。
后来在深海钻探计划(DSDP
和大洋钻探计划(ODP)中,全球许多海域的海底(如鄂霍克茨海、墨西哥湾、大西洋、北美太平洋一侧和拉丁美洲太平洋一侧的世界海域)都发现了天然气水合物。
20世纪80年代以来,美国、日本、俄罗斯、德国、加拿大、挪威、英国及印度等国政府都着手开展天然气水合物的调查和研究工作,并从能源战略储备角度考虑,纷纷制定作为政府行为的长远发展规划和实施计划,将其视为争夺海洋权益的重要内容。
深人开展天然气水合物研究的热潮已经在全球兴起。
美国1994年制订过《甲烷水合物研究计划》,称天然气水合物是未来世纪的新型能源。
1995年,勘查美国东岸大西洋海底的布莱克海台,首汰证实该处海底的天然气水合物具有商业开采价值,并初步估算出该区水合物的资源量多达100亿t,可满足美国105
年的天然气需要。
1999年,美国又制定《国家甲烷水合物多年研究和开发项目计划》,预期可建立天然气水合物矿床气体资源评价体系、发展商业生产技术,了解和定量评价甲烷水合物在全球碳循环中的作用及其与全球气候变化的相关性,解决水合物工程技术和海底稳定性问题。
日本于1994年制定了庞大的海底天然气水合物研究计划,投巨资对日本周边海域进行大规模海底天然气水合物研究,初步估计仅南海海槽处的水合物资源量就可满足日本100年的能源消耗。
1995年,又专门成立天然气水禽物开发促进委员会,分别于1997年在阿拉斯加和1999年在日本南海海槽进行了海底水禽物的钻探试验。
俄罗斯自20世纪70年代末以来,先后在黑海、里海、白令海、鄂霍茨克海、千岛海沟和太平洋西南部等海域进行海底天然气水合物研究,发现具有工业价值
的区域,近期仍在对巴伦支海和鄂霍茨克海的天然气水合物进行研究。
联邦德国于20世纪80年代与印尼等国对西南太平洋的边缘海进行过联合研究,在莽拉威西海发现海底天然气水合物的识别标志。
目前,德国正在筹划大规模的国家研究计划,可能计划与俄罗斯合作研究鄂霍茨克海的海底水合物。