TOFD超声波衍射时差法

合集下载

超声波衍射时差法(TOFD)在焊缝检测中原理及应用分析

超声波衍射时差法(TOFD)在焊缝检测中原理及应用分析

超声波衍射时差法(TOFD)在焊缝检测中原理及应用分析超声波衍射时差法(TOFD) 在焊缝检测中原理及应用分析[摘要] 本文介绍了超声tofd法的检测原理及应用状况。

超声tofd(时间渡越衍射法)检测技术具有检测速度快,定量精度高,定位准确和可确定缺陷尺寸等优点,是其它检测方法无法比拟的,已开始广泛应用于焊缝和压力容器等特种设备的检测。

[关键词] 声波衍射时差法;射线检测;精确测量;缺陷尖端;探头[pick to] this paper introduces the method of ultrasonic tofd the detection principle and application conditions. ultrasound tofd (time over the diffraction method) detection technology has the detection speed, quantitative high precision, accurate positioning and defect size can determine etc, and is other detection method of the incomparable, has started to widely used in weld and pressure containers of special equipment detection.[key words] sound waves diffraction method of time difference; the x-ray testing; accurate measurement; defect tip; probe中图分类号:r445.1文献标识码:a 文章编号:0 引言衍射时差法(tofd)是一种新型超声无损检测方法。

衍射时差法超声检测报告

衍射时差法超声检测报告

衍射时差法超声检测报告报告编号:TOFD-2024-001报告日期:2024年1月15日报告单位:XX检测技术有限公司一、背景信息被测对象:管道接头焊缝管道材料:碳钢焊接方法:手工电弧焊焊缝类型:对接焊缝焊缝尺寸:外径30mm,壁厚5mm检测目的:评估焊缝的质量和完整性二、检测装置超声检测装置:XYZTOFD-2000发射换能器型号:XYZ-TOFD-10MHz接收换能器型号:XYZ-TOFD-10MHz编码器:XYZ-TOFD-ENC-1000三、检测方法TOFD是一种全自动、无损伤的超声波检测方法,通过测量衍射声波的时差来评估被检测物中的缺陷。

本次检测使用了TOFD方法,主要检测参数如下:纵波震荡频率:5MHz横波震荡频率:10MHz扫描轴向范围:15mm扫描轴向重叠率:50%扫描步进:0.5mm四、检测结果1.检测图像分析通过TOFD检测方法,共得到了被测焊缝的图像,并进行了定性和定量分析。

图像中明显的信号和时间差可以表明焊缝的完整性和质量。

对焊缝的分析结果如下:缺陷A:宽度1mm,深度2mm,位置X轴5mm,Z轴距离10mm缺陷B:宽度0.5mm,深度1.5mm,位置X轴10mm,Z轴距离5mm2.缺陷评估根据TOFD检测结果,对检测区域中的缺陷进行了评估。

缺陷的大小、位置和深度都能够被准确测量和定位。

根据相关标准,对缺陷进行了分类和评级。

缺陷A被判定为焊缝中的夹渣缺陷,属于轻微缺陷,对焊缝的强度和密封性影响较小。

建议对该缺陷进行记录和监控。

缺陷B被判定为焊缝中的小孔缺陷,属于较严重的缺陷,对焊缝的强度和密封性有明显影响。

建议进行修复措施,如填补孔洞或重新焊接。

五、结论和建议通过TOFD超声检测方法,对焊缝进行了全面的检测评估。

根据检测结果,总体评估该焊缝质量良好,只存在两处轻微缺陷。

建议对其中的较严重缺陷进行修复措施,以确保焊缝的完整性和质量。

本次检测报告仅为评估结果,具体的修复方法和措施需要根据相关标准和规范进行制定。

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理无损检测(Nondestructive Testing,简称NDT)技术是一种应用于工程领域的检测方法,其目的是在不损伤被测物体的情况下获得其内部和表面的缺陷信息,以判断材料的质量和可靠性。

衍射时差法超声TOFD(Time of Flight Diffraction)是无损检测中一种常用的超声检测技术,它通过分析超声波在被测物体内部的衍射图样和所传播时间的差异来确定缺陷的位置和尺寸。

衍射时差法超声TOFD检测的基本原理如下:1.超声波传播:超声波在被检测材料内部的传播速度是已知的,传播路径是直线传播的。

超声波发射器发射出短脉冲的超声波信号,经过材料中的声阻抗不一致表面发生反射;然后通过被检材料内部传播,当超声波遇到缺陷时,会部分反射、散射和透射;最后,超声波信号达到接收器并被记录。

2.衍射现象:当超声波遇到边界或缺陷时,会发生衍射现象。

衍射现象是指波通过开口或缝隙时,从波的前向运动方向上的边界或缝隙中发射出去一部分。

3.TOFD测量:TOFD测量的关键在于将两个特征回波的衍射声波进行时间差测量。

超声波发射器和接收器之间有一对平行排列的接收器,其中一个接收器用于接收来自发射器产生的超声波的第一个回波,另一个接收器用于接收来自发射器产生的超声波的第二个回波。

4.TOFD信号分析:通过同时接收两个回波,并测量二者之间的时间差,可以确定缺陷的位置和尺寸。

当超声波传播到缺陷区域时,由于缺陷的存在,衍射声波将被传播到两个接收器之间。

通过测量两个回波的时间差,可以计算出衍射声波的传播路径,从而确定缺陷的位置。

5.结果分析:将TOFD信号进行处理和分析,可以得到缺陷的尺寸、位置和形态。

同时,根据TOFD原理的高度灵敏度特点,可以检测到非常小的缺陷。

衍射时差法超声TOFD检测技术具有以下优点:1.高敏感性:TOFD检测技术可以检测到相对较小的缺陷,对大多数工程材料和结构缺陷的检测效果非常好。

超声波衍射时差法(TOFD)检测过程控制要点

超声波衍射时差法(TOFD)检测过程控制要点

超声波衍射时差法(TOFD)检测过程控制要点超声波衍射时差法(TOFD)是采用一发一收探头,利用缺陷端点的衍射波信号探测缺陷和测定缺陷尺寸的一种超声检测技术,其对垂直于探测面缺陷的尺寸测量具有独特的优势,在结构焊缝检测上的应用已经较为成熟。

随着国内标准NB/T 47013.10-2010《承压设备无损检测第10部分:衍射时差法超声检测》的颁布,TOFD检测技术在国内得到迅速推广。

TOFD检测不是一个基于幅度响应的超声检测技术,但需要足够的灵敏度以使待检测的缺陷能够被识别。

TOFD检测的一个弱点是检测面和底面附近存在盲区,为了确保声束覆盖检测区域,必须在确定检测工艺时考虑这一因素。

探头选择和探头配置很大程度上决定着TOFD检测技术的整体精度、信噪比和覆盖区域。

进行仪器设置是为了确保足够的系统增益和信噪比,以便发现所关注的衍射信号,确保分辨力可接受、声束能够覆盖所关注的区域以及系统动态范围的有效使用。

TOFD检测过程和现场评审中有以下几点需要重点关注:一、检测区域覆盖根据任务要求的检测区域和检测级别,首先通过选择探头角度、测定探头前沿及声束扩散角来确定探头组合和间距,并根据厚度决定是否需要分区检测。

然后进行上下面盲区的确认,以决定是否需要补充超声横波检测,或偏置非平行扫查。

二、数据采样间距进行TOFD扫查时,沿扫查方向的数据采样间距在各标准中有明确规定。

三、仪器设置和验证1.灵敏度:TOFD检测不是基于幅度对缺陷进行当量评定的检测技术,TOFD检测灵敏度的设置方式也与常规超声不同,不是以人工缺陷的幅度作为基准。

灵敏度的设置只是为了保证信号幅度在一定范围内,并具有较高的信噪比。

通常要求直通波高度为满刻度的40%~90%,或在底波80%的基础上再增益20~32dB,或噪声在满刻度的5%~10%。

有时标准会要求在试块上验证探头指定区域缺陷的检出性。

2.深度校准:TOFD检测中,探头接收的信号到达时间与反射体的深度并不是线性关系,反射体的深度是在假定信号位于两探头中心的正下方的情况下,依据已知的声速和信号与直通波的时间差由软件自动计算得到的。

TOFD检测

TOFD检测

TOFD定义Time Of Flight Diffraction(TOFD)超声波衍射时差法,是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。

TOFD技术的来源TOFD技术的英文全称是Time of Flight Diffraction Technique,中文译名为衍射时差法超声检测技术。

TOFD技术于20世纪70年代由英国哈威尔的国家无损检测中心silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。

在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。

TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。

详细情况在下一部分内容进行讲解。

TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。

而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。

直到20世纪90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。

但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。

TOFD技术的物理原理衍射现象是TOFD技术采用的基本物理原理。

衍射现象的解释:波遇到障碍物或小孔后通过散射继续传播的现象,根据惠更斯原理,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。

TOFD工作原理TOFD技术采用一发一收两个宽带窄脉冲探头进行检测,探头相对于焊缝中心线对称布置。

发射探头产生非聚焦纵波波束以一定角度入射到被检工件中,其中部分波束沿近表面传播被接收探头接收,部分波束经底面反射后被探头接收。

接收探头通过接收缺陷尖端的衍射信号及其时差来确定缺陷的位置和自身高度。

超声波衍射时差(TOFD)技术 ppt课件

超声波衍射时差(TOFD)技术  ppt课件

ppt课件 4
TOFD技术概念


TOFD技术,即Time of flight diffraction technique,超声波衍射 时差检测技术. 概念:
超声波衍射时差法,是采用一发一收两只探头,利用 缺陷端点处的衍射信号探测和测定缺陷尺寸的一 种自动超声检测方法.

发展条件: 因其原理与传统检测方式有很多不同,弥补了传统方法 的不足之处.
ppt课件 17
复合压电晶片
优点: 1.横向振动很弱,串扰声压小 2.机械品质因子Q值低 3.带宽大(80~100%) 4.机电耦合系数值大 5.灵敏度高,信噪比优于普通PZT探头 6.在较大温度范围内特性稳定 7.可加工形状复杂的探头 8.易与声阻抗不同的材料匹配 9.可通过陶瓷体积率的变化,调节超声波灵敏度
发射探头
接收探头
+ _
+ _
根据理论和实验证明,如果两个衍射信号的相位相反,则在两个信号间一定存在一 个连续不间断的缺陷。因此识别相位变化对于评定缺陷尺寸非常重要。利用上、下 端点的时间差来计算缺陷深度和自身高度是TOFD探伤最重要的部分
*注在一些特殊情况下,例如气孔,小夹渣之类的缺陷
ppt课件 由于几何尺寸太小不会产生两个分离的端点信号 24
实际上: 绝对深度的最大误差低于壁厚8 %. 内部(小)缺陷的高度估计误差是可以忽略的 。
ppt课件
30
平行扫查
平行扫查时,扩散声 束作用于缺陷时的衍 射信号传播时间较长 ,而当缺陷位于主声 束中心时即当探头相 对于缺陷处于对称位 置时,传播时间最短 。因此会形成一个抛 物线,抛物线的顶点 处所计算的深度为缺 陷实际深度
ppt课件 18
多点声源同时激发,产生大扩散声束,由于声束是 由多个声源在不同位置相互干涉和叠加形成,因此 主声束与扩散声束之间的能量差异不像单晶片探头 那么明显,从而达到大范围的扫查。

TOFD(衍射时差法)的原理及应用[1]

TOFD(衍射时差法)的原理及应用[1]

一TOFD原理超声TOFD(Time of Flight Diffraction Technique –衍射时差法)技术就是用两个探头相向对置,一发一收,利用缺陷端部产生的散射波和衍射波,来检测出缺陷和评定缺陷的方法。

下图即表示TOFD法的探伤原理、探伤波形的模式图。

(a)TOFD原理图(b)波形图图(a)中,①为发射探头发射横向纵波沿试件表面传播的正向侧向波(Lateral wave),它是区分和测量缺陷的参考。

④为底面负向反射波(Back-wall reflection),当有裂纹缺陷存在时,在①④间会接收到缺陷上端的负向衍射波②(Upper Crack Tip Signal)和缺陷下端的正向衍射波③(Lower Crack TipSignal )。

这里只考虑纵波声速V ,忽略缺陷处的波形变换产生的横波等。

说明:TOFD 技术采用一发一收的方式,通常使用高阻压、窄脉冲压力探头,主压力波的反射角范围是45º至70º。

假定两探头间的距离为S ,试件的厚度为H ,裂纹在试件厚度方向的高度为L ,裂纹上端距离试件表面的埋藏深度为D ,沿试件表面传播的侧向波的接收时间为t L , 接收到缺陷上端的负向衍射波的时间为t 1,接收到缺陷下端的正向衍射波的时间为t 2,接收到底面负向反射波的时间为t BW 。

试件的纵波声速为V 。

则:CS t L = CS D t 2214+= CS L D t 222)(4++= CS H t BW224+= 根据以上各个时间可以求出: 裂纹上端距离试件表面的埋藏深度 222121S C t D -=裂纹在试件厚度方向的高度 D S C t L --=222221二 TOFD 应用超声TOFD 法之所以引人注目,是由于此法对缺陷检测、定位、定量较一般的波幅法容易、直观,且有客观记录。

这对在役设备检测中的缺陷评价特别有价值。

如果结合常规的缺陷测长方法,就可掌握缺陷二维形状,就可利用断裂力学对被检测设备进行寿命评价。

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表)1.超声衍射时差(TOFD)技术介绍“TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。

极大地提高了缺陷检出率。

TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。

此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。

上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。

UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术- 1 -(TimeofFlightDiffraction,简称TOFD)。

后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。

后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。

90年代,该项技术开始应用与石油化工管线的检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TOFD 扫查图
TOFD 图显 示出直通波 和内壁回波 加上 波型转 换信号以及 缺陷反射信 号
Source: Ginzel
TOFD 扫查图
在一幅好的 TOFD图 图 上可以清晰地看到直 通波。 通波。 一般用于校 准。 如果待检表面比较干 净,则缺陷信号比较 明显。 明显。
校准
PCS t0 T PCS(探头入射点间 ( 距离) 壁厚, 速度, 距离), 壁厚 速度 探头延时, 探头延时 横向波或 内壁反射信号 t0 A扫 扫
直通波
内壁反射信号被隔开了 LW
尖端信号
没有内壁 反射波
水平方向的平面形缺陷
(层间未熔 冷夹层 层间未熔, 冷夹层) 层间未熔
发射探头
接收探头
直通波
反射信号
内壁反射波 LW BW
反射回波
数据显示
波幅 + 白色
时间
-
黑色
时间 A扫图用带黑度的线表示 扫图用带黑度的线表示
数据显示
LW A扫 扫
D扫 扫
TOFD 方法简介
什么是 TOFD?
衍射时差法 (TOFD)是一种依靠从待检试 件内部结构(主要是指缺陷)的“端角 ” 和“端点”处得到的衍射能量来检测 缺陷的方法。
衍射时差技术
衍射现象 TOFD原理 实际操作 校准 TOFD优点和局限性
衍射现象
入射波 衍射波
裂纹 折射波
衍射波
衍射现象
惠更斯原理:
一些典型缺陷
向外表面延伸的缺陷 向内表面延伸的缺陷 水平方向的平面形缺陷
info@ info@ •
向外表面延伸的裂纹
发射探头 接收探头
直通波被隔开了
内壁反射波 BW
没有直通波 裂纹尖端
向内表面延伸的裂纹
发射探头 接收探头
入射波使缺陷产生振动。
缺陷上的每一个点都 产生出一个球面子波 。
衍射现象
入射波 衍射波
向各个方向传播 裂纹 折射波 能量低 取决于入射角 衍射波
TOFD的基本原理 的基本原理
info@ info@ •
TOFD: 典型的设置
BW
内壁 上表面
校准工具
PCS t0 T t0 A扫 扫
c
LW
BW
PCS(探头入射点间 ( 距离) 壁厚, 速度, 距离), 壁厚 速度 探头延时, 探头延时 横向波或 内壁反射信号
不需要知道所有的参数 D-scan
测量工具
A扫 扫 d1 h d1 t1 t2
指针 内置的计算器 l t1,t2 ⇒自动计算d1, d2 和 h P D扫 扫
1
1 2 3 4
2 3 4
能够清晰的看到上下尖端信号
气孔
1
2 1
3
2
气孔信号或单个出现,或成串的出现
横向裂纹
1 1 2
1 2 3
2 3
4
3
能够看到裂纹的宽波束信号
根部内凹
1
1
2
2 3
3
内壁反射信号发生扭曲
层间未熔合
1 2 3
二、TOFD在压力容器制造过程中现场应用
3、现场缺陷数据分析
裂纹1 (08R018 TK101A F6 7.14m) TOFD数据分析结果:H=28.1mm ⊿H=9.8mm 位置= 174.1mm L = 323.2mm(焊缝位置偏心)
应用 TOFD 技术检测到的缺陷信号
1 2
近表面裂纹
1 2
裂纹上尖端信号将直通波信号打断
info@ •
X形坡口中部未焊透 形坡口中部未焊透
2 3 4
1
1
2
3
4
上下尖端都有明显的信号
根部未焊透
1
1 2 3
2 3
直通波的相位与缺陷相位相同
侧壁未熔合
二、TOFD在压力容器制造过程中现场应用
3、现场缺陷数据分析 裂纹2(08R063 R713 A10 0.3 H=29 L=40 III级 UT H=28 L=35 SL+13dB III级
二、TOFD在压力容器制造过程中现场应用 3、现场缺陷数据分析 裂纹2(08R063 R713 A10 0.3 H=29 L=40 III级 UT H=28 L=35 SL+13dB III级
缺陷位置的影响
S
发射探头
S
接收探头
t0 d
t0
x
缺陷位置的不确切性
S
发射探头
S
接收探头
t1 相等时间的轨迹 (t1+t2=ct)
dmin dmax t2
实际上: 实际上 绝对深度的最大误差低于10 绝对深度的最大误差低于 %.
横向扫查
当探头相对于 缺陷对称时时 间最短 。
直通波
上表面
内壁 B扫 扫 这种扫查会产生典型的 反向抛物线
二、TOFD在压力容器制造过程中现场应用
3、现场缺陷数据分析 裂纹3(08R018 D203 F2 11.350
c
LW
BW
典型的多通道UT仪器用户界 典型的多通道 仪器用户界 还有软件向导。 面友好 ,还有软件向导。
D扫 扫
TOFD的优点 的优点
对于焊缝中部缺陷检出率很高 容易检出方向性不好的缺陷 可以识别向表面延伸的缺陷 通过时间检测缺陷的信号 和脉冲反射法相结合时效果更好
TOFD 的局限性
在外表面附近有约3mm的盲区 内表面附近也可能存在盲区 对“噪声”敏感 夸大了一些良性的缺陷, 如气孔, 未熔合。 , ,
S
接收探头
t0 d
t0
t=
2•
(S
2
+d
2
c
) + 2•t
0
缺陷深度
S
发射探头
S
接收探头
t0 d
t0
c 2 2 d = • (t − 2t0 ) − S 2
2
缺陷自身高度
2S
发射探头 接收探头
d1 d2
h = d 2 − d1
由于计算自身高度只需要测量时间, 所以高度估计会很准确。 实际操作中, 由于计算自身高度只需要测量时间 所以高度估计会很准确。 实际操作中,检 检测人工缺陷时可以达到0.1 测裂纹 1-mm 的精度是完全可以达到的 (检测人工缺陷时可以达到 mm )。 检测人工缺陷时可以达到 。
发射探头 直通波
接收探头
上端点 下端点
内壁反射信号
A扫信号 扫信号
发射探头 接收探头
直通波
内壁反射波 LW BW
上端点
下端点
相位变化
直通波
内壁反射波
Hale Waihona Puke +LW -
+ -
BW
上端点 下端点 需要不检波的A扫来显示相位的变化
传播时间
S
发射探头
S
接收探头
t0 d
t0
始脉冲 LW BW
t
传播时间
S
发射探头
相关文档
最新文档