人工智能第二章知识表示方法x
人工智能第二章知识表示方法

框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法
目
CONTENCT
录
• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。
人工智能 第2章 知识表示

2.1.1 知识的概念
按知识的作用范围划分
➢ 常识性知识 ➢ 领域性知识
按知识的确定性划分
➢ 确定知识 ➢ 不确定知识
按知识的作用及表示来划分
➢ 事实性知识 ➢ 规则性知识 ➢ 控制性知识 ➢ 元知识
按人类的思维及认识方法划分
➢ 逻辑性知识 ➢ 形象性知识
2.1.2 知识表示的概念
知识表示就是研究用机器表述上述知识的可行性、有效性的一 般方法,可以看成将知识符号化,即编码成某种数据结构,并输 入到计算机的过程和方法,即:
规则库: 用于描述相应领域内知识的产生式集合。
2. 综合数据库
综合数据库(事实库、上下文、黑板等):用于存放输 入的事实、从外部数据库输入的事实以及中间结果(事 实)和最后结果的工作区。
2.3.2 产生式系统的基本结构
3. 推理机
推理机:用来控制和协调规则库与综合数据库的 运行,包含了推理方式和控制策略。
一阶谓词逻辑表示法的缺点:
效率低
由于推理是根据形式逻辑进行的,把推理演算和知识含义截然分开, 抛弃了表达内容所含的语义信息,往往是推理过程太冗长,降低系统 效率。另外,谓词表示越细,表示越清楚,推理越慢、效率越低。
灵活性差
不便于表达和加入启发性知识和元知识。不便于表达不确定性的指示, 但人类的知识大都具有不确定性和模糊性,这使得它表示知识的范围 受到了限制。
R10:IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎
R11: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿
R12:IF 该动物有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马
人工智能知识表示方法

2023/11/26
产生式系统旳构成
控制系统或策略是规则旳 解释程序。它要求了怎样 选择一条可应用旳规则对 数据库进行操作即决定了 问题旳推理路线。
综合 数据库
产生式系统 旳基本要素
产生式系统所使用旳主要数 据构造,用来表述问题状态 或有关事实,即它具有所求 问题旳信息,期中有些部分 能够是不变旳,有些部分可 能只与目前问题旳节有关。
例1
张三是学生,李四也是学生。
第一步
定义谓词如下: ISStudent(x):x是一种学生 张三是个体 李四也是个体
第二步
将个体代入谓词中,得到 ISStudent(张三), ISStudent(李四)
第三步
根据语义,用逻辑连接符连接 ISStudent(张三) ∧ISStudent(李四)
2023/11/26
F
F
F
T
F
F
F
T
T
F
T
T
F
F
F
T
F
F
T
T
2023/11/ 2023/11/26
谓词
• 一阶谓词逻辑根据对象和对象上旳谓词(即 对象旳属性和对象之间旳关系),经过使用 联结词和量词来表达世界。
• 主要思想:世界是由对象构成旳,能够由 标识符和属性来区别它们。在这些/26
知识表达旳分类
•陈说性知识表达:将知识表达与知识旳利用分开处理,在表达知识时,并不
涉及怎样利用知识旳问题,是一种静态旳描述措施。如学生统计表。
•过程性知识表达:将知识表达与知识旳利用相结合,知识包括于程序中,是
一种动态旳描述措施。如转置矩阵旳程序隐含了专职矩阵旳知识。
选用知识表达旳原因
人工智能第二章知识表示方法

2019/4/16
2.3.3产生式系统的组成
一组产生式在一起互相配合,协同作用,一个产 生式生成的结论可以作为另一个产生式的前提, 以获得问题的解决,这样的系统为产生式系统。 产生式系统通常由规则库、数据库和推理机这3个 基本部分组成。 推理机 数据库
产生式系统的基本结构
2019/4/16
2019/4/16
产生式系统求解问题的一般步骤
(1)初始化综合数据库,把问题的初始已知事实送入综合数据库中。 (2)若规则库中存在尚未使用过的规则,而且它的前提可与综合数据库中 的已知事实匹配,则继续;若不存在这样的事实,则转第(5)步。 (3)执行当前选中的规则,并对该规则做上标记,把该规则执行后得到的 结论送入综合数据库中。若该规则的结论部分指出的是某些操作,则执行这 些操作。 (4)检查综合数据库中是否已包含了问题的解,若已包含,则终止问题的 求解过程;否则,转第(2)步。 (5)要求用户提供进一步的关于问题的已知事实,若能提供,则转第(2) 步;否则,终止问题求解过程。 (6)若规则中不再有未使用过的规则,则终止问题的求解过程。
确定性规则知识 可用前面介绍的产生式的基本形式表示即可。 不确定性规则知识 用如下形式表示 P→Q (可信度) 或者 IF P THEN Q (可信度) 其中,P是产生式的前提或条件,用于指出该产生式是否是 可用的条件;Q是一组结论或动作,用于指出该产生式的前提 条件P被满足时,应该得出的结论或应该执行的操作。
框架表示法
2019/4/16
2.4.1 框架的构成
一般 结构
<框架名> <槽名1> <侧面11> <值111>…<值11k1> <侧面1n1> <值1n11>…<值1n1kn1> <槽名2> <侧面12> <值121>…<值1211> <侧面1n2> <值1n21>…<值1n21n2> …
人工智能PPT

显式表示:各节点及其具有代价的弧线由一张表明确
给出。此表可能列出该图中的每一节点、它的后继节点 以及连接弧线的代价。
问题:对于大型图和具有无限节点集合的图不适用。
28
2.2状态空间法
图论的基本概念
隐式表示:起始节点的无限集合{si}和后继节点算符Γ是
已知的。算符Γ能作用于任一节点以产生该节点的全部后 继节点和各连接弧线的代价。1 节点扩展:将后继算符Γ应用于节点的过程,就是扩 展一个节点的过程。 问题求解:搜索某个状态空间以求得算符序列的一个 解答的过程,就对应于使隐式图足够大一部分变为显 示以便包含目标节点的过程。 优化:问题的表示对求解工作量有很大的影响。优化 的问题表示使状态空间小而简单,从而便于求解。 – 许多似乎很难的问题,当表示适当时就可能具有 小而简单的状态空间。 29
9
2.1.3 知识的表示
知识表示就是研究用机器表示上述这些知识的
可行性、有效性的一般方法,可以看作是将知 识符号化并输入到计算机的过程和方法。 知识表示=数据结构+处理机制 知识表示的观点:
陈述性 过程性
10
2.1.3 知识的表示
陈述性知识表示和过程性知识表示各有优缺点
① 由于高级的智能行为似乎强烈地依赖于陈述性知识,因
15
2.1.4智能中“信息-知识-策略”关系
获取信息的功能由感觉器官完成,传递信息的功能 由神经系统完成,处理信息和再生信息的功能由思 维器官完成,施用信息的功能由效应器官完成。
目标 信息 传递信息 处理信息 知识 再生信息 智能 策略 信息 智能行为 问题与环境 施用信息 传递信息 智能 策略 信息
17
2.1.6 知识的分类
人工智能_第2章 知识表示方法

14
标准槽名
6) Infer槽:指出两个框架所描述的事物间的逻辑推理关系, 用它可以表示相应的产生式规则。 【例】设有下面知识:如果咳嗽,发烧且流涕,则八成是患 了感冒,需服用感冒清,一日三次,每次2-3粒。并要多喝开 水。对该知识 ,可用如下两个框架表示: 框架名:<诊断规则> 框架名:<结论> 病名:感冒 症状1:咳嗽 治疗方法:服用感冒清,一日三 症状2:发烧 次,每次2-3粒 症状3:流涕 注意事项 :多喝开水 Infer: <结论> 愈后:良好 可信度:0.8 7) Possible-Reason槽:与Infer槽作用相反,用来把某个结论 与可能的原因联系起来。 15
12
标准槽名
2) AKO槽:用于具体的指出事物间的类属关系。其直观含义 是“是一种”,下层框架可以继承其上层框架所描述的属性及值。 对上面的例子,可将棋手框架中的ISA改为AKO。 3)Subclass槽:用于指出子类与类之间的类属关系。 上例中,由于“棋手”是“运动员的一个子类,故可将ISA该为 Subclass。 4) Instance槽:用来建立AKO槽的逆关系。 用它作为某框架的槽时,可用来指出它的下层框架是哪些。 【例】框架名:<运动员> Instance:<棋手>,<足球运动员>,<排球运动员> 姓名:单位(姓,名) 年龄:单位(岁) 性别:范围(男,女) 缺省:男
18
剧本表示-例
【例】餐厅剧本 (1) 开场条件: (a)顾客饿了,需要进餐。(b)顾客有足够的钱。 (2) 角色:顾客,服务员,厨师,老板。 (3) 道具:食品,桌子,菜单,钱。 (4) 场景: 场景1 进入餐厅 (a) 顾客走入餐厅。(b) 寻找桌子。 (c) 在桌子旁坐下。 场景2 点菜 (a) 服务员给顾客菜单。(b) 顾客点菜。 (c) 顾客把菜单还给服务员。(d) 顾客等待服务员送菜。 场景3 等待 (a) 服务员把顾客所点的菜告诉厨师。(b) 厨师做菜。
【2024版】人工智能及其应用蔡自兴)课后答案

可编辑修改精选全文完整版人工智能及其应用(蔡自兴)课后答案第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。
一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。
问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。
问题规约的实质:从目标出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。
谓词逻辑法:采用谓词合式公式和一阶谓词算法。
要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。
语义网络法:是一种结构化表示方法,它节点和弧线或链组成。
节点用于表示物体、概念和状态,弧线用于表示节点间的关系。
语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。
语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?用Si(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。
考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况: 1. nC=0 2. nC=33. nC=nY>=0 (当nC不等于0或3)用di(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。
人工智能2第二章知识表示方法

2.状态空间表示详释
我们先用数码难题(puzzle problem)来 说明状态空间表示的概念。由15个编有1至 15并放在4×4方格棋盘上的可走动的棋子 组成。
11 9 4 15
13
12
7586
13 2 10 14
初试棋局
1 2 34 5 6 78 9 10 11 12 13 14 15
目标棋局
是有关知识的知识,是知识库中的高层知识。 包括怎样使用规则、解释规则、校验规则、解释 程序结构等知识。元知识与控制知识是有重迭的, 对一个大的程序来说,以元知识或说元规则形式 体现控制知识更为方便,因为元知识存于知识库 中,而控制知识常与程序结合在一起出现,从而 不容易修改。
知识表示是研究用机器表示知识的可行
题
求解过程实际上是一个搜索过程。
那么如果进行搜索呢?为了进行搜索,就必须
用某种形式把问题表示出来,其表示是否适当,将
直接影响到搜索效率。
状态空间法就是用来表示问题及其搜索过程的 一种方法。它是人工智能中最基本的形式化方法, 用“状态”和“算符”来表示问题。
状态空间法三要素
(1) 状态(state):表示问题解法中每一步问题状 况的数据结构;
·显式表示:各节点及其具有代价的弧线由 一张 表明确给出。此表可能列出该图中的每 一节点、它的后继节点以及连接弧线的代价。
Q [q0,q1,...qn ]T
式中每个元素qi(i=0,1,…,n)为集合的量,称 为状态变量。
·算符:使问题从一种状态变化为另一种状态的手 段称为操作符或算符。操作符可为走步、过程、规 则、数学算子、运算符号或逻辑符号等。
· 问题的状态空间(state space):是一个表示该问题 全部可能状态及其关系的图,它包含三种说明的 集合,即所有可能的问题初始状态集合S、操作符 集合F以及目标状态集合G。可把状态空间记为三 元状态(S,F,G)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能第二章知识表示方法
2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?
答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。
一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。
问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。
问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。
谓词逻辑法:采用谓词合式公式和一阶谓词算法。
要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。
语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。
节点用于表示物体、概念和状态,弧线用于表示节点间的关系。
语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。
语义网络可用于表示多元关系,扩展后可以表示更复杂的问题
2-2 利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。
选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。
7
10
9
10
D
图2.3
2-3 试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。
用四元数列(nA, nB, nC, nD) 来表示状态,其中nA表示A盘落在第nA号柱子上,nB表示B 盘落在第nB号柱子上,nC表示C盘落在第nC号柱子上,nD表示D盘落在第nD号柱子上。
初始状态为1111,目标状态为3333
/
/
如图所示,按从上往下的顺序,依次处理每一个叶结点,搬动圆盘,问题得解。
2-4 把下列句子变换成子句形式:
(1) (x(y(On(x,y)→Above(x,y))
(2) (x(y(z(Above(x,y)∧Above(y,z)→Above(x,z))
(1) (ANY x) (ANY y) { On(x,y)(Above(x,y) }
(ANY x) (ANY y) { ~On(x,y) OR Above(x,y) } ~On(x,y) OR Above(x,y)
最后子句为
~On(x,y) OR Above(x,y)
(2) (ANY x) (ANY y) (ANY z) { Above(x,y) AND Above(y,z) ( Above(x,z) }
(命题联结词之优先级如下:否定→合取→析取→蕴涵→等价)
(ANY x) (ANY y) (ANY z) { ~ [ Above(x,y) AND Above(y,z) ] OR Above (x,z) } ~ [ Above(x,y) AND
Above(y,z) ] OR Above (x,z)
最后子句为
~[Above(x,y), Above(y,z)] OR Above(x,z)
2-5 用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。
例如不要用单一的谓词字母来表示每个句子。
)
A computer system is intelligent if it can perform a task which, if performed by a human, requires intelligence.
先定义基本的谓词
INTLT(x) means x is intelligent PERFORM(x,y) means x can perform y REQUIRE(x) means x requires intelligence CMP(x) means x is a computer system HMN(x) means x is a human
上面的句子可以表达为(任意x)
{ (存在t) (存在y) [ HMN(y) 合取PERFORM(y,t) 合取REQUIRE(t) 合取CMP(x) 合取PERFORM(x,t) ] ( INTLT(x) }
2-8 把下列语句表示成语义网络描述:(1) All man are mortal.
(2) Every cloud has a silver lining.
(1)
(2)
(3)
/
第7/9页。