活性稀释剂
环氧树脂用稀释剂总结

环氧树脂用稀释剂总结环氧稀释剂稀释剂主要用来降低环氧胶粘剂体系的黏度,溶解、分散和稀释涂料,改善胶液的涂布性和流动性。
稀释剂也起到延长使用寿命的作稀释剂的分类方法很多,按其使用机理,可分为非活性稀释剂与活性稀释剂两大类。
非活性稀释剂不与环氧树脂、固化剂等起反应,纯属物理地掺混到树脂中。
它与树脂仅是机械的混合,起稀释和降低黏度作用的液体。
它在胶液的固化过程中大部分是挥发掉的。
当使用要求较高时不能使用非活性稀释剂,应选用活性稀释剂非活性稀释剂多为高沸点液体,如邻苯二甲酸二丁酯、苯二甲酸二辛酯、苯乙烯、苯二甲酸二烯丙酯、甲苯、二甲苯等。
用量以5%~20%为宜。
12%左右的邻苯二甲酸二丁酯使标准环氧树脂的黏度从10Pa·s 降到0.5~0.7Pa·s(25℃).活性稀释剂一般是指带有一个或两个以上环氧基的低分子化合物,它们可以直接参与环氧树脂的固化反应,成为环氧树脂固化物交联网络结构的一部分,对固化产物的性能几乎无影响,有时还能增加固化体系的韧性。
活性稀释剂又分为单环氧基活性稀释剂和多环氧基活性稀释剂两种。
某些单环氧基稀释剂,如丙烯基缩水甘油醚、丁基缩水甘油醚和苯基缩水甘油醚,对于胺类固化剂反应。
无溶剂环氧涂料中,单官能活性稀释剂用量不超过环氧树脂的15%,多宫能活性稀释剂用量可达到20%~25%。
活性稀释剂一般有毒,在使用过程中必须注意,长期接触往往会引起皮肤过敏,严重的甚至于会发生溃烂。
单环氧化物的稀释效果比较好,脂肪族型的比芳香族型有更好的稀释效果。
使用芳香族型活性稀释剂的固化产物耐酸碱性变化不大,但耐溶剂性却有所下降。
单环氧化物活性稀释剂的使用会使热变形温度降低,这是由于它的使用会使固化物的交联密度下降的缘故。
长碳链的活性稀释剂使用后可使抗弯强度、冲击韧度得以提高。
用量不多时对固化产物的硬度无影响,而热膨胀系数则增加。
稀释剂的选用原则1) 尽量选用活性稀释剂,以利于在改进工艺性的同时,提高其粘接、机械‘性能。
活性稀释剂对环氧树脂结构和性能的影响

活性稀释剂对环氧树脂结构和性能的影响李山剑;邓双辉;冯云龙;刘超凡;刘坐镇【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2016(036)006【摘要】选用3种具有不同分子结构和官能度的缩水甘油醚——1,4-丁二醇二缩水甘油醚(BDDGE)、苯基缩水甘油醚(PGE)和癸基缩水甘油醚(DGE)作为活性稀释剂,通过黏度、DSC、热重分析和万能实验机等方法考察了其对双酚A环氧-胺固化体系的反应活性、交联网络结构和性能的影响.结果表明:芳香类稀释剂的加入,对环氧-胺固化体系的反应活性影响不大甚至有所提升,且固化物的强度和模量提高,韧性降低;而脂肪族稀释剂则明显降低了固化体系的反应活性,随着脂肪链长度的增加,固化物的强度和模量下降,韧性提高;3种稀释剂的加入均降低了环氧体系的耐热性能.【总页数】10页(P604-613)【作者】李山剑;邓双辉;冯云龙;刘超凡;刘坐镇【作者单位】华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237;华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237【正文语种】中文【中图分类】O631【相关文献】1.活性稀释剂对环氧树脂涂层的性能影响 [J], 王伟;王鹏;张鹏;张茂伟;刘连河2.几种活性稀释剂对BPA型环氧树脂/IPDA体系性能的影响 [J], 张黎芳;李穆3.活性稀释剂对环氧树脂固化物力学性能的影响 [J], 崔宏生;吴有智;孟军虎4.活性稀释剂对环氧树脂快速修复材料性能的影响 [J], 靳昊;姚嘉;易忠来;李化建;黄发礼;梁雪江5.非活性稀释剂对常温固化环氧树脂性能的影响 [J], 贾彩霞;梁禄忠;王乾;曾文;康红伟因版权原因,仅展示原文概要,查看原文内容请购买。
活性稀释剂种类对环氧树脂体系性能的影响研究

2 1 第 6期 0 1年
玻 璃 钢 /复 合 材 料
日 吾 晶0 ∞ ^ o 【
7
耐 电 弧参 照 G 1 1—9 8采 用 桂 林 市 漓 源 电子 仪 B 4 117
测试 。
图 2为 稀 释 剂 添加 量对 浇 铸 体 拉 伸 强度 的影
湖 进 枷 由图可 以看 器 有 限公 司生 产 的 N HU 2型 耐 电 弧 测 试 伽 行 渤 , 瑚 瑚 出三 种 稀 释 剂 的加 入 都 会 降低 树 脂 D - 仪 响
收稿 日期 :2 1 411 0 13—4 作者简介 :孙琴 (9 6 ) 18 . ,女 ,硕士研究生 ,主要从 事聚合物基复合材料 的研究 。 通讯联系人 : 蔡浩鹏 (9 9) 男 ,副教授 ,主要从事聚合物基复合材料的研究 。 17 一 ,
一
F / C醯 2
0 :
b6 l
2 46三 ( 甲胺 基 甲基 ) 酚 ( M -0 : 苏 , ,一 二 苯 D P3 ) 江 江 阴化工 厂 , 学纯 ; 化 丁基 缩水甘 油醚 (6 ) 巴陵石 化 有 限 公 司 , 60 : 环
型旋转粘度计进行测试; 树脂浇铸体力学性能分别 按照 G / 2 6 — 9 、 虽 1 5 019 B T 5 81 5 G I 2 7 . 5及 G / 5 1 9 / 9 B T27. 19 采用深圳瑞格尔仪器有限公司产万能试验机进 95
行测试 ; 电常数 和介 质 损耗 按 照 G 10 -8采用 介 B 4 97 Q G3型 高频 Q表 进 行 测 试 , 试 频 率 为 1。 ; B- 测 OHz
氧值为 06 粘度 约为 2 P ・ (5 , ., r a s 2 ℃) 化学纯 。结 n
EPOTEC活性稀释剂

单官能脂肪族活性稀释剂
EPOTEC 型号 RD108 化学名称 C12-C14 缩水甘油醚 CAS No. 68609-97-2 化学结构
骏桥贸易(深圳)有限公司
产品特性 低气味,稀释性好,流动性好,
RD109
C12-C13 缩水甘油醚
120547-52-6
低气味,稀释性好,流动性好,
epotec环氧活性稀释剂骏桥贸易深圳有限公司单官能脂肪族活性稀释剂epotec型号化学名称cas化学结构产品特性rd108c12c14缩水甘油醚68609972低气味稀释性好流动性好rd109c12c13缩水甘油醚120547526低气味稀释性好流动性好rd110异辛基缩水甘油醚2461156低气味最强稀释性流动性好rd118c8c10缩水甘油醚68609961低气味稀释性好流动性好二官能脂肪族活性稀释剂epotec型号化学名称cas化学结构产品特性rd103lesp14丁二醇二缩水甘油2425798柔韧性耐化学性好rd10716己二醇二缩水甘油16096314柔韧性耐化学性好epotec环氧活性稀释剂骏桥贸易深圳有限公司rd114le新戊二醇二缩水甘油17557232柔韧性耐化学性好rd119leheed聚丙二醇二缩水甘油9072622柔韧性好高延展耐冲击水性适用rd121二丙二醇二缩水甘油41638135柔韧性好高延展耐冲击rd130sp乙二醇二缩水甘油醚2224159低气味耐水好溶于水可与羧基交联可用于碳纤玻纤rd133二聚酸二缩水甘油酯68475945柔韧性好增韧好耐热好高拉单官能芳香族活性稀释剂epotec型号化学名称cas化学结构产品特性rd104苯酚缩水甘油醚122601稀释性好相容性好epotec环氧活性稀释剂骏桥贸易深圳有限公司rd105邻甲酚缩水甘油醚2210799保持物性耐化学性好耐热好较低卤素rd106对叔丁基苯酚缩水甘3101608低挥发性低气味良好的电气性能较低卤素rd136苯甲醇缩水甘油醚2930054高稀释性低毒性耐热好rd138壬基酚缩水甘油醚147094540保持物性耐热好二官能芳香族活性稀释剂epotec型号化学名称cas化学结构产品特性rd137间苯二酚二缩水甘油101906快速固化高交联密度耐热好耐化学性好特别适用于酚醛环氧三官能脂肪族活性稀释剂epotec型号化学名称cas化学结构产品特性epotec环氧活性稀释剂骏桥贸易深圳有限公司rd113ssp三羟甲基丙烷三缩水甘油醚30499708高交联密度耐化学性好tg影rd124h蓖麻油三缩水甘油醚74398713低气味柔韧性好耐冲击高强二官能脂环族活性稀释剂epotec型号化学名称cas化学结构产品特性rd11114环己烷二甲醇二缩水甘油醚14228730柔韧性好耐冲击耐黄变多官能脂肪族活性稀释剂epotec型号化学名称
环氧树脂的稀释剂与增韧剂

环氧化聚丁二烯树脂
CH2 CH CH CH2 CH2 CH CH CH2 CH2 CH CH2 CH CH2 CH
OH C O OH
O
CH
CH
CH
O
O
CH2
CH2
CH2
γ-丁内酯 稀释效果非常好,一般加量10phr,能使E型环氧的粘度从 15mPa·s降到2.0~2.5mPa·s,能与胺类固化剂反应形成带羟基的 酰胺,然后通过形成的羟基与树脂反应进行交联。
常用非活性稀释剂品种
大多为高沸点溶剂和PVC用增塑剂。 如:丙酮、甲苯、苯乙烯、邻苯二甲酸 二丁酯(或二辛酯),邻苯二甲酸酯 类还有增韧作用。 加量:5~15phr;
O
CH3
n
O
聚丙二醇缩水甘油醚,牌号:EPG-207 粘度:40~100mPa·s,环氧值:0.31
其它品种
OP
3
+ R OH
OP OR +与EP中的羟基反应,生成酯和苯酚。 苯酚不仅可以单独固化EP,也可作为促进剂。
CH2 CH2
O+
CH2 CO
R NH2
O HO CH2 CH2 CH2 C NH R
常用活性稀释剂品种
CH2 CH CH2 O CH2 CH2 O CH2 CH CH2
O
O
乙二醇二缩水甘油醚,牌号:669或512 粘度:15~35mPa·s,环氧值:0.75
CH2 CH CH2 O O
C4H9
丁基缩水甘油醚,牌号:660或501 粘度:< 2mPa·s,环氧值:> 0.5
CH2 CH CH2 O CH CH2 O CH2 CH CH2
邻苯二甲酸酯类或磷酸酯类物质。 如:邻苯二甲酸二甲酯(二乙酯、二 丁酯、二辛酯等); 磷酸三乙酯(三丁酯、三苯酯等) 加量:5~20phr; 存在问题:不参与反应,时间久了会 游离出来,造成制品容易老化。
环氧树脂活性稀释剂

地址:江苏省常熟市东南开发区富春江路 邮编:215533 电话:(0512)52521273 52523014 52300080 52300170 传真:(0512)52526901一、简介环氧树脂活性稀释剂具有色泽浅、粘度低等特点,与各种环氧树脂具有良好的相容性。
在环氧树脂配方中使用本产品,可显著降低配方粘度,改善其加工工艺性。
本产品含有活泼的环氧基可参与固化反应,无挥发物产生,有效地改善了操作环境与制品性能,除起到稀释作用外还可使固化产物柔韧性增加。
主要性能与用途:降低粘度,改善颜料/填充料湿润性,改善应用特性。
单环氧稀释剂稀释能力强,双环氧最终性能保持好,挥发性低。
适用于地坪、无溶剂涂料、层压、胶黏剂、氯化石蜡稳定剂等。
类别 牌号化学结构环氧值mol/100g 有机氯mol/100g 密度g/cm 3粘度 mpa.s25℃ 水份含 量%≤ 色度 加氏 本企业相当于 国内外 单环氧活性稀释剂 JX-011 692苄基缩水甘油醚 0.35-0.45 ≤0.01 1.10 5-10 0.1 ≤1 JX-012 TOHTOPP-101 叔丁基酚缩水甘油醚0.35-0.45 ≤0.01 1.05 10-30 0.1 ≤2 JX-013 Dow BGE 丁基缩水甘油醚 0.55-0.65 ≤0.01 0.87 2-3 0.1 ≤1 JX-014Epodil 7462-乙基己基缩水甘油醚0.40-0.45 ≤0.02 0.91 5-10 0.1 ≤1 JX-014N 正辛醇缩水甘油醚 0.42-0.45 ≤0.02 0.91 5-10 0.1 ≤1 JX-015Epodil 748 C12-14醇缩水甘油醚0.30-0.35 ≤0.02 0.89 10-20 0.1 ≤1 JX-016PGE 苯基缩水甘油醚 0.55-0.65 ≤0.01 1.06 10-20 0.1 ≤2 JX-017 CGE 邻甲酚缩水甘油醚 0.50-0.52 ≤0.01 1.08 10-20 0.1 ≤2 JX-017H邻甲酚缩水甘油醚 0.55-0.58 ≤0.01 1.08 10-20 0.1 ≤1 双环氧活性稀释剂JX-021 669 乙二醇缩水甘油醚 0.70-0.80 ≤0.01 1.08 15-30 0.3 ≤1 JX-022 Epodil 749 新戊二醇缩水甘油醚0.60-0.70 ≤0.01 1.04 15-30 0.2 ≤1 JX-023 664 二乙二醇缩水甘油醚0.60-0.70 ≤0.01 1.10 20-40 0.4 ≤1 JX-024 Epodil 750 丁二醇缩水甘油醚 0.65-0.75 ≤0.01 1.11 15-25 0.1 ≤1 JX-025 ED-503己二醇缩水甘油醚 0.62-0.67 ≤0.01 1.08 15-30 0.1 ≤1 JX-031 662 Epon812 丙三醇缩水甘油醚 0.65-0.72 ≤0.03 1.20 100-200 0.5 ≤2 JX-032ACRTD-5050三羟甲基丙烷缩水甘油醚0.65-0.75 ≤0.021.18100-2000.2≤1环氧树脂活性稀释剂地址:江苏省常熟市东南开发区富春江路 邮编:215533 电话:(0512)52521273 52523014 52300080 52300170 传真:(0512)52526901 三、活性稀释剂能力在标准液体环氧(E-51粘度11000-14000mpa.s25℃)中加入稀释剂的百分比和粘度的关系 牌号稀释粘度mpa.sJX- 011 JX- 012 JX- 013 JX- 014 JX- 015 JX- 016 JX- 017 JX- 021 JX- 022 JX- 023 JX- 024 JX- 025 JX- 031 JX- 032 5000 3.1 8.02.33.0 5.06.57.06.27.08.07.07.8 18 19 2000 6.5 14.0 5.6 6.39.0 12.8 13.1 12.2 13.0 15.1 13.314 41 42 1000 11 21.0 9.3 10.0 13.0 18.3 19.0 18.5 20.5 21.2 19.3 21 82 85 5001631.5 13.7 15.0 18.0 26.8 28.5 27.23132.1 28.029150155四、包装 运输 储存25kg 聚乙烯塑料桶或200kg 铁通包装,每件净重JX-013、JX-014、JX-015分别为20、180kg 。
活性稀释剂对环氧树脂结构和性能的影响

活性稀释剂对环氧树脂结构和性能的影响李山剑;邓双辉;冯云龙;刘超凡;刘坐镇【摘要】选用3种具有不同分子结构和官能度的缩水甘油醚——1,4-丁二醇二缩水甘油醚(BDDGE)、苯基缩水甘油醚(PGE)和癸基缩水甘油醚(DGE)作为活性稀释剂,通过黏度、DSC、热重分析和万能实验机等方法考察了其对双酚A环氧-胺固化体系的反应活性、交联网络结构和性能的影响.结果表明:芳香类稀释剂的加入,对环氧-胺固化体系的反应活性影响不大甚至有所提升,且固化物的强度和模量提高,韧性降低;而脂肪族稀释剂则明显降低了固化体系的反应活性,随着脂肪链长度的增加,固化物的强度和模量下降,韧性提高;3种稀释剂的加入均降低了环氧体系的耐热性能.【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2016(036)006【总页数】10页(P604-613)【关键词】环氧树脂;活性稀释剂;反应活性;交联结构;性能【作者】李山剑;邓双辉;冯云龙;刘超凡;刘坐镇【作者单位】华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237;华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海200237;华东理工大学华昌聚合物有限公司,上海防腐蚀新材料工程技术研究中心,上海200237【正文语种】中文【中图分类】O631环氧树脂(EP)具有优良的机械性能、黏结性能、电气性能和耐腐蚀性能,且有收缩率低、成本低廉等特点,已广泛应用于胶黏剂、建筑、汽车、航空航天、涂料、电子产品以及先进复合材料基体等领域[1].由于环氧树脂在常温下黏度较大,难以满足复合材料先进成型工艺(如真空灌注、拉挤、缠绕等)对胶液流动性和渗透性的要求,通常需要加入稀释剂来降低树脂体系的黏度,改进工艺性能.环氧树脂稀释剂有非活性和活性两大类.非活性稀释剂仅起到降低体系黏度的作用,不参与固化反应,挥发污染环境,对树脂性能也有不利影响;活性稀释剂不但可降低体系黏度,而且因其可参与环氧树脂的固化反应,成为交联网络结构的一部分,因而可对环氧树脂进行改性,具有更大的实用价值[2-4].活性稀释剂种类繁多,按环氧基官能度不同,可分为单环氧基、双环氧基和三环氧基活性稀释剂;按分子结构不同,可分为脂肪族、芳香族和脂环族活性稀释剂等.不同种类的活性稀释剂因其分子结构和反应官能度的不同,会对环氧体系的工艺性能和固化物性能产生较大的影响[5-8].本文选用3种具有不同分子结构和官能度的缩水甘油醚类活性稀释剂,系统地考察和分析了其对环氧树脂-胺类固化体系的反应活性、交联网络结构、耐热性及力学性能的影响,从而为配方设计和实际应用中对活性稀释剂的筛选提供技术参考. 环氧树脂:双酚A型环氧树脂(EP):工业级,环氧值0.52~0.56,25 ℃时黏度5 000~10 000 mPa·s,台湾南亚集团股份有限公司.胺类固化剂:异佛尔酮二胺(IPDA):工业级,23 ℃时黏度19~20 mPa·s,德国巴斯夫有限公司;聚醚胺D230:工业级,25 ℃时黏度9 mPa·s,美国亨斯迈有限公司;活性稀释剂:1,4-丁二醇二缩水甘油醚(BDDGE),环氧值0.74~0.82,25 ℃黏度10~20 mPa·s;苯基缩水甘油醚(PGE),环氧值0.54~0.59,25 ℃黏度2~10 mPa·s;癸基缩水甘油醚(DGE),环氧值0.36~0.40,25 ℃时黏度2~8 mP a·s,工业级,安徽新远科技有限公司.环氧树脂和各活性稀释剂的分子结构式见表1所示.根据环氧基与活泼氢等物质的量反应计算树脂与固化剂理论用量比例,设计配方如表2.按照表2配方称取不同类型的稀释剂与EP、复配固化剂IPDA/D230搅拌混合均匀,真空脱泡15 min,再将树脂浇注到涂有脱模剂并经过预热的模具中,按80 ℃时固化8 h.待树脂自然冷却后制备标准试样.参照GB/T 2794—2013,采用美国Brookfield公司Brookfield DV-Ⅱ+型旋转黏度计测试树脂在25 ℃下的黏度.使用美国TA公司Q20型差示扫描量热仪(DSC),以10 ℃/min的升温速率进行DSC扫描测试,测试气氛为氮气,试样用量5~10 mg.采用美国Brookfield公司BrookfieldDV-Ⅱ+PRO型旋转黏度仪测试,每隔10 min系统自动读取树脂40 ℃的黏度值.采用平板小刀法测定.加热平板,使其稳定在规定温度点,取1 g树脂置于平板上,开始计时,用小刀拉动树脂,直到树脂拉不出丝时为终点,从开始计时到终点的时间差为凝胶时间.采用美国热电公司Nicolet IS5型傅里叶外红光谱仪,溴化钾压片法.参照GB2576—2005,将固化后的树脂锉成粉末,采用索氏萃取装置进行测试.采用美国PerkinElmer公司Pyris Diamond型原位热重/差热综合热分析仪测试,升温速率10 ℃/min,空气气氛,升温范围:室温~873 K.采用美国TA公司Q800型动态热机械仪,按三点弯曲模式测试,样条尺寸60 mm×12 mm×3 mm,升温速率5 ℃/min,测试温度25~160 ℃.参照ASTM D7028,采用DMA法测定,将储能模量外推至起始温度定义为玻璃化转变温度.按GB/T2567—2008,采用美国INSTRON有限公司3382型电子材料万能试验机测试,拉伸样条为哑铃型:标距50 mm,宽10 mm,厚4 mm,拉伸速率2 mm/min;弯曲样条长80 mm,宽15 mm,厚4 mm;冲击强度测试采用美国MTS工业系统公司ZBC7251-B型摆锤式冲击试验机,样条为无缺口矩形,80 mm×10 mm×4 mm,跨距60 mm.首先考察活性稀释剂的加入对环氧树脂黏度的影响,各体系的黏度随稀释剂加入量的变化曲线如图1所示.由图可见,这3种活性稀释剂的加入对环氧树脂的黏度变化趋势是一致的,即一开始,稀释剂的加入使环氧体系的黏度快速下降,当添加的稀释剂质量分数由10%增加到20%时,树脂体系的黏度下降趋势变缓,而添加的稀释剂质量分数超过20%,其用量对体系的黏度降低作用不再明显.因此,在以后的研究中,选择稀释剂的用量为质量分数20%,以保证体系良好的工艺性.从图中还可以看到,同样的添加量下,稀释剂降低体系黏度效果的顺序是DGE>PGE>BDDGE,这是因为3种稀释剂中,DGE的黏度最低,PGE居中,BDDGE的黏度最高,稀释剂的黏度越低,其稀释效果越好.利用非等温DSC,在10 ℃/min升温速率下测得各树脂体系反应物转化率α对温度的关系曲线如图2所示.转化率α由公式给出,此处dQ/dt是固化放热量对时间的微分,Qt是样品固化全过程的放热量,可通过DSC放热峰面积的积分得到.从图2可以看到,达到同一转化率下,体系C所需温度最低,体系B次之,而体系D所需温度最高,即各体系反应活性大小趋势为:EP+PGE-IPDA/D230>EP+BDDGE-IPDA/D230>EP+DGE-IPDA/D230.为了解释活性的不同,用纯稀释剂与理论用量的复合胺固化剂反应,得到纯稀释剂-复合胺固化体系的反应转化率α对温度的关系曲线,如图3所示.从图3可以看到,达到同一转化率下,PGE-复合胺体系所需温度最低,BDDGE-复合胺体系次之,而DGE-复合胺体系所需温度最高,即活性稀释剂与复合胺固化剂反应的活性大小顺序为:PGE>BDDGE>DGE.分析原因如下:环氧基与胺类固化剂的反应,是由固化剂分子中的活泼氢进攻环氧基的碳原子而发生的亲核开环加成反应[9],在固化剂相同的情况下,稀释剂的反应活性取决于其化学结构,与环氧基相连接基团的电负性对环氧基的开环反应活性有很大影响,稀释剂PGE分子链中与环氧基相邻的是吸电子基苯环,能通过π电子的诱导效应使环氧基中C原子的电子云密度降低而具有较强的正电性,更容易与胺类亲核试剂发生反应,故此体系的固化反应活性相对较大.反之,BDDGE和DGE中与环氧基相连的是具有推电子能力的烷基,使环氧基中C原子的电子云密度增高而与亲核试剂的反应活性降低,而DGE中烷基碳链最长,推电子能力最强,故与含活泼氢化合物的反应活性最低.因此,在胺类固化剂相同的条件下,活性稀释剂固化反应的活性大小顺序是PGE>BDDGE>DGE.活性稀释剂加入到环氧树脂中后,必然会影响树脂体系的固化反应活性,添加不同种类稀释剂体系的固化反应活性大小趋势为EP+PGE-IPDA/D230>EP+BDDGE-IPDA/D230>EP+DGE-IPDA/D230.含不同稀释剂的环氧树脂固化体系40 ℃下黏度随时间的变化趋势如图4所示.由图4可知,3种稀释剂的黏度-时间曲线呈现相同的变化趋势,即加入稀释剂后,一开始对体系粘度增加影响较小,经一定时间后体系黏度逐渐增大,随后黏度急剧增大.这是因为在40 ℃下,体系在缓慢进行固化反应,一开始,反应程度很低,树脂的分子量不大,因而黏度只是缓慢增加,没有明显变化;随着固化反应的进行,树脂的分子量增大,逐渐发生交联,因而黏度也逐渐增大;固化反应进行到一定程度,体系的交联度增大,导致黏度急剧增加.由图还可看出,体系B和体系D保持低黏度的时间较长,体系C和体系A保持低黏度的时间较短,且两条曲线几乎重合.原因在于环氧树脂在进行固化反应时,反应活性受热力学(化学活性)与动力学(分子运动难易)的双重影响[10],加入稀释剂会降低体系粘度,分子扩散容易,有利于固化反应.对于稀释剂PGE,其环氧基开环反应活性与双酚A型环氧树脂接近[11],其环氧值也与主体树脂EP相同,因此在加入PGE后,固化体系反应活性基本不受影响,甚至有一定程度提高,所以含PGE环氧体系与未加稀释剂体系的增黏曲线相差不大.而在加入稀释剂BDDGE或DGE后,由于2种稀释剂相对于环氧树脂结构柔性更好,降低体系黏度能力更强,在固化反应开始阶段更容易分散固化所放出的热量,最终会导致固化速度变慢,黏度增长变慢[11].分别测试了4种体系在70、80和90 ℃下的凝胶时间,结果见表3.从表3可知,具有苯环结构的稀释剂PGE的加入对环氧-胺固化体系的凝胶时间并无影响,90 ℃下2种体系的凝胶时间均为17 min;含有双环氧官能团的脂肪族稀释剂BDDGE的加入,则在一定程度上延长了固化体系的凝胶时间,70 ℃下从纯树脂体系的36 min延长至47 min;而体系中引入单官能团的脂肪族稀释剂DGE,其70 ℃凝胶时间更是延长至59 min.凝胶时间与稀释剂的降黏度能力和反应活性有关,稀释剂的降黏能力越强,凝胶时间越长;反应活性越高,凝胶时间越短.稀释剂DGE的黏度最低,反应活性最小,因此凝胶时间最长;PGE的黏度虽然小于BDDGE,但其反应活性比BDDGE高,反应活性对凝胶时间的影响超过了黏度,导致PGE的凝胶时间小于BDDGE.实验中采用的固化制度是80 ℃时固化8 h,为确定在该固化制度下各体系的固化是否完全,对树脂的固化程度作了分析研究.树脂基体固化反应是放热反应,若树脂已充分固化,则固化后树脂的DSC谱中,固化反应放热峰应很小或消失.各固化后树脂的DSC分析谱图如图5所示.由图5可知,各体系固化物的放热极低,DSC曲线未出现固化反应放热峰,说明各树脂体系按照设定固化工艺已充分固化.随着固化反应的进行,体系中的环氧基数量应逐渐减少.各固化体系固化反应前后的红外图谱如图6所示.图6中a、c、e、g是固化前体系A、B、C和D的红外光谱,曲线b、d、f、h分别为这4种体系固化后的红外光谱.由图6可知,固化后,915 cm-1处环氧基团特征吸收峰消失,说明环氧基与胺类的开环加成反应基本完全;同时,3 423 cm-1处的羟基伸缩振动峰变宽,因为环氧基与胺类固化剂的活泼氢反应,生成了羟基,体系中氢键的缔合作用在增强,羟基含量有所增加. 对各固化体系分别用丙酮萃取法测定其固化度,结果见表4.从表4可以看出,按照80 ℃条件下固化8 h的固化制度,测得的各树脂体系固化度均达95%以上,说明反应基本完全,进一步证明所用固化工艺合理.对于EP-胺固化体系,因EP分子链中含有2个环氧基团,而本实验中所用胺类固化剂均含有4个活泼氢,故环氧基与活泼氢之间的开环加成反应得到如图7a所示的交联网络结构.当EP中加入稀释剂DGE或PGE,因这2种稀释剂都只含1个环氧基团,与胺类固化剂发生开环加成反应,其参与固化反应的网络结构如图7b所示,即单环氧基稀释剂的分子悬挂在网络上,成为交联网络结构中的可运动侧链.而对于添加活性稀释剂BDDGE的体系,BDDGE的2个环氧基开环反应后都直接连接在环氧树脂的交联网络结构中,如图7c所示,没有可自由运动的悬挂侧链.图8为不同固化体系在空气中的热失重分析.由图8可见,体系A、B、C、D的5%失重温度依次为331、321、296和304 ℃,说明小分子稀释剂加入后,固化物的热稳定性降低.这是因为稀释剂加入后,会降低固化体系的交联密度,使可运动链段增多[12].由图还能看出,4种体系都有2阶段分解过程,第1阶段的热分解主要是—OH、—CH2—、—CH3、C—O—C等键的断裂,随温度继续上升,除这些化学键进一步断裂外,苯环等刚性链段也断裂分解,直至质量完全损失[13].4种体系浇注体动态机械性能的损耗因子-温度谱如图9所示.体系A、B、C和D的玻璃化转变温度依次为108,94,89和83 ℃,即玻璃化转变温度的高低顺序为:EP-IPDA/D230>EP+BDDGE-IPDA/D230>EP+PGE-IPDA/D230>EP+DGE-IPDA/D230.如2.4所述,无稀释剂的EP-胺体系,交联后的网络结构如图7a所示,2个环氧基开环反应后两端均连接在交联网络上,网络结构紧密,自由体积小,且刚性苯环的密度较高,因而玻璃化温度最高.加入稀释剂BDDGE的体系,因BDDGE分子中含有2个环氧基,开环聚合后两端均连接在交联网络上,形成如图7c所示的结构,网络结构比较紧密,但网络中引入了柔性的脂肪链段和醚键,刚性苯环的密度下降,故其玻璃化温度低于EP-胺体系.而对于添加单环氧基稀释剂PGE和DGE体系,稀释剂分子中只含有1个环氧基,开环反应后稀释剂的分子链只是悬挂在交联网络上,形成如图7b所示的结构,悬挂在网络上的侧链有较大的运动自由度,故其玻璃化转变温度较双环氧基的BDDGE体系有所降低.另外,稀释剂DGE和PGE的分子结构不同,PGE分子链中含有刚性的苯环,一定程度上阻碍了聚合物分子链段的运动,而DGE的分子链是脂肪长链,侧链越长,柔性越大,因而DGE 体系的玻璃化转变温度低于PGE体系.4个体系环氧固化物的力学性能如表5所示.表5结果显示,纯树脂固化物的拉伸和弯曲强度分别为76.3 MPa和128 MPa,拉伸模量和弯曲模量分别为3.06 GPa 和3.16 GPa.添加稀释剂PGE后,浇注体的拉伸性能和弯曲性能有所提高,而添加稀释剂BDDGE或DGE后,拉伸性能和弯曲性能有所降低,且添加稀释剂DGE 体系的拉伸性能和弯曲性能降低最多.分析其原因:PGE分子结构中含有苯基,分子结构与EP最为接近,刚性较大,使得环氧树脂体系分子链间的相互作用增大,内聚强度增大,因而拉伸性能和弯曲性能最好,与EP-胺体系大体相当或有所提高;而对于加入稀释剂BDDGE和DGE的体系,由于2种稀释剂均为线型脂肪醚类化合物,柔性较大,因此加入后会使体系内聚强度下降,导致浇注体的拉伸性能和弯曲性能下降[14],但冲击性能却明显提高;而DGE分子的脂肪链更长,含有的醚键更多,分子柔性更大,且只含有1个环氧基,反应后柔性的脂肪长链悬挂在网络上,具有很大的活动性,因而加入稀释剂DGE的EP-胺体系,拉伸性能和弯曲性能最低,冲击强度最高.1)本文研究的3种稀释剂中,脂肪类单环氧稀释剂DGE稀释效果最好.2)苯基缩水甘油醚稀释剂PGE的加入能一定程度上提高环氧-胺固化体系的反应活性,而脂肪类缩水甘油醚BDDGE和DGE则会降低体系反应活性.3)稀释剂的加入降低了树脂固化物的热性能,双环氧稀释剂BDDGE对其影响较小,而另2种单环氧稀释剂影响较大.4)芳香族稀释剂PGE的加入对环氧-胺固化物的强度和模量影响不大,但韧性下降;脂肪族双环氧稀释剂BDDGE的加入则降低了固化物强度和模量,韧性提高;加入脂肪族单环氧稀释剂DGE的体系强度和模量最低,但韧性最好.。
紫外光固化胶的组成及应用

紫外光固化胶的组成及应用紫外光固化胶,又称UV胶是一种由光引发剂在紫外光下迅速固化,产生活性自由基或阳离子,导致不饱和单体聚合和交联反应的粘合剂。
它不仅可以在链的末端产生一个新的起始中心,而且在光消失后,还可以在固化和引发聚合后发生,使不易到达的部分凝固。
标签:UV固化粘合剂;组成;应用与以甲基丙烯酸甲酯为稀释剂制备的光敏胶粘剂相比,该胶粘剂具有更好的粘接强度和抗水性。
合成的透明UV固化胶具有良好的折射率、良好的粘接强度和耐候性。
同时还具有固化时收缩率低、固化后热膨胀系数低、玻璃化温度高的优点。
一、特点紫外光固化胶固化具有以下特点:(1)固化时间短,固化时间一般在1分钟内完成,有利于自动化生产、高效、高能量利用、低固化温度、室温固化;(2)绿色环保,采用低挥发性原料,不使用溶解剂,几乎完全固化;(3)光学性能好,耐候性好,无色黄色凝胶,透明度高,薄膜的性能优于热固化膜,硬度高,耐磨性好,阻燃性好。
由于这些独特的优点,固化胶得到了迅速的推广和广泛的应用。
二、紫外光固化胶的组成1.活性稀释剂。
活性稀释剂是指各种具有不饱和度或官能团的单体,能聚合参与光固化反应,并对光固化齐聚体起稀释、调节黏度的作用,有利于涂布ⅢJ。
活性稀释剂可发生光固化反应,故减少了UV胶有机物质的挥发,具有良好的环保性能。
活性稀释剂固化时具有收缩特性,很大程度上影响了UV胶的粘附力,且对皮肤有较大的刺激性。
故减少其用量,解决光固化树脂的黏度问题成为研究重点。
引用二羟甲基丙酸为活性稀释剂,合成了一定支化度的端羟基支化树脂;再用烯丙基醚马来酸酐部分改性后成为一种热固化型支化聚酯。
该合成物黏度低,减少了uV胶中活性稀释剂的用量,且其固化速率和固化膜的硬度随官能度的增加而提高,具有很好的性能。
用丙烯酸一2一乙基己酯和丙烯酸叔丁酯作为活性稀释剂,采用悬浮聚合法制得微球型PSA,制得的uV胶体积收缩率下降,但其粘接强度、剪切强度、剥离强度也受到影响。