高中数学思维导图+学霸秘笈-WPS Office
高中数学知识框架思维导图(2019.3.21整理,14页)

两个原理
分类加法计算原理和分步乘法计算原理 排列数:������������ ������ = ������(������ − 1) ⋯ (������ − ������ + 1) = (������−������)!
������!
计算原理
排列与组合
������! m 组合数:C n = ������!(������−������)!
高考数学知识框架思维导图(2019.3.21 整理,14 页)
陈永清
第一部分
集合、算法语言、简易逻辑、复数、推理与证明、排列组合
概念 性质 集合的分类 集合 集合的表示 集合间的关系
Hale Waihona Puke 元素与集合之间的关系:∈,∉ 确定性、互异性、无序性 有限集、无限集、空集() 列举法、描述法、图示法
求解(两个)集合中的参数值,注意检验: 1.是否违反互异性;2.是否违反其他条件 含有������个元素的集合������的子集个数是2������ , 真子 ������ ������ 集个数是2 − 1,非空子集个数为2 − 1, 非空真子集的个数是2������ − 2.(������,)
性质
C n =C n
m
m
n-m
Cn+1=C n +C
m
m-1 n
应用
捆绑法、插空法、优先法、隔板法、间接法、建模法、分类法、树状图
0 ������ ������ + ������ 1 ������ ������−1 ������ + ⋯ + ������ ������ ������ ������−������ ������ ������ + ⋯ + ������ ������−1 ������1 ������ ������−1 + ������ ������ ������ ������ (������∈N*). (������ + ������)������ = ������������ ������ ������ ������ ������
高中数学知识框架思维导图(整理版)

柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)
)
值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正
切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1
高中数学知识框架思维导图(整理版)

导数的概念
几何意义、物理意义
求导公式
① ′ = 0,②( )′ = −1 ,③(sin )′ = cos ,④(cos )′ = − sin ,
1
1
⑤( )′ = ,⑥( )′ = ln ,⑦(ln )′ = ,⑧(log )′ =
基本初等函数的导数
→
投影
|a|
→
→
a·b
设→
a 与→
b 夹角,则 cos=——
→ →
夹角公式
| a |·| b |
共线(平行)
→
a ∥→
b →
b =→
a x1y2-x2y1=0
垂直
→
a ⊥→
b →
a ·→
b =0 x1x2+y1y2=0
共线与垂直
⃗⃗⃗⃗⃗⃗ .
1.三角形中线的向量表示:∆中边的中点为 ⇔ ⃗⃗⃗⃗⃗⃗
垂线,它们围成的矩形
面积=|z|
1 : = 1 + 1 .
2 : = 2 + 2 .
A1A2+B1B2=0
平行:1 = 2 ,1 ≠ 2
垂直:1 ∙ 2 = −1
斜截式:y=kx+b
y-y1 x-x1
=
y2-y1 x2-x1
直线方程的形式
两点式:
2 −1
1 : 1 + 1 + 1 = 0.
函数图象
及其变换
对称变换: = () → = −(), = () → = (−), = () → = −(−)
翻折变换: = () → = |()|, = () → = (||)
伸缩变换: = () → = (), = () → = ()
高中数学最全的思维导图

高中数学最全的思维导图
中国教育在线· 2015-11-09 06:43温馨提示商务合作QQ:1927876294小编推荐两个优秀的微信公众号:美丽的旅游(ID:mldly520)中国养生在线(ID:zg-yszx)很多同学又到一轮复习了,不知道该怎么总结,教育君给大家提个建议,要想总结,主要还是首先梳理出脉络来,提到某个知识点,那么关于这个知识点相关的所有知识你都要弄明白,这样你就成功了一半!下面是8张思维导图,先研究下看看吧!请点击标题下面:“中国教育在线”关注规则(关注后输
入数字或者汉字)我们会把相关的内容发送给您!主要不要有空格或者错误【1.正能量教育】【2.德行教育】【4.教育思维】【6.名家教育】【7.故事育人】【8.名校教育】【9.贵族教育】【14.学习行为】【15.健康心理】【16.行为教育】【17.亲情教育】【19.教育技巧】【20.教育误区】【21.名师经验】【22.明
星分享】【23.母爱】【25.教育技巧2】【28.文化教育】【29.
教育思考】【31.智慧分享】【32.开心一刻】【33.古代教育】【34.感动瞬间】【38.英语指导】【39.名家教育2】【41.生活点滴】【50.课外读物】【51.学习思维】【52.孩子叛逆】【53.名家教育3】【54.感动美文】【55.性教育】【61.单亲家庭】......更多专题,请点击菜单栏,“教育导航”微信原文微信文章为作者
独立观点,不代表微头条立场。
(完整word版)高一数学思维导图

(完整word版)高一数学思维导图必修一集合与函数集合映射概念元素、集合之间的关系运算:交、并、补数轴、Venn图、函数图象性质确定性、互异性、无序性定义表示解析法列表法三要素图象法定义域对应关系值域性质奇偶性周期性对称性单调性定义域关于原点对称,在x=0处有定义的奇函数→f (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同;2、证明单调性:作差(商);3、复合函数的单调性最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数.幂函数对数函数三角函数基本初等函数抽象函数复合函数赋值法、典型的函数函数与方程二分法、图象法、二次及三次方程根的分布零点函数的应用建立函数模型使解析式有意义函数表示方法换元法求解析式分段函数注意应用函数的单调性求值域周期为T的奇函数→f (T)=f (T2)=f (0)=0复合函数的单调性:同增异减一次、二次函数、反比例函数指数函数图象、性质和应用平移变换对称变换翻折变换伸缩变换图象及其变换点与线空间点、线、面的位置关系点在直线上点在直线外点与面点在面内点在面外线与线共面直线异面直线相交平行没有公共点只有一个公共点线与面平行相交有公共点没有公共点直线在平面外直线在平面内面与面平行相交平行关系的相互转化垂直关系的相互转化线线平行线面平行面面平行线线垂直线面垂直面面垂直空间的角异面直线所成的角直线与平面所成的角二面角范围:(0?,90?] 范围:[0?,90?] 范围:[0?,180?]点到面的距离直线与平面的距离平行平面之间的距离相互之间的转化空间的距离空间几何体柱体棱柱圆柱正棱柱、长方体、正方体台体棱台圆台锥体棱锥圆锥球三棱锥、四面体、正四面体直观图侧面积、表面积三视图体积长对正高平齐宽相等倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:y-y1y2-y1=x-x1x2-x1截距式:xa+yb=1一般式:Ax+By+C=0注意各种形式的转化和运用范围.两直线的交点距离点到线的距离:d=| Ax0+By0+C | A2+B2,平行线间距离:d=| C1-C2 |A2+B2圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交<0,或d>r=0,或d=r>0,或d<r 截距注意:截距可正、可负,也可为0.必修三统计、概率、算法统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线概率概率的基本性质互斥事件对立事件古典概型几何概型P(A+B)=P(A)+P(B)P( A)=1-P(A)概括性、逻辑性、有穷性、不唯一性、普遍性顺序结构条件结构循环结构算法语言算法的特征程序框图基本算法语言算法案例辗转相除法、更相减损术、秦九韶算法、进位制必修四三角函数与平面向量角的概念任意角的三角函数的定义三角函数弧度制弧长公式、扇形面积公式三角函数线同角三角函数的关系诱导公式和角、差角公式二倍角公式公式的变形、逆用、“1”的替换化简、求值、证明(恒等变形)三角函数的图象定义域奇偶性单调性周期性最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线,对称中心是正余弦函数图象的零点,正切函数的对称中心为(k π2,0)(k ∈Z ).正弦函数y =sin x= 余弦函数y =cos x 正切函数y =tan x y =A sin(ωx +?)+b①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号);④最小正周期T =2π| ω |;⑤对称轴x =(2k +1)π-2?2ω,对称中心为(k π-?ω,b )(k ∈Z ). 平面向量概念线性运算基本定理加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直值域图象a →∥b →?b →=λa → ? x 1y 2-x 2y 1=0a →⊥b →?b →·a →=0 ? x 1x 2+y 1y 2=0投影b →在a →方向上的投影为|b →|cos θ=a →·b→——|a →|设a →与b →夹角θ,则cos θ=a →·b →——|a →|·|b →|对称性|a →|=(x 2-x 1)2+(y 2-y 1)2夹角公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学思维导图+学霸秘笈
面对繁重高中学习压力,许多的初中的尖子无法适应高中节奏,导致成绩直线下滑,尤其是数学学科。
然而,没有谁的好成绩是理所应当,你必须非常努力才能看起来毫不费力。
但是,大部分人的努力仅仅是一种“伪勤奋”,依然掩盖不了战略上的“懒惰”。
只有掌握正确的方法,学习才能事半功倍!
01
影响数学成绩的原因及解决方法
面对众多初中学习的成功者沦为高中学习的失败者,造成成绩滑坡的主要原因有以下几个方面。
1.被动学习
许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。
表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
没有真正理解所学内容。
2.学不得法
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。
而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。
也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3.不重视基础
一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。
到正规作业或考试中不是演算出错就是中途“卡壳”。
4.数学思维还停留在初中的状态
高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。
高中数学很多地方难度大、方法新、分析能力要求高,需要有变化的思维。
如开学以来所学的二次函数的最值问题,含有参数的一些问题等。
因此高中的数学更需要我们的思维活动要“活”,要“多角度”考虑,要能“概括”、能“类比”、能“联想”、能“抽象”,等等。
5.死记硬背,不能迁移知识
高中的数学语言与初中有着显著的区别,初中的数学主要是以形象、通俗的语言方式进行表达;而高一数学一下子就触及抽象的集合符号语言、函数语言、图形语言等,一些概念难以理解,觉得离生活很远,似乎很“玄”。
高一数学是高中学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高中数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的学习方法,付出的努力一定会有回报。
高中数学思维方法与初中阶段大不相同。
初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。
因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。
而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。
高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,练习的消化课时相应地减少了。
这也使很多学习被动的、依赖心理重的高一新生感到不适应。
因此,要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,加强知识的迁移。
对一道题,要尽可能多想解法,多开动“脑筋”,使思维“活”起来。
对一些相近的题,要善于总结,形成“一法多题”。
02
科学的学习方法
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。
一、培养良好的学习习惯
良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1) 制定计划明确学习目的。
合理的学习计划是推动我们主动学习和克服困难的内在动力。
计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2) 课前预习是取得较好学习效果的基础。
课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。
预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3) 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。
上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4) 及时复习是提高效率学习的重要一环。
通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5) 独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。
这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6) 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。
解决疑难一定要有锲而不舍的精神。
做错的作业再做一遍。
对错误的地方没弄清楚要反复思考。
实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7) 系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。
小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。
经常进行多层次小结,能对所学知识由“活”到“悟”。
(8) 课外学习包括阅读课外书籍与报刊,课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
二、循序渐进,防止急躁
由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。
学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
学习上要学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折。
学习是一项循序渐进,长期积累的过程,要有恒心、决心,有一颗拼搏的心,要防止急躁心里,这样才能取得最后的成功。
三、研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。
它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。
学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。
方法因人而异,但学习的五个环节:预习、上课、复习、作业、总结是少不了的。
四、多交流,多反思解疑,化解分化点
高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。
对易分
化的地方要采用多次反复解疑,认真反思,总结规律,多阅读参考书等方法,多和同学交流,多向老师请教,多开展变式练习,化解分化点,以达到灵活掌握知识、运用知识的目的。
只要学习科学得法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聪明”,多交流,多反思,养成良好的学习习惯,就能顺利度过高中数学学习适应期,就能在今后的数学成绩突飞猛进。
03
高中数学思维导图汇编。