分析影响隧道围岩稳定性因素
地下工程围岩稳定性分析

2.松动山岩压力的确定方法
(1)普氏压力拱理论。M.M.普罗托季亚科诺 夫根据对一些矿山坑道的观察和松散介质的模型试 验于1907年提出了平衡拱理论。普氏认为,由于断 层、节理的切割,使洞室围岩成为类似松散介质的 散粒体。由于洞室开挖应力重分布,使洞顶破碎岩 体逐渐坍塌,最后塌落成一个拱形才稳定下来。所 以普氏认为,洞顶的山岩压力就是拱形塌落体的重 量。这个拱称为塌落拱、平衡拱或压力拱。 (2)围岩压力系数法。(简介) (3)块体极限平衡法。(简介)
层状结构围岩变形破坏特征
4.碎裂岩体的松动解脱 碎裂结构岩体在张力和振动力作用下容易松 动、解脱,在洞顶则产生崩落,在边墙上则表现 为滑塌或碎块的坍塌。
5.松软岩体 一般强烈风化、强烈构造破碎或新近堆积的 土体,在重力、围岩应力和地下水作用下常产生 冒落及塑性变形。常见的塑性变形和破坏的形式 有边墙挤入、底鼓及洞径收缩等。
楔 缝 式 及 楔 头 式 锚 杆
胀 壳 式 及 砂 浆 粘 结 式 预 应 力 锚 杆
2.锚杆的作用
锚杆有楔缝式金属锚杆、钢丝绳砂浆锚杆、 普通砂浆金属锚杆、预应力锚杆及木锚杆等。目 前在大中型工程中,常用的是楔缝式金属锚杆和 砂浆金属锚杆两种。锚杆的作用可概括为下述三 个方面。 (1)悬吊作用。 (2)组合作用。对于层状岩层,锚杆可以将数层 薄的岩层组合联成整体,类似锚钉加固的组合梁, 提高了岩层整体的抗震、抗剪、抗弯能力。 (3)加固作用。 为了防止锚杆之间岩块的坍落,可采用喷层和 钢丝网来配合。
1.坚硬完整岩体的脆性破裂 在坚硬完整的岩体中开挖地下洞室,围岩一 般是稳定的。但是在高地应力地区,经常产生岩 爆现象。岩爆是储存有很大弹性应变能的岩体, 在开挖卸荷后,能量突然释放所形成的,它与岩 石性质、地应力积聚水平及洞室断面形状等因素 有关。
隧道围岩块体稳定性分析及支护对策

在块 体理论 的基 础 上开 发 的三 维 块体 分 析 软 件 , 该 程 序具有 操作 简便 、 功能齐全、 互 动性 好 等 特 点 , 目前 已 被众 多学 者接 受 和使 用 。 。U n w e d g e程 序研 究 的块
体 由 3组 结 构 面 和 隧 道 轮 廓 面 ( 临空面 ) 切割而成 。
岩体 作 为 一 种 非 均 质 介 质 , 其 间夹 杂 着 断 层 、 节 理、 破 碎带 、 软 弱夹 层 等结 构 面 , 这 些 结 构 面将 岩体 切 割成 形状 各异 、 大 小 不 均 的块 体 。 隧道 开 挖 打 破 了块
体 在 自然 状 态 下 的 稳 定 平 衡 , 进 而 引 起 隧 道 围 岩 的
1 块 体 理 论 及 Un w e d g e程 序
1 . 1 块 体 理 论 块 体 理 论 目前 已 广 泛 应 用 于 隧 道 、 地下 空间 、 边 坡
等 岩土工 程 中 。块 体 理 论认 为 , 岩体 由被 结 构 面 切割
该程 序假 定结构 面 为平 面 且 可 贯 穿 整个 研 究 岩 体 ; 只
众 多学者 研究 并发 展 了块体 理 论 , 并 将 其 应 用 于工 程
实践 一 。 本文 对 块 体 理 论 和 U n w e d g e程 序 的原 理 作 简 要 介绍 , 并将 其应 用 于莲 花 山 2号 隧道 围岩 稳 定 性分 析
关 键块 体产 生移 动后 , 可能 导致 其余块 体 的松 动 ,
6 3
1 ) 重 力 W
滑 动 方 向 为
摘 要 隧道 围岩 中的节 理和 断层将 岩体 切割 成块 体 , 人 工 开挖打 破 了块 体 的 自然 平衡 状 态 。这 些 不
隧道工程习题解析

《隧道工程》试题一、叙述地下结构与地面结构的主要区别。
二、什么是隧道围岩的稳定性?它所涉及的内容可概括为哪些方面?三、一个具备中型施工机具的工程队,在Ⅳ级围岩中施工,请确定施工方法,绘出横断面施工分块图,并说明其优缺点。
四、分析某一隧道特殊地质地段的塌方原因,提出处理方法?五、围岩压力与洞室大小是否有关?试从统计法、普氏法和泰沙基法这三种计算围岩压力的方法中说明围岩压力与洞室大小的关系。
一、叙述地下结构与地面结构的主要区别。
1.赋存环境不同;2.物理力学参数;3.受力条件的不同;4.地下工程支护结构安全与否,既要考虑到支护结构能否承载,又要考虑围岩会不会失稳;5.地下工程中作用在支护结构上的荷载受到施工方法和施工时间的影响。
二、什么是隧道围岩的稳定性?它所涉及的内容可概括为哪些方面?围岩稳定性:隧道开挖后,围岩自身在不支护条件下的稳定程度。
围岩的稳定性直接影响到支护结构的设计与施工,影响到工程造价。
影响围岩稳定性的主要因素:(1)地质因素:地质的好坏程度(2)人为因素:工程活动所造成的人为因素:①隧道尺寸和横断面形状,②支护结构的性质:弱、强,③开挖方法三、一个具备中型施工机具的工程队,在Ⅳ级围岩中施工,请确定施工方法,绘出横断面施工分块图,并说明其优缺点。
本隧道要求采用新奥法施工方法。
优点:有足够的作业空间和较快施工速度,利于开挖面的稳定。
可缩短支护结构闭合的时间,改善初期支护的受力条件,有利于控制隧道收敛速度和量值缺点:上下部作业会互相干扰,增加了对围岩的扰动次数。
上台阶出碴时对下半断面施工的干扰较大,不能全部平行作业。
四、分析某一隧道特殊地质地段的塌方原因,提出处理方法?隧道坍方的处理措施(1)小坍方坍穴不高,且众向延伸不长,首先加固坍体两端洞身,并抓紧混凝土或采用锚喷联合支护封闭坍穴顶部和侧部,在进行清砟。
(2)大坍方坍穴高、坍砟体完全堵住洞身时,宜采取先护后挖的方法。
(3)坍方冒顶在清砟前应先支护陷缺口,地层极差时,在在洞穴附近地面布置地表锚杆对地层予以加固,洞内坍体可采用管棚等方法穿越。
基于FLAC3D模拟不同倾角断层下隧道围岩稳定性分析

基于FLAC 3D模拟不同倾角断层下隧道围岩稳定性分析摘要:本研究以狮子洋隧道为例,采用FLAC 3D软件模拟四个不同倾角的断层,探讨各倾角断层下隧道开挖前后围岩应力和应变变化。
结果显示,断层破碎带的初始地应力分布不均匀,尤其在破碎带处波动明显。
当开挖至破碎带,围岩应力降低迅速,隧道变形增大。
同时,断层倾角减小时,隧道开挖影响范围扩大,破碎带隧道位移更大更集中,围岩应力分布更不均匀。
主要表现为围岩应力在断层处下降幅度加大,隧道应力集中区域应力更密集更高。
关键词:有限差分法;数值模拟;断层落差Stability analysis of tunnel surrounding rock under different drop faults based on FLAC 3D simulationZhang YangTian1Abstract: This study takes the Shiziyang Tunnel as an example and uses the FLAC 3D software to simulate four different dip angles of faults, exploring the changes in stress and strain of surrounding rock before and after tunnel excavation under each dip angle fault. The results show that the initial stress distribution of the faulted zone is uneven, especially with significant fluctuations in the fractured zone. When excavating to the fractured zone, the surrounding rock stress decreases rapidly, and tunnel deformation increases. At the same time, when the fault dip angle decreases, the range of tunnel excavation influence expands, and the displacement of the fractured zone tunnel is larger and more concentrated, and the stressdistribution of surrounding rock is more uneven. This is mainly manifested by the greater decrease in rock stress at the faultlocation and a more concentrated and higher stress region in the tunnel's stress concentration area.Keywords: finite difference method; Numerical simulation; Fault drop随着中国的加速发展,基础设施的建设也成为中国迫切需要解决的问题,其中地质隧道和地下工程的复杂性成为中国隧道工程发展中遇到的最大问题。
隧道围岩分级

隧道围岩分级一、隧道围岩分级指标围岩分级的指标,主要考虑影响围岩稳定性的因素或其组合,大体有以下几种。
1.单一的岩性指标单一的岩性指标一般有岩石的抗压和抗拉强度、弹性模量等物理力学参数,以及岩石的抗钻性、抗爆性等工程指标。
在一些特定的分级中(如确定钻眼功效、炸药消耗量等)或土石方工程中划分岩石的软硬、开挖的难易,均可采用岩石的单一岩性指标进行分级。
一般采用岩石的饱和单轴极限抗压强度作为基本的分级指标,它具有试验简单、数据可靠的优点。
但单一岩性指标只能表达岩体特征的一个方面,用作分级的唯一指标是不合适的,如老黄土地层,在无水的条件下,其强度虽然低,但稳定性却很高。
2.单一的综合岩性指标单一的综合岩性指标是指以单一的指标反映岩体的综合因素。
这些指标包括以下几种。
(1)岩体的弹性波传播速度。
弹性波传播速度与岩体的强度和完整性呈正比,是反映岩石的力学性质和岩体的软硬、破碎程度的综合因素。
(2)岩石质量指标。
岩石质量指标(rock quality designation,RQD),是综合反映岩体强度和岩体破碎程度的指标。
所谓岩石质量指标,是指钻探时岩心复原率,或称为岩芯采取率。
钻探时岩芯的采取率、岩芯的平均和最大长度受到岩体原始的裂隙、硬度、均质性的影响,岩体质量主要取决于岩芯采取长度小于10 cm以下的细小岩块所占的比例。
因此,岩芯采取率是以单位长度钻孔中10 cm以上的岩芯所占比例来判断的。
(3)围岩的自稳时间。
围岩的自稳时间也被认为是综合岩性指标。
隧道开挖后,围岩通常都有一段暂时稳定的时间,地质环境不同,自稳时间是不同的。
3.复合指标复合指标是一种用两个或两个以上的岩性指标或综合岩性指标表示的复合性指标。
复合指标考虑多种因素的影响,用于判断隧道围岩的稳定性是比较合理可靠的。
可以根据工程对象的要求选择不同的指标。
但是,复合指标的定量数值一般是通过试验、现场实测或凭经验确定的,带有较大的主观性。
通过以上分析,对隧道围岩的分级,首先应考虑选择对围岩稳定性有重大影响的主要因素,如岩石强度、岩体的完整性、地下水、地应力、结构面产状,以及它们的组合关系作为分级指标;其次选择测试设备比较简单、人为因素影响小、科学性较强的定量指标;最后考虑分级指标要有一定的综合性,如选择复合指标等。
关于隧道围岩的分级

关于隧道围岩的分级最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。
《公路隧道设计规范JTGD70-2004》《公路工程地质勘察规范JTJ064-98》《岩土工程勘察规范GB50021-2001》《水工隧洞设计规范》(SL279-2002)《工程岩体分级标准》(GB50218-94)《铁路隧道设计规范》(TB10003-2005)《地铁设计规范》(GB50157-2003)《锚杆喷射混凝土支护技术规范》(50086-2001)《公路隧道施工技术规范》(JTJF60-2009)《工程岩体分级标准》(GB50218-94)名词解释:围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称)在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。
岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。
轻微的岩爆仅剥落岩片,无弹射现象。
严重的可测到4.6级的震级,一般持续几天或几个月。
发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。
这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。
预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。
在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》,GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。
断层破碎带隧道围岩稳定性分析
碎 带施 工过 程进 行现 场监 控量 测 , 得到 了隧道洞 周 的变形 规律 , 推 导 了围岩 的弹性 、 弹塑性 二 次 、 三次
应 力状 态及 位移 状态 , 得 到 了径 向应力 与 切 向应 力 随 距洞 周距 离增 加 的 变 化 规律 . 孙星亮 、 侯 永会
1 围岩 稳 定 性 影 响 因素 分 析
第2 O卷
第 4期
兰 州 工业 学 院 学 报
J o u na r l o f L a n z h o u I n s t i t u t e o f T e c h n o l o g y
V0 1 . 2 0 No . 4
2 0 1 3年 8月
A u g . 2 0 1 3
.
断层 破碎 带 围岩 自稳 时 间短 , 经 常 出现坍 塌 、 冒
顶 等事 故 ] . 因此 , 断 层 破 碎带 隧道 开 挖 过 程 中的 围岩稳定 性 具有 重 要 的 理论 研 究 意 义 和 技 术 支 持 价值 , 是 岩土 工程 学科 的研 究重 点 和难 点之 一 . 目前 国 内外 很 多 学 者 都开 展 了针 对 由工 程 地
道 施 工过程 实施 了监 控 , 并采 用 回 归分析 的方 法预 测 了该 隧道 两 个 断 面的 最终 沉 降. 以该 隧道 为
原型, 基 于有 限元原理与岩体的弹塑性本构关 系, 采用A D I N A软件 , 建立 了有限元模 型并进行 了
隧道 开挖过 程 的模拟 计 算并预 测 了最终沉 降. 模 拟 计 算 结果 表 明 : 隧道 开挖 过程 中最 大 垂 直位 移
始终位 于拱 顸 , 上 台阶 左侧及 上 台阶 右侧 土体 开挖后 , 拱 顶下 沉及 周边 收敛速 率增 大. 现 场监 测 结
岩石力学---第10章 地下硐室围岩应力计算及稳定性分析
y
p0
若β=0, p0=λp,则:
(1 m ) sin m p sin2 m 2 cos2
2 2 2
a
b
(1)
x
若β=900, p0=p,则:
(1 m ) 2 cos2 1 p 2 sin m 2 cos2
(2)
a
y
p
在原岩应力 p、λp作用下,则由(1) +(2)得:
高宽比=1/3,λ<1
(3)两帮中点水平应力在坑道 周边为0,越往围岩内部,应力 越大,并趋于原岩应力q.
(4)两帮中点垂直应力在坑道周边最大,越往围岩内部,应力 逐渐减小,并趋于原岩应力p;
(5) 巷道四角处应力集中最
大,其大小与曲率半径有关。
曲率半径越小,应力集中越大, 在角隅处可达6~8。
例:不同λ和不同轴比m下,矩形坑道周边顶底板和两
帮中点处的ςθ:
矩形坑道断面长轴与原岩最大主应力方向一致时,围 岩应力分布较合理,等应力轴比时最好。
四、各种洞形围岩分布的共同特点:
(1)无论坑道断面形状如何,周边附近应力集中系数最 大,远离周边,应力集中程度逐渐减小,在距巷道中心为3— 5倍坑道半径处,围岩应力趋近于与原岩应力相等。 (2)坑道围岩应力受侧应力系数λ 、坑道断面轴比的影
式中: m——y轴上的半轴b与x轴上的半轴a的比值,即 m=b/a; θ——洞壁上任意一点M与椭圆形中心的连线与x轴的夹角; β——荷载p0作用线与x轴的夹角; p0——外荷载。
(1 m ) 2 sin2 ( ) sin2 m 2 cos2 p0 sin2 m 2 cos2
(8-8)
隧道塌方的原因分析、注意事项及处理措施
立即启动应急预案,组织抢险救援队伍进行抢险 救援工作,最大限度减少人员伤亡和财产损失。
03 隧道塌方的处理措施
预防措施
隧道设计阶段
充分考虑地质勘察数据,合理设计隧道结构,加强支护和排水设 计。
施工阶段
严格控制施工质量,确保支护及时、有效,遵循施工规范,避免超 挖、欠挖现象。
监控与检测
实施隧道施工监控和检测,及时发现异常情况,采取相应措施处理, 确保施工安全。
全保障。
施工安全检查
定期对施工现场进行安全检查, 及时发现并处理安全隐患,确保
施工安全。
信息化施工
利用信息化技术,实时收集、处 理和分析施工数据,为施工提供
科学决策依据。
塌方后的应急处理
人员疏散
在塌方发生后,迅速组织人员疏散,确保人员安 全。
现场警戒
设置警戒线,禁止无关人员进入塌方区域,防止 二次伤害。
隧道塌方的原因分析、 注意事项及处理措施
目录
CONTENTS
• 隧道塌方的原因分析 • 隧道塌方的注意事项 • 隧道塌方的处理措施
01 隧道塌方的原因分析
地质因素
01
02
03
岩体稳定性
隧道穿越地层岩性复杂, 存在软弱夹层、断层破碎 带等,易发生塌落。
地下水作用
地下水侵蚀、软化岩体, 降低其稳定性,导致塌落。
处理。
排水系统修复
检查并修复隧道排水系统,确 保排水通畅。
路面修复
对隧道内路面进行修复,恢复 通行条件。
监控系统完善
完善隧道监控系统,提高隧道 运行的安全性和可靠性。
感谢您的观看
THANKS
供科学依据。
设计方案的审查
对隧道施工设计方案进行严格审查, 确保设计方案合理、安全、经济, 并充分考虑到可能遇到的风险因素。
隧道工程中主要围岩分级及围岩压力
❖ 我国大陆初始应力场(包括自重应力场和构造应力场)的变 化规律如下:
❖ 在一定深度内,垂直应力的量值随深度线性增大,而且水平 应力普遍大于垂直应力;
❖ 水平主应力具有明显的各向异性。水平主应力的另一个显著 特点,就是具有很强的方向性,一般以一个方向的主应力占 优势,很少有大、小主应力相等的情况。
❖ (3)地温。温度变化使温度应力的一部分会残留 下来产生残余应力。
❖ (4)人类活动。人类活动包括大堆碴场的形成、 深的露天开采和地下开挖、水库、抽水、采油及 高坝建筑等都可能局部地影响围岩的初始应力场。
五、围岩初始应力场的确定方法
❖ 通过现场实地量测应力。但实测工作由于费时费 钱,不可能大量进行,这就提出了如何利用少数 测点实测资料,建立可靠的围岩初始应力场的问 题。可行的是实地量测和地质力学分析相结合的 方法。
❖ b岩石在形成过程中,由于热力和构造作用所引起 的,虽经过风化、卸载,部分释放,现在仍残存 着的原生内应力。
❖ 新构造应力:正在活动和变化的构造运动,如地层 升降、板块运动等所引起的应力,称为新构造应力, 地震的产生正是新构造应力的反映。
4.探讨
❖ (1)岩体内的应力主要是在自重作用下产生的垂 直应力,水平应力则是由岩体的泊松效应引起的, 最大只能等于垂直应力(即取泊松系数等于0.5)。 这是否认地质构造运动能改变岩体的应力状态。 与实际情况不符。
3.组成
自重应力场和构造应力场 ❖ 这两类应力场的基本规律有明显的差异。围岩的自
重应力场比较好理解,它是地心引力和离心惯性力 共同作用的结果。围岩的构造应力场就比较复杂, 按其形成的时间,分为两类——构造残余应力和新 构造应力。
构造残余应力
❖ a由于过去地质构造运动引起的,虽然外部作用力 移去后有了部分恢复,但仍残存在岩体中的应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析影响隧道围岩稳定性因素
习小华
摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。
关键词:围岩稳定性;天然应力状态;地质构造
毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。
从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。
但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。
因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。
1 岩石性质及岩体的结构
围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。
如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。
这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。
如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。
从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。
松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。
对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。
一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。
而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。
一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。
由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。
围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。
表1 围岩的变形破坏的形式及其与岩石性质及结构的关系
2 岩体的天然应力状态
岩体的天然应力是岩体的自重应力、构造应力、变异及残余应力在某一个具体地区以特定方式作用的结果。
已经有大量的实践资料证明,大多数地区的岩体的天然应力状态是以水平方向为主的即水平应力通常大于垂直应力。
一般情况下,隧道轴向与水平主应力垂直,以改善隧道周边的应力状态。
但水平应力很大时,则隧道方向最好与之平行以保证边墙的稳定性。
然而,岩体的天然应力对隧道的影响主要取决于垂直于隧道轴向水平应力的大小与天然应力的比值(ζ) ,它们是围岩内应力重分布状态的主要因素。
例如,圆形隧道,当ζ= 1 时,围岩中不会出现拉应力集中,压应力分布也比较均匀,围岩稳定性最好;当ζ≤1/ 3 时围岩出现拉应力,压应力集中也较大,对围岩稳定不利。
最大天然主应力的数量级及隧道轴向的关系,对隧道围岩的变形特征有明显的影响,因为最大主应力方向围岩破坏的概率及严重程度比其它方向大。
因此,估算这种应力的大小并设法消除或利用非常重要的。
3 地质构造
褶曲和断裂破坏了岩层的完整性降低了岩体的力学强度,一般来说,岩体经受的构造变动的次数愈多,愈强烈,岩层的节理裂隙就愈发育,岩体的稳定性也就愈差。
例如围岩岩石强度不等的坚硬和软弱岩层相间的岩体在构造变动中,坚硬和软弱岩层常会在接触处发生触动,形成厚度不等的层间破碎带,极大的破坏了岩体的完整性。
由于隧道通过坚硬和软弱相间层状岩体时,易在接触面处发生变形或塌落,因此,隧道应尽可能避免设在坚硬和软弱岩层之间的岩层破碎带、褶皱或断层带;在无法避免的情况下,隧道应尽量设在坚硬岩层中,或尽量把坚硬岩层作为顶层围岩。
褶皱的形式、疏密程度、轴向与隧道轴线的交角不同,围岩的稳定性不同,这是由于褶皱的核部岩层受到强烈的张力和压力的作用,故核部的岩层就比翼部的岩层破碎的多,因此,隧道横穿褶皱翼部比横穿核部有利。
在断层附近,因地层的相对位移会使破碎带的宽度很大,若岩层发生倒转,不仅节理裂隙十分发育,而且往往会出现大的逆断层。
如果隧道通过断层,断层宽度愈大,走向与隧道轴向交角愈小,在隧道内出露的愈长,对围岩稳定性影响愈大。
另外,断层破碎带物质的碎块性质及其胶结情况也都影响围岩的稳定性。
破碎带组成物质如为坚硬岩块,并且挤压紧密或已胶结,比软弱的断层泥组成稀疏的糜棱岩或未胶结的压碎岩要稳定些。
因此,可以把构造强烈的程度作为衡量围岩稳定性状况的一个基本因素,其影响程度如表2 。
表2 围岩受地质构造影响程度等级划分
4 地下水
围岩岩体中地下水赋存条件与活动状况,既影响围岩的应力状态又影响围岩的强度,进而影响隧道围岩的稳定。
围岩中地下水状态一般可以分三级,即干燥、有渗水、潮湿。
实践证明,只要隧道围岩是干燥的,即便是通过软弱的或破碎的岩层时,围岩的稳定性总是较好的或危害比较微弱,并且易于克服。
当隧道处于含水层中或隧道的围岩透水性较强即隧道围岩中的地下水状态为有渗水或潮湿时,地下水对隧道围岩稳定性的影响比较明显,主要表现在静水压力作用、动水压力作用、软化作用和溶解作用、对可溶岩体的溶蚀作用及对滑动面的润滑作用等。
它们作用的机理如下:静水压力作用在衬砌上,相当于给衬砌增加了一定的额外荷载,因此,在设计衬砌强度和厚度时,应充分考虑静水压力的影响。
另外一方面,静水压力能够使岩体的结构面张开,减少了滑动摩擦力,从而增加了围岩的坍塌和滑落的可能性。
动水压力的作用促使岩块沿着水流方向移动的同时也冲刷和带走岩石裂隙中的细少的矿物颗粒,从而增加了围岩的破坏的程度。
另外,地下水对岩石的溶解作用和软化作用也有一定的影响。
5 结语
上述因素并不是一成不变的而是在地壳内外营力的作用下不断变化的,例如,岩石结构面的性质可以在风化营力作用下不断恶化,而且有些恶化速度相当快。
因此,不论是选择隧道的位置,还是对隧道进行衬砌、考虑隧道的施工方法以及对隧道围岩稳定性进行维护、还是对隧道围岩进行等级划分时,必须从发展的观点考虑岩石的性质、岩体结构、天然应力状态、地下构造、地下水等这些自然因素对隧道围岩稳定性的影响。
参考文献
[1]张倬元. 工程地质分析原理[M] . 北京:地质出版社,1981.
[2]王洪亮. 隧道构造裂隙及其影响带的治理[ J ] . 建材技术与应用, 2001 ,02.
[3]李相然. 城市地下工程实用技术[M] . 北京:中国建材工业出版社, 2000 ,07.
本篇文章选自《西部探矿工程》 2003年第5期。