椭圆说课稿
椭圆的几何性质说课稿

椭圆的几何性质说课稿一、说课目标本节课的教学目标是让学生了解椭圆的基本定义和几何性质,学会判断椭圆的方程、焦点和离心率,并能够应用椭圆的性质解决相关问题。
二、教学重点1. 掌握椭圆的基本定义和性质;2. 理解椭圆的焦点和离心率的概念;3. 能够根据椭圆的方程判断其性质。
三、教学难点1. 理解椭圆的离心率与焦点的关系;2. 掌握椭圆的方程判断方法。
四、教学过程1. 导入(5分钟)通过展示一张椭圆的图片,引起学生对椭圆的兴趣,并引导他们思量椭圆与其他几何图形的区别。
2. 椭圆的定义(10分钟)通过示意图和实物模型,向学生介绍椭圆的定义:椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。
解释定点即焦点的概念,并与圆的定义进行对照,匡助学生理解椭圆的特点。
3. 椭圆的方程(15分钟)介绍椭圆的标准方程:x^2/a^2 + y^2/b^2 = 1。
解释a和b的含义,并通过具体的例子让学生掌握椭圆方程的判断方法。
4. 椭圆的焦点和离心率(15分钟)引导学生思量焦点与离心率的关系。
通过解释焦点的定义和离心率的计算公式,匡助学生理解二者之间的联系,并进行实例演练。
5. 椭圆的性质(20分钟)挨次介绍椭圆的几何性质:a) 焦点定理:椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度;b) 离心率定理:椭圆的离心率等于焦点间的距离与长轴长度的比值;c) 长短轴性质:椭圆的长轴是对称轴,短轴是垂直于长轴的轴;d) 对称性质:椭圆具有中心对称性;e) 切线性质:椭圆上任意一点的切线与椭圆的长短轴的夹角相等。
6. 椭圆的应用(20分钟)通过实际问题的解答,让学生应用所学的椭圆性质解决相关问题,如椭圆轨道的运动问题、椭圆形状的建造设计等。
7. 小结与作业布置(5分钟)对本节课的重点内容进行小结,并布置相关的习题作业,巩固学生对椭圆的理解和应用能力。
五、板书设计(教师可提前准备好板书内容,以便在课堂上迅速书写)椭圆的几何性质1. 定义:椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。
椭圆的几何性质说课稿

椭圆的几何性质说课稿一、说课目标本节课的教学目标是使学生了解椭圆的定义和基本性质,掌握椭圆的焦点、长轴、短轴等概念,并能够应用椭圆的性质解决相关问题。
二、说课重点椭圆的定义、焦点、长轴、短轴等概念的理解和应用。
三、说课难点椭圆的性质和应用。
四、教学过程1. 导入(5分钟)通过引入一个实际问题,如“为了减少照明灯的能耗,设计师在公园的草坪上设计了一个椭圆形的跑道,你知道椭圆是什么样的图形吗?”来激发学生对椭圆的兴趣,并引导学生思考椭圆的形状和特点。
2. 椭圆的定义(10分钟)通过展示椭圆的定义和示意图,引导学生理解椭圆的定义:“椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹。
”并帮助学生理解椭圆的基本性质。
3. 椭圆的焦点和离心率(15分钟)介绍椭圆的焦点和离心率的概念,并通过示意图和实例,帮助学生理解焦点与椭圆的关系以及离心率的计算方法。
引导学生发现焦点到椭圆上任意一点的距离之和等于椭圆的长轴的性质。
4. 椭圆的长轴和短轴(15分钟)引导学生理解椭圆的长轴和短轴的概念,并通过示意图和实例,帮助学生掌握长轴和短轴的计算方法。
引导学生发现椭圆的长轴和短轴的关系以及长轴与焦点之间的性质。
5. 椭圆的性质应用(20分钟)通过一些实际问题的讨论和解答,引导学生应用椭圆的性质解决相关问题,如椭圆的离心率与轨道形状的关系、椭圆的应用于天体运动等。
6. 总结与拓展(5分钟)对本节课的内容进行总结,并展示一些拓展问题,如椭圆的切线与法线的性质、椭圆的参数方程等,激发学生的兴趣和思考。
五、教学手段板书、示意图、实例分析、讨论等。
六、教学资源教材、黑板、彩色粉笔、投影仪等。
七、教学反思本节课通过引入实际问题,激发学生对椭圆的兴趣,并通过示意图和实例,帮助学生理解椭圆的定义和基本性质。
通过讨论和解答问题,引导学生应用椭圆的性质解决相关问题,提高学生的综合运用能力。
在教学过程中,注重培养学生的动手能力和思维能力,通过实例分析和讨论,激发学生的学习兴趣和思考能力。
3.1.1椭圆及其标准方程说课稿

尊敬的各位老师,大家好:今天我说课的课题是《椭圆及其标准方程》。
对于本节课,我将以教什么,怎么教,为什么这样教为思路,从教材分析、学情分析、教学目标及核心素养、教学重难点、教法学法、教学过程和板书设计七个方面展开我的说课。
本节课是人教A版高中《数学》(选择性必修一)第三章第一节“椭圆及其标准方程”第一课时内容。
本节内容是在学生学习了直线与圆后,“坐标法”研究“曲线方程”的又一实例,是解析几何初步知识的深化和延续;从知识的前后联系来看,椭圆的学习是坐标法的进一步深入,同时它也是学习椭圆几何性质的基础;从方法上说,它为后续研究双曲线、抛物线提供基本模式和理论基础,是进一步学习圆锥曲线的重要模型.因此本节课有承前启后的作用。
从教材编排上讲,三种圆锥曲线独编一章,更突出了椭圆的重要地位。
将曲线及其方程结合起来,体现数形结合的思想方法。
学生已经学习了直线与圆的方程,对用坐标法研究几何问题已经有了初步认识。
对探究点的轨迹问题也有一定的基础知识和学习能力,这有利于学生实现从“旧知”向“新知”的迁移。
由于椭圆的几何特征比圆复杂,学生对于从哪个角度入手抽象椭圆的几何特征有一定的困难。
另外,在方程推导过程中,对于含两个根号的方程的化简,学生之前接触较少,完成起来有些困难,需要教师作适当的引导与小组合作讨论。
故本节课难度设置不应过高,设计问题时应多作铺垫,扫清学习障碍,保护学生学习积极性、主动性。
[确定依据] 根据以上对教材的分析和学情的把握,我确定了以下目标:1. 理解椭圆的定义,掌握椭圆的标准方程及推导,会利用待定系数法求椭圆的标准方程。
2. 通过动手画图的实践操作,感知、观察动点形成轨迹的过程,经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义,提升学生的直观想象、数学抽象的核心素养。
3.通过建立适当的坐标系,列出方程并化简变形,体会含有两个根式方程的化简过程,同时得到椭圆的标准方程,用以解决简单问题,培养数学建模、数学运算的核心素养。
椭圆及其标准方程 (优质课说课稿)

《椭圆及其标准方程》说课稿尊敬的各位评委:大家好!我说课的内容是《椭圆及其标准方程》, 下面, 我将从教材分析, 学情分析, 教学目标, 教学方法, 教学过程设计, 教学设计说明几个方面来进行阐述.一、教材分析1.课标要求:《椭圆及其标准方程》是人教A版普通高中课程选修2-1第二章的第二节内容.课程标准对这部分内容的要求是:“经历从具体情境中抽象出椭圆模型的过程, 掌握椭圆的定义、标准方程及简单几何性质”.2.教材地位“椭圆及其标准方程”是《圆锥曲线》第一节的内容;在前面学生已经学习了运用坐标法研究了直线和圆的性质,及曲线与方程的关系,对椭圆概念与方程的研究是坐标法的深入,为后面研究双曲线、抛物线提供了基本模式和理论基础,因此, “椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析(1)在学习本课之前学生已学习了直线和圆的方程及其性质, 曲线与方程的关系, 对解析几何有一定的了解, 已有一定的观察、分析、解决问题的能力.这为本节课的学习奠定了必要的知识基础.(2)在日常生活中, 学生对椭圆有了一定的认识, 但仍没有上升到成为“概念”的水平, 将感性认识理性化将会是对他们的一个挑战.含有两个根式的方程的化简也会使学生的探究受阻, 教师要适时加以点拨.三、教学目标分析根据教学内容的地位和作用, 结合学生的实际, 确定了以下教学目标:1.掌握椭圆的定义及其标准方程;通过对椭圆标准方程的探求, 熟悉求曲线方程的一般方法.2.在椭圆概念的形成过程及其标准方程的推导过程中,培养学生的归纳概括能力、动手实践能力、分析问题、解决问题的能力及运算能力.3.在教学中充分揭示“数”与“形”的内在联系, 体会数形美的统一, 激发学生学习数学的兴趣, 培养学生敢于探索, 勇于创新的精神.教学重点和难点:1.重点: 感受建立曲线方程的基本过程, 掌握椭圆的标准方程及其推导方法.为了突出重点, 让学生动手实践, 自主探索, 通过画图揭示椭圆上的点所要满足的条件, 由此得出定义, 推出方程.2.难点: 椭圆标准方程的推导.为了突破难点, 关键是抓住“怎样建立坐标系”和“怎样简化方程”两个环节来进行方程的推导.四、教学方法及准备(一)教学方法本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法, 并以多媒体手段辅助教学, 使学生经历实践、观察、交流、分析、概括等理性思维的基本过程, 切实改进学生的学习方式, 使学生真正成为学习的主人.(二)教学准备教师准备:多媒体课件学生准备: 一支铅笔、两个图钉(或胶带)、一根细绳、一张硬纸板.五、教学过程设计按照“引入课题——形成概念——推导方程——对比分析——例题讲解——归纳小结——作业布置”这七个环节来组织教学, 层层推进, 实现教学目标.(一)创设情境, 引入课题本节课的开始由多媒体演示“神舟八号”无人飞船与“天宫一号”目标飞行器进行了空间交会对接, 绕地球旋转运行的画面.提出问题: “神州八号”的轨道是什么形状?待学生回答后,请学生叙述生活中见到的椭圆形象, 并用课件展示我所搜集的椭圆形象, 让学生形成椭圆的感性认识, 引入课题.[设计意图] 这一过程充分调动学生的学习兴趣, 激发学生的探究心理,为引出新知做铺垫.通过举例和展示生活中椭圆形的图片, 让学生认识到椭圆和日常生活关系密切.使他们感受数学的应用价值, 同时培养学生学会用数学眼光去观察周围事物的能力.(二)实验探索, 形成概念有了对椭圆的感性认识,如何来研究椭圆呢?提出问题: 曲线可以看作适合某种条件的点的集合或轨迹.椭圆是满足什么条件的点的轨迹呢?这时借助于多媒体演示椭圆的画法, 请学生拿出准备的学具动手画图, 并思考问题.在学生思考的过程中我继续用问题引导: 圆是如何定义的,圆是满足什么条件的点的轨迹呢?学生回答后我继续追问: 在画图的过程中, 哪些量在变, 哪些量保持不变?学生根据自己的实验, 观察回答: “两定点间的距离没变, 绳子的长度没变, 点在运动.”我继续提问:你们能根据刚才画椭圆的过程, 类比圆的定义, 归纳概括出椭圆的定义吗?先让学生独立思考,尝试归纳,然后进行小组合作交流,教师重点关注学困生,适时给予点拨指导.几分钟后,大部分学生都能得到椭圆的定义:“平面内与两个定点的距离之和为常数的点的轨迹叫椭圆.”接着对得到的概念进行剖析, 提出问题: 这个常数是任意的吗?给学生两分钟时间进行思考、讨论、交流, 尝试找出答案, 若有困难, 教师借助于演示实验再次探索观察, 学生不难发现, 这个常数必须大于两定点间的距离.这样, 就得到了完整的椭圆定义:平面内与两个定点、的距离之和等于常数(大于|F F |)的点的轨迹叫做椭圆。
《椭圆的认识》说课稿

《椭圆的认识》说课稿简介本说课稿是针对中学数学教材中关于椭圆的知识进行讲解的。
通过引导学生了解椭圆的定义、性质和应用,培养学生的观察能力和问题解决能力,提高学生的数学素养。
教学目标1. 了解椭圆的定义和基本性质;2. 掌握椭圆的标准方程及其图形特征;3. 理解椭圆的离心率对椭圆形状的影响;4. 学会利用椭圆解决实际问题。
教学内容1. 椭圆的定义和性质- 通过示意图引导学生理解椭圆的定义:平面上到两个定点的距离之和等于常数的点的轨迹;- 引导学生发现和讨论椭圆的对称性和直径;- 结合实例,讲解椭圆的性质:离心率小于1,焦点的性质等。
2. 椭圆的标准方程及图形特征- 介绍椭圆的标准方程:$(\frac{x^2}{a^2})+(\frac{y^2}{b^2})=1$,其中a和b分别表示椭圆在x轴和y轴上的半轴长;- 根据方程讲解椭圆的图形特征:中心、长轴、短轴、焦点、顶点等。
3. 椭圆的离心率与形状- 引导学生思考和讨论离心率对椭圆形状的影响:离心率越接近于0,椭圆越接近于圆形;离心率越接近于1,椭圆越扁平。
4. 椭圆的应用- 通过实际问题引导学生应用椭圆的知识解决问题,如行星运动轨道、卫星发射轨道等。
教学方法1. 演示法:通过示意图和动态演示,生动形象地展示椭圆的定义和性质。
2. 探究法:设计一系列问题和练,引导学生主动探索和发现椭圆的特性和应用。
3. 合作研究法:分小组讨论和解决问题,促进学生之间的合作与交流。
教学评价1. 观察学生的参与程度和表现,包括课堂提问和小组讨论;2. 对学生解决实际问题的能力进行评价;3. 统计学生的研究成果,如椭圆相关知识的掌握程度和解题准确率。
教学反思在教学过程中要注意激发学生的兴趣,培养学生的数学思维和创新能力。
通过合适的教学方法和手段,提升学生对椭圆的理解和运用能力。
同时,及时调整教学策略,根据学生的不同特点和研究进度,进行个性化的指导和帮助。
参考资料- 《中学数学教材》- 《数学课程标准》。
椭圆的方程说课稿

椭圆的方程说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“椭圆的方程”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“椭圆的方程”是高中数学选修 2-1 第二章圆锥曲线与方程中的重要内容。
椭圆是圆锥曲线中常见且重要的一种曲线,它不仅在数学中有着广泛的应用,还在物理学、工程学等领域有着重要的地位。
本节课的内容是在学生已经学习了圆的方程和曲线与方程的概念的基础上进行的,通过对椭圆方程的推导和研究,为后续学习双曲线和抛物线的方程奠定了基础,同时也有助于培养学生的数学思维能力和解决实际问题的能力。
二、学情分析学生在之前的学习中已经掌握了圆的方程和曲线与方程的概念,具备了一定的解析几何的基础知识和思维能力。
但是,椭圆的方程推导过程相对较为复杂,需要学生具备较强的逻辑推理能力和运算能力。
此外,学生对于抽象的数学概念和数学符号的理解可能存在一定的困难,因此在教学过程中需要通过直观的演示和实例,帮助学生更好地理解和掌握椭圆的方程。
三、教学目标1、知识与技能目标(1)理解椭圆的定义,掌握椭圆的标准方程及其推导过程。
(2)能够根据椭圆的标准方程求出椭圆的基本量(长半轴、短半轴、焦距等)。
(3)能够运用椭圆的标准方程解决简单的实际问题。
2、过程与方法目标(1)通过椭圆的定义和标准方程的推导,培养学生的逻辑推理能力和运算能力。
(2)通过对椭圆标准方程的讨论和应用,培养学生的数学思维能力和解决实际问题的能力。
3、情感态度与价值观目标(1)通过椭圆的学习,让学生感受数学的美和数学在实际生活中的应用,激发学生学习数学的兴趣。
(2)通过小组合作学习,培养学生的团队合作精神和交流能力。
四、教学重难点1、教学重点(1)椭圆的定义和标准方程的推导。
(2)椭圆的标准方程的应用。
2、教学难点(1)椭圆标准方程的推导过程中坐标系的建立和化简。
(2)椭圆标准方程中参数的几何意义和相互关系。
椭圆的几何性质说课稿

椭圆的几何性质说课稿引言概述:椭圆是数学中重要的几何图形之一,具有独特的几何性质。
本文将从椭圆的定义、焦点与直径的关系、离心率与长短轴的关系、离心角与离心率的关系以及椭圆的切线性质五个部分详细阐述椭圆的几何性质。
一、椭圆的定义1.1 椭圆的定义:椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。
1.2 椭圆的元素:椭圆有两个焦点、两个顶点、两个直径、两个半径等元素。
1.3 椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的长轴和短轴的长度。
二、焦点与直径的关系2.1 焦点与直径的定义:椭圆的焦点是指到椭圆上任意一点的距离之和等于常数的两个点,直径是椭圆的两个焦点之间的距离。
2.2 焦点与直径的关系:椭圆的焦点与直径之间满足焦点到椭圆上任意一点的距离之和等于直径的长度。
2.3 焦点与直径的性质:对于椭圆上任意一点,其到两个焦点的距离之和等于椭圆的直径长度。
三、离心率与长短轴的关系3.1 离心率的定义:椭圆的离心率是指焦点到椭圆上任意一点的距离与椭圆的长轴长度之比。
3.2 离心率与长短轴的关系:椭圆的离心率e满足0<e<1,离心率越接近于0,椭圆越接近于圆形;离心率越接近于1,椭圆越扁平。
3.3 离心率与长短轴的计算:离心率e的计算公式为e = √(1 - b^2/a^2),其中a 和b分别为椭圆的长轴和短轴的长度。
四、离心角与离心率的关系4.1 离心角的定义:椭圆的离心角是指椭圆上任意一点到椭圆的两个焦点所对应的圆心角。
4.2 离心角与离心率的关系:离心角θ与离心率e满足sin(θ/2) = e。
4.3 离心角与离心率的计算:可以通过计算离心角来确定椭圆的离心率,或者通过已知离心率来计算离心角。
五、椭圆的切线性质5.1 切线的定义:椭圆上任意一点处的切线是指与椭圆相切且与椭圆的曲线相切于该点的直线。
5.2 切线与法线的关系:椭圆上任意一点处的切线与法线垂直。
【2024版】河北省邯郸市-说课比赛一等奖椭圆及其标准方程说课稿-新人教A版选修2

可编辑修改精选全文完整版《椭圆及其标准方程》说课稿我来自肥乡一中,今天我要跟大家共同探讨的是普通高中课程标准实验教科书《数学》选修2—1第二章第一节《椭圆及其标准方程》的教学设计.我们知道,新一轮的高中课改其显著特征和核心任务是坚定不移地推进教学方式和学习方式的转变.新课程强调学生的已有经验是教学的基础,教学过程应当是师生之间沟通与交流的过程.教学过程重结论,更应重过程,应倡导积极主动、勇于探索的学习方式.基于对新课程理念的理解,本节课力图贯彻上述新课程理念,下面我就教材分析、学生情况分析、教学目标设计、教法学法设计、教学过程的设计、教学设计说明这几方面内容向大家进行阐述.一、教材分析《椭圆及其标准方程》是继学习圆以后运用“曲线与方程〞思想解决二次曲线问题的又一实例.从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础.从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.二、学生情况分析〔1〕学生的知识储备分析:学生已学习了直线和圆的方程,并初步学习了求曲线方程的一般方法和步骤,但学生仍对坐标法解决几何问题存在障碍.〔2〕学生的数学能力分析:学生通过几何图形来发现轨迹上点的特征的能力较强〔数形结合〕,但计算能力较弱,因此在方程的推导中会遇到障碍,成为本节的难点.三、教学目标设计根据学生的实际、课标的要求和本节课内容的特点,教学目标确定如下:〔一〕教学目标1. 知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.2. 能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.3. 情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.〔二〕教学重点和难点1. 教学重点:椭圆的定义及其标准方程2. 教学难点:椭圆标准方程的推导四、教法学法设计1.教法为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.通过设置情境、问题诱导充分发挥主导作用.2.学法新课标的理念倡导“以人为本〞,强调“以学生发展为核心〞.因此本节课给学生提供以下4种机会:1.提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳.2.提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题.3.提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说.4.提供成功的机会:赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣.3.教学准备(1)学生准备:一支铅笔、两个图钉、一根细绳、一X硬纸板.(2)教师准备:用几何画板制作的相关课件.五、教学过程的设计〔一〕设置情境、问题诱导首先,复习提问:圆的定义是什么?圆的标准方程是什么形式?接下来我用课件演示一些生活中的椭圆的例子,还有一些天体运行的轨迹图,并提出问题:“这些天体运行的轨迹是什么呢?〞学生经过观察,很直观地看出是椭圆,从而引出课题.再次提问:“我们能否求出这些天体运行的轨迹方程呢?学习了本节课的内容,就可以解决这个问题.〞[设置依据]一方面,通过复习前面学过的有关知识,唤起学生的记忆,为本节课学习作好铺垫.另一方面,借助多媒体生动、直观的演示,使学生明确学习椭圆的重要性和必要性.同时,激发他们探某某际问题的兴趣,使他们主动、积极地参与到教学中来,为后面的学习做好准备.〔二〕动手实验,归纳概念我用多媒体演示画椭圆,同时请学生拿出事先准备好的自制教具:木板、细绳、图钉、铅笔,同桌一起合作画椭圆.我在学生的绘图纸上精心设计了三个问题:1、在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2、改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3、绳长能小于两图钉之间的距离吗?这样,学生边作图、边思考、边讨论,每组学生都可对上述三个问题进行研究比较,我在投影仪上展示学生画出的不同图形,然后参与学生的讨论,引导学生全员参与,积极发言,相互补充,从而探究出三个结论并归纳出椭圆的定义.平面内与两个定点F1、F2的距离之和等于常数〔大于|F1F2|〕的点的轨迹叫做椭圆.定点F1、F2叫做椭圆的焦点,F1、F2间的距离叫做椭圆的焦距.在归纳定义时,再次强调定义要满足三个条件:①平面内〔这是大前提〕;②任意一点到两个定点的距离的和等于常数;③常数大于|F1F2 |.[设置依据] 以活动为载体,让学生在“做〞中学数学,通过画椭圆,经历知识的形成过程,积累感性经验.同时,我力求改变单一、被动的学习方式,让学生成为学习的主人,给他们提供一个自主探索学习的机会,让他们通过观察、讨论,归纳概括出椭圆的定义,这样既获得了知识,又培养了学生抽象思维、归纳概括的能力.〔三〕启发引导,推导方程接着学生思考两个问题:1、求曲线方程的一般步骤是什么?2、圆心在原点的圆的方程与不在原点的方程哪个形式更简单?为什么?[设置依据]让学生明确思维的目的,通过复习旧知,为下一步学习搭桥铺路. 提问:怎样建立坐标系,才能使求出的椭圆方程最为简单?通过前面知识的回忆,学生思考、相互交流,很容易选定以下建立坐标系的方案.〔1〕建立直角坐标系,设出动点的坐标以两定点F1、F2的连线为x 轴,以线段F1 F2的垂直平分线为y轴,建立坐标系,设M ( x , y ) 为椭圆上任意一点,| F1F2 | = 2 c (c>0) ,那么有F1〔-c, 0〕、F2 (c ,0). 又设M与F1和F2的距离的和等于常数2 a ( a > 0 ) .〔2〕写出动点M满足的集合让学生利用两点的距离公式,根据椭圆定义列出:P={M |│MF1│+│MF2│| =2a}如果学生有困难,可以安排进行小组讨论交流.(3)坐标化引导学生在设点的基础上,将前面得到的关系式用坐标表示出来.这里学生不会有太大的困难,绝大多数学生都能得到方程:〔4)化简带根式的方程的化简,学生会感到困难,这也是教学的一个难点.特别是由点适合的条件列出的方程为两个二次根式的和等于一个非零常数的形式,化简时要进行两次平方,且方程中字母多,次数高,初中代数中没有做过这样的题目,教学时,要注意说明这类方程的化简方法.一般来说:①方程中只有一个二次根式时,需将它单独留在方程的一边,把其它各项移到另一边,平方一次;②方程中有两个二次根式时,需将它们分散,放在方程的两边,使其中一边只有一个根式,平方两次.接着让学生自己动手开始化简.我安排一名程度较好的学生上来板演,以便点评.待大多数学生都有了结果(a2-c2)x2+a2y2=a2(a2-c2).指出:此方程形式还不够简捷,还有变形的必要,让学生观察图形:提出问题:“你们能从图中找出表示a、c、的线段吗?〞通过观察,学生容易得出结论,并理解了换元的合理性.这样不仅使方程具有了对称性,而且使字母b也有了明确的几何意义.从而将方程简化为:告诉学生:可以证明它就是椭圆的方程,我们称它为椭圆的标准方程.[设置依据]掌握椭圆标准方程及推导方法;培养学生战胜困难的意志品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1椭圆及其标准方程说课稿
高二数学组王希东
一、教材分析
(一)教学内容
《椭圆及其标准方程》是高中数学选修2-1(人教版)2。
2.1中的内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。
现在说第一课时.(二)教材的地位和作用
本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(三) 关于教材的处理
运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性"地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。
(四)、教学目标
1。
知识与技能目标:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2。
过程与方法目标:通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程,体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的
方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力.
3. 情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神。
培养学生自主学习的能力. 以“神舟六号”围绕地球运行轨迹演示,激发学生学习数学的兴趣,增强学生的数学应用意识、创新意识,扩展学生的数学视野,并让学生受到爱国主义思想的教育。
(五)教学的重点难点
1. 教学重点:椭圆的定义及其标准方程
2。
教学难点:椭圆标准方程的推导
二、学情分析
在此之前,学生对坐标法解决几何问题掌握不够,从研究圆到研究椭圆,跨度较大,学生思维上存在障碍. 在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要,故本节采取缺什么补什么的办法来补充这些知识.
三、教法、学法和教学手段
1、教法设计:
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
2、学法设计:
”授人以鱼,不如授人以渔。
”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
3、教学手段:多媒体辅助教学。
通过动态演示,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量.
四、教学流程
创设情景,提出课题自
主
探
究
,
形
成
概
念
师
生
互
动
,
导
出
方
程
初
步
运
用
,
强
化
理
解
自
我
评
价
,
反
馈
调
节
知
识
整
理
,
形
成
系
统
布
置
作
业
,
巩
固
提
高
1.<创设情景,提出课题>
[问一] “神舟六号”围绕地球运行的轨迹是什么图形?
2.<自主探究,形成概念〉
[问二] 动点按照某种规律运动形成的轨迹叫曲线,那么椭圆是满足什么条件的轨迹呢?
做一做
让学生拿出课前准备好的一块纸板,一段细绳,两枚图钉,按课本上介绍的方法,同桌间相互磋商、动手绘图.并思考如下问题:
1。
在纸板上作图说明了什么?
2. 在绳长(设为2 a)不变的条件下,
(1)当两个图钉重合在一点时,画出的图形是什么?
(2)改变两个图钉之间的距离,画出的图形是什么?
(3)当两个图钉之间的距离等于绳长时,画出的图形是什么?
(4)当两图钉固定,能使绳长小于两图钉之间的距离吗?能画出图形吗?3.<自主探究,形成概念>
请同学们观察如下动画后,回答刚才的问题[设计意图] 按学生的认识规律与心理特征引导学生自己探索、分析,启发学生认识新的概念,这有利于学生对概念的全面理解,同时培养了学生从量变到质变的辨证思维
定义平面内与两个定点F1 、F2 的距离的和等于常数(大于|F1 F2 |)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
强调定义要满足三个条件:
①平面内(这是大前提);
②任意一点到两个定点的距离的和等于常数;
③常数大于|F1F2|
4。
〈师生互动,导出方程>
知道了它的基本几何特征,这只是一种“定性"的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究。
根据解析几何的基本思想方法,我们需要利用坐标法先建立椭圆的方程“定量”的描述,然后通过对椭圆的方程的讨论,来研究其几何性质。
问题:
1. 求曲线方程的一般步骤是什么?
2。
建立坐标系的一般原则有哪些?
[设计意图] 让学生明确思维的目的,通过复习旧知识,为下一步学习搭桥铺路. 问题:1怎样建立坐标系,才能使求出的椭圆方程最为简单?
2你能用集合的形式表示椭圆吗?
1、建系
2 、设点
设M (x ,y)是椭圆上的任一点 F 1(—c ,0)F 2(c,0) 则M 与|F 1 F 2 |的距离为2a
4 、让学生化简,得到 (a 2 - c 2 ) x 2 + a 2 y 2 = a 2 (a 2 - c 2 )
两边同除()
得 222c a a -(1) 1222
22=-+c a y a x 指出:此方程形式还不够简捷,还有变形的必要,请同学们思考.
思考:观察图形在图中找出一些能表示a 、c 、22c a -线段吗?
[设计意图]在解决解析几何问题中,熟练运用代数变形技巧是十分重要的,学
生常因运算能力不强而功亏一篑,故在此,教师不失时机地加强了运算技能的训练.
[问 五] 如果焦点F 1 、F 2 在 y 轴上,并且点O 与线段F 1 F 2 的中点重合,a 、b 、c 的意义同上,椭圆的方程形式又如何呢?
[设计意图] 该问的设置,一方面是为了得出焦点在 y 轴上的椭圆的标准方程;另一方面通过学生的猜想,充分发挥学生的直觉思维和数学悟性。
调动了学生学习的主动性和积极性,
通过动手验证,培养了学生严谨的学习作风和类比的能力. 为了让学生加深对椭圆的两种标准方程的理解,比较椭圆的两种标准方程,填表。
(学生讨论回答,教师板书)
焦点位置的判定a
、b 、c 的关系定义
共同
点焦点坐标
图形标准方程
不同
点
[设计意图] 通过对比使学生进一步理解方程,掌握方程的本质特征,揭示规
律,充分展示数形结合的和谐美、统一美,同时为解决例题做铺垫。
5。
<初步运用,强化理解〉
例题
1. 判定下列椭圆的焦点在哪个轴上,并指明长半轴长,短半轴长,焦点坐标。
[设计意图]数学概念是要在运用中得以巩固的,通过该例题使学生进一步理解椭圆的定义,掌握标准方程,使知识内化为智能,并在解题过程中感受”数形结合" 思想的优越性。
6。
<自我评价,反馈调节〉
[设计意图] 变换练习方式,可增强新异感,调动学生的积极性,同时使学生获得的知识信息及时得到巩固,纳入长时记忆系统。
7。
<知识整理,形成系统(由学生归纳,教师完善)〉
小结:
1. 椭圆的定义(注意定义中的三个条件)
2。
椭圆的标准方程(注意焦点的位置与方程形式的关系)
3。
解析几何的基本思想
[设计意图]通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力。
8.<布置作业,巩固提高(学有余力的学生全做,其余学生不做探究题) 〉
[设计意图]一方面为了巩固知识,形成技能,培养学生周密的思维能力,发现教学中的遗漏和不足;另一方面,分层要求,有利各种层次的学生获得最佳发展,充分培养了学生的自主学习能力和探究性学习习惯.
五、板书设计
椭圆及其标准方程
1、椭圆的定义3、例题
电脑投影屏幕
2、椭圆标准方程的推导
(1)建系4、训练
5、作业
(2)设点
(3)列式
(4)化简
六、教学评价
本节课围绕“层层设问――自主探索――发现规律――归纳总结”这一主线展开,对教材内容进行了优化组合,在教学过程中,学生通过观看动画,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象
概括的能力. 同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力. 在整节课中,教师作为引导者,利用“神舟六号"围绕地球运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,同时设置了不同层次的知识面,以适应不同学生的认知过程.增强了学生的自信心,体现了新课标中让学生
自主学习的教学理念.。