MATLAB入门教程)1.MATLAB的基本知识

合集下载

MATLAB科学计算软件入门教程

MATLAB科学计算软件入门教程

MATLAB科学计算软件入门教程第一章:MATLAB基础知识MATLAB是一种专业的科学计算软件,具有强大的数学计算和数据分析能力。

在使用MATLAB进行科学计算前,我们需要先了解一些基本知识。

1.1 MATLAB界面打开MATLAB后,我们会看到一个主界面。

主界面中有命令窗口、当前文件夹窗口、工作空间窗口和编辑器窗口等基本功能区域。

1.2 MATLAB变量和数据类型MATLAB中的变量可以用来存储各种类型的数据,如数字、字符串、矩阵等。

常见的数据类型包括:double(双精度浮点数)、char(字符)、logical(逻辑值)等。

1.3 MATLAB基本操作在MATLAB中,可以使用基本的数学运算符进行加、减、乘、除等计算操作。

另外,还可以通过内置函数实现更复杂的数学运算。

例如,sin函数可以计算正弦值,sum函数可以计算矩阵元素的和等。

第二章:MATLAB矩阵和向量操作2.1 创建矩阵和向量在MATLAB中,可以使用方括号来创建矩阵和向量。

例如,使用[1,2;3,4]可以创建一个2x2的矩阵。

2.2 矩阵和向量的加减乘除运算MATLAB提供了丰富的矩阵和向量运算函数,可以进行加法、减法、乘法、除法等运算操作。

例如,可以使用矩阵相乘函数*来计算矩阵的乘法。

2.3 矩阵和向量的索引和切片在MATLAB中,可以使用索引和切片操作来获取矩阵和向量中的特定元素或子集。

例如,使用矩阵名加上行和列的索引可以获取矩阵中指定位置的元素。

第三章:MATLAB数据可视化3.1 绘制二维图形MATLAB提供了丰富的绘图函数,可以绘制二维曲线、散点图、柱状图、等高线图等。

例如,可以使用plot函数来绘制二维曲线。

3.2 绘制三维图形MATLAB还可以绘制三维图形,如三维曲线、三维散点图、三维曲面等。

例如,可以使用plot3函数来绘制三维曲线。

3.3 图像处理与显示MATLAB提供了图像处理和显示的函数,可以加载、编辑和保存图像。

MATLAB经典教程

MATLAB经典教程

MATLAB经典教程1.MATLAB基础-MATLAB的安装和启动-基本操作:变量、数据类型、矩阵和数组-MATLAB的算术和逻辑运算-控制流程:循环和条件语句2.数据处理和可视化-数据输入和输出-数据处理和运算-图形绘制:线图、散点图、柱状图等3.MATLAB编程-函数定义和使用-脚本文件和函数文件-调试和错误处理-MATLAB编程技巧和最佳实践4.数值计算-方程求解:根的寻找和优化-线性代数:矩阵运算、特征值和特征向量-微分和积分:数值求解和符号计算-傅里叶变换和信号处理5.统计分析-基本统计量的计算-假设检验和置信区间-数据拟合和回归分析-实验设计和方差分析6.图像处理-图像读取和显示-像素操作:调整亮度、对比度等-图像滤波和增强-特征提取和图像分割7.机器学习-监督学习和无监督学习-分类和聚类算法-特征选择和降维-深度学习和神经网络8.信号处理-时域信号和频域信号分析-滤波和去噪-时频分析和小波变换-对齐和匹配信号9.控制系统-系统建模和传递函数-反馈控制和PID控制-系统响应分析和稳定性-状态空间和观测器设计10.数学建模-建立数学模型-参数估计和模型验证-模型求解和预测-灵敏度分析和优化这是一份简要的MATLAB经典教程,涵盖了MATLAB的各个方面。

学习这些基础知识和技巧可以帮助你在使用MATLAB时更加熟练和高效。

当然,这只是一个起点,你可以根据自己的需求和兴趣来进一步学习和应用MATLAB。

MATLAB教程及实训

MATLAB教程及实训

MATLAB教程及实训MATLAB是一种强大的计算机软件,主要用于数值计算、数据分析和可视化,广泛应用于科学、工程和金融领域。

以下是一个针对初学者的MATLAB教程及实训,旨在帮助读者快速入门并掌握基本的MATLAB使用技巧。

第一部分:MATLAB基础1.MATLAB的安装与启动2.MATLAB命令行介绍MATLAB的命令行界面,包括如何输入和执行MATLAB命令以及查看命令的输出结果。

3.MATLAB的基本数据类型介绍MATLAB中常用的数据类型,包括标量、向量、矩阵和字符串等,并讲解如何创建和操作这些数据类型。

4.数学运算介绍如何在MATLAB中进行基本的数学运算,包括加减乘除、指数运算和三角函数等,并讲解MATLAB提供的数学函数。

5.逻辑运算和控制流程介绍如何在MATLAB中进行逻辑运算和比较运算,以及如何使用条件语句、循环语句和逻辑判断语句来控制程序的流程。

第二部分:MATLAB数据处理与分析1.数据导入和导出介绍如何使用MATLAB读取和写入各种格式的数据文件,包括文本文件、Excel文件和MAT文件等,并讲解如何处理和转换数据。

2.数据可视化介绍如何使用MATLAB绘制各种类型的图表,包括折线图、散点图、柱状图和饼图等,并讲解如何设置图表的样式和属性。

3.数据统计和分析介绍如何使用MATLAB进行常见的数据统计和分析,包括均值、方差、相关系数和回归分析等,并讲解如何使用MATLAB的统计工具箱进行高级数据分析。

第三部分:MATLAB编程与应用实例1.MATLAB编程基础介绍如何使用MATLAB编写脚本和函数,包括变量的定义和赋值、条件语句和循环语句的使用,并讲解MATLAB的函数库和程序调试技巧。

2.MATLAB的应用实例介绍几个典型的MATLAB应用实例,包括信号处理、图像处理和机器学习等领域,通过实际案例演示如何使用MATLAB解决实际问题。

3.MATLAB与其他工具的集成介绍如何将MATLAB与其他科学计算和数据处理工具集成,包括Python、R和Excel等,并讲解如何使用MATLAB的接口进行数据交互和共享。

MATLAB基础知识及常用功能介绍

MATLAB基础知识及常用功能介绍

MATLAB基础知识及常用功能介绍第一章:MATLAB简介及安装MATLAB是一种强大且广泛应用的数值计算软件,它提供了许多用于科学计算和工程设计的功能。

MATLAB是矩阵实验室(Matrix Laboratory)的缩写,其主要特点是在操作矩阵和各种数学函数上非常高效。

要安装MATLAB,只需下载安装程序然后按照提示进行安装即可。

第二章:MATLAB基本操作在MATLAB中,可以使用各种命令来进行基本的数学运算,例如加减乘除、幂运算等。

此外,还可以定义变量、矩阵和向量,并进行复杂的数学运算。

提示:使用分号可以取消输出结果。

第三章:MATLAB脚本和函数脚本是一系列MATLAB命令的集合,可以保存并重复执行。

函数是一段具有输入和输出的可执行代码块,可以通过函数名和输入参数来调用。

编写脚本和函数有助于提高代码的可读性和可重复性。

第四章:MATLAB图形化界面MATLAB提供了图形化界面(GUI)工具箱,用于创建交互式应用程序和图形用户界面。

利用GUI工具箱,可以通过拖拽和放置的方式创建界面,并通过设置属性和回调函数实现交互功能。

第五章:MATLAB数据可视化MATLAB拥有丰富的数据可视化功能,可以将数据以各种图表形式呈现出来,如散点图、柱状图、曲线图等。

此外,还可以对图表进行自定义设置,如添加图例、调整轴范围、添加标题等。

第六章:MATLAB图像处理MATLAB提供了强大的图像处理工具箱,可以用于图像的滤波、锐化、模糊、边缘检测等操作。

此外,还可以进行图像的变换和特征提取,用于图像识别和分析。

第七章:MATLAB信号处理MATLAB信号处理工具箱提供了一系列用于处理、分析和合成信号的函数和工具。

可以进行信号滤波、频谱分析、时域分析等操作。

此外,还可以进行数字滤波器设计和滤波器实现。

第八章:MATLAB数学建模MATLAB是数学建模的重要工具,可以用于建立各种数学模型并进行仿真和优化。

可以利用MATLAB解方程、求解微分方程、进行符号计算等,用于解决各种实际问题。

MATLAB基础知识

MATLAB基础知识

一、1、数学建模基础知识及常用命令一、界面窗口介绍:1 命令窗口(command window),窗口中输入命令,回车实现计算或绘图功能。

2 工作空间窗口(work space)运行matlab命令时所产生的变量都被加入到工作空间,该窗口可以显示命令窗口中已输入的变量的名称,数值等。

3 命令历史窗口(command history)显示所有执行过的命令,选定某个命令时可以双击或按F9执行。

4 当前目录窗口(Current folder)显示当下目录下的文件信息。

二、常用运算1、算术运算符加+ 减- 乘* 左除/ 右除\ 乘方^注意:在普通的数值运算中,左除为我们常用的除法形式,左除右除结果比较像逆运算,如1/2 和1\2结果互为倒数,但在矩阵的运算中,结果完全不一样,类似于左乘和右乘结果一般会不一样。

运算的优先级:从左到右,幂运算最高优先级,乘除法具有相同次优先级,加减法具有相同的低优先级,括号可以用来改变优先次序。

大家可以进行几个普通计算(练习10分钟)1、325+47⨯÷2、4 59+986-2.7+55-1033.5+20⨯()29()2、数据显示格式默认情况下,matlab显示小数点后4位小数,可以利用format命令改变显示格式(一般写在要改变的数值的命令前):format short 小数点后4位format long 小数点后15位format bank 小数点后2位(以上为三个常用的)format rat 最接近的有理数如以 为例:>> pi= 3.1416>> format long>> pi>> format rat>> pians =355/113>> format bank>> pians =3.14>> format short>> pians =3.1416三、matlab变量1、变量赋值形式变量=表达式(数值)或表达式(数值)其中,“=”为赋值符号,将右边表达式的值赋给左边变量(上面左的含义),当不指定输出变量时,matlab将表达式的值赋给临时变量ans(右的含义)。

MATLAB 9.8 基础教程 第1章 基础入门

MATLAB 9.8 基础教程 第1章 基础入门
2016年3月升级为MATLAB 9.0(R2016a),2020年3月新发布了MATLAB 9.8(R2020a), 增加了涵盖大数据、数据可视化、数据导入和分析等方面,包含MATLAB Web App Server、深度学习、无限通信、自动驾驶等新功能。
1.1.2 MATLAB系统结构
MATLAB系统由MATAB开发环境、MATLAB数学函数库、MATLAB语言、MATLAB图形处理系统 和MATLAB应用程序接口(API)五大部分构成。
1993年推出了基于PC平台的以Windows为操作系统平台的MATLAB 4.0版;
2006年起,每年推出两个版本,上半年推出的用a标识,下半年推出的用b标识;
2012年9月份开发的MATLAB 8.0(R2012b),采用了全新的视图界面,具有MATLAB和 Simulink的重大更新,可显著提升用户的使用与导航体验,其包括64位和32位两个版本;
Symbolic Math
System Identification
Global Optimization 全局优化工具箱
Text Analytics
Image Acquisition 图像采集工具箱
Image Processing
图象处理工具箱
Instrument Control 仪表控制工具箱
LTE
开发环境
• 一套方便用户使用 的 MATLAB 函 数和 文件工具集,其中 许多工具是图形化 用户接口。它是一 个集成的用户工作 区,允许用户输入 输出数据,并提供 了M文件的集成编 译和调试环境,包 括 MATLAB 桌 面、 命令窗口、M文件 编辑调试器、工作 区浏览器和在线帮 助文档。
数学函数库
• 是数学算法的一个 巨大集合,包括初 等数学的基本算法 和高等数学、线性 代数等学科的复杂 算法等。用户直接 调用其函数就可进 行运算,它是 MATLAB系 统 的基 础组成部分。

matlab菜鸟教程

matlab菜鸟教程

matlab菜鸟教程Matlab是一种强大的数值计算和科学数据可视化软件。

它被广泛应用于工程、科学和金融等领域。

本教程将介绍Matlab的基本语法、常用函数和数据处理技巧,帮助初学者快速上手使用Matlab进行编程和数据分析。

1. Matlab环境搭建安装Matlab:在MathWorks官网下载并安装Matlab软件,按照向导进行安装。

打开Matlab:双击桌面上的Matlab图标或在开始菜单中找到Matlab并点击打开。

2. Matlab基本语法变量和常量:使用等号(=)将数值或表达式赋给变量。

例如:x = 5, y = sin(x)。

数据类型:Matlab支持多种数据类型,包括数值型、字符型和逻辑型等。

常用的数值类型有整数型、浮点型和复数型。

矩阵和数组:Matlab中的基本数据结构是矩阵和数组。

可以使用方括号([])定义矩阵和数组,并进行矩阵运算。

函数调用:Matlab提供了丰富的内置函数,可以直接调用进行数值计算、数据处理和图形绘制等操作。

条件语句:使用if语句进行条件判断,根据不同的条件执行不同的操作。

循环语句:使用for循环和while循环重复执行一段代码,根据循环条件来控制循环的执行次数。

3. Matlab常用函数数值计算:Matlab提供了多种数值计算函数,如sin、cos、exp、log等,用于计算三角函数、指数函数和对数函数等。

数据处理:Matlab提供了丰富的数据处理函数,如mean、sum、max、min等,用于计算数组的均值、总和、最大值和最小值等。

图形绘制:Matlab可以绘制各种类型的图形,如线图、散点图、柱状图和饼图等。

可以使用plot、scatter、bar、pie等函数进行图形绘制。

数据导入和导出:Matlab可以方便地导入和导出各种数据格式,如文本文件、Excel文件和图像文件等。

可以使用readtable、writetable、imread、imwrite等函数进行数据的读写操作。

MATLAB入门教程

MATLAB入门教程

MATLAB入门教程1.MATLAB的基本介绍MATLAB是由MathWorks公司开发的一种高级技术计算语言和交互式环境。

它通过矩阵和数组的运算,使得数据处理更加简洁高效。

Matlab还提供了强大的绘图功能,可以直观地展现数据,便于分析和展示。

2.安装与配置3.MATLAB的基本操作打开MATLAB软件后,会出现一个命令窗口和一个图形窗口。

命令窗口是输入和输出MATLAB命令的地方,图形窗口则用于显示图形、绘制曲线等。

3.1数值运算在命令窗口中可以直接进行数值运算,例如:输入2+3,按下回车键,即可得到结果5、MATLAB支持常见的数学运算符,如+、-、*、/等,也支持乘方运算、开方运算等。

3.2变量与赋值在MATLAB中,可以通过给变量赋值来存储数据,并进行后续的处理。

例如,可以输入a=5,即可将值5赋给变量a。

赋值后,通过输入变量名,即可获得变量的值。

3.3矩阵和向量在MATLAB中,矩阵和向量是重要的数据结构。

可以使用方括号([])来定义矩阵和向量,每一行用分号隔开。

例如,可以输入A=[123;456;789],即可定义一个3行3列的矩阵A。

通过输入A(1,2),可以获取矩阵A中第1行第2列的元素。

3.4绘图4.控制流程除了基本的数值运算和数据处理,MATLAB还支持控制流程,如条件语句和循环语句。

例如,可以使用if-else语句来实现条件判断,使用for循环和while循环来实现重复执行的操作。

5.函数和脚本在MATLAB中,可以创建自定义函数来实现特定的功能。

函数可以接受输入参数,并返回输出结果。

可以使用function关键字定义函数,使用end关键字结束函数定义。

创建的函数可以在命令窗口中调用和使用。

此外,还可以创建脚本文件。

脚本文件是一系列MATLAB命令的集合,可以保存在.m文件中。

通过运行脚本文件,可以一次性执行多个命令,便于重复性计算和自动化操作。

以上是MATLAB的入门教程,希望能帮助读者快速上手使用MATLAB进行基本的数据操作和简单的编程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1、基本运算与函数在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter 键即可。

例如:>> (5*2+1.3-0.8)*10/25ans =4.2000MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。

小提示:">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。

我们也可将上述运算式的结果设定给另一个变数x:x = (5*2+1.3-0.8)*10^2/25x = 42此时MATLAB会直接显示x的值。

由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。

小提示:MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。

MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。

若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:y = sin(10)*exp(-0.3*4^2);若要显示变数y的值,直接键入y即可:>>yy =-0.0045在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。

下表即为MATLAB常用的基本数学函数及三角函数:小整理:MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数(Signum function)。

当x<0时,sign(x)=-1;当x=0时,sign(x)=0;当x>0时,sign(x)=1。

> 小整理:MATLAB常用的三角函数sin(x):正弦函数cos(x):馀弦函数tan(x):正切函数asin(x):反正弦函数acos(x):反馀弦函数atan(x):反正切函数atan2(x,y):四象限的反正切函数sinh(x):超越正弦函数cosh(x):超越馀弦函数tanh(x):超越正切函数asinh(x):反超越正弦函数acosh(x):反超越馀弦函数atanh(x):反超越正切函数变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:x = [1 3 5 2];y = 2*x+1y = 3 7 11 5小提示:变数命名的规则1.第一个字母必须是英文字母2.字母间不可留空格3.最多只能有19个字母,MATLAB会忽略多馀字母我们可以随意更改、增加或删除向量的元素:y(3) = 2 % 更改第三个元素y =3 7 2 5y(6) = 10 % 加入第六个元素y = 3 7 2 5 0 10y(4) = [] % 删除第四个元素,y = 3 7 2 0 10在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。

MATLAB亦可取出向量的一个元素或一部份来做运算:x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算ans = 9y(2:4)-1 % 取出y的第二至第四个元素来做运算ans = 6 1 -1在上例中,2:4代表一个由2、3、4组成的向量若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace小整理:MATLAB的查询命令help:用来查询已知命令的用法。

例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。

(键入help help则显示help的用法,请试看看!)lookfor:用来寻找未知的命令。

例如要寻找计算反矩阵的命令,可键入lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。

找到所需的命令後,即可用help进一步找出其用法。

(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。

)将列向量转置(Transpose)後,即可得到行向量(Column vector):z = x'z = 4.00005.20007.60008.800010.0000不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:length(z) % z的元素个数ans = 6max(z) % z的最大值ans = 10min(z) % z的最小值ans = 4小整理:适用於向量的常用函数有:min(x): 向量x的元素的最小值max(x): 向量x的元素的最大值mean(x): 向量x的元素的平均值median(x): 向量x的元素的中位数std(x): 向量x的元素的标准差diff(x): 向量x的相邻元素的差sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和prod(x): 向量x的元素总乘积cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积dot(x, y): 向量x和y的内积cross(x, y): 向量x和y的外积(大部份的向量函数也可适用於矩阵,详见下述。

)若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:A = [1 2 3 4; 5 6 7 8; 9 10 11 12];A =5 6 7 89 10 11 12同样地,我们可以对矩阵进行各种处理:A(2,3) = 5 % 改变位於第二列,第三行的元素值A =1 2 3 45 6 5 89 10 11 12B = A(2,1:3) % 取出部份矩阵BB = 5 6 5A = [A B'] % 将B转置後以行向量并入AA =1 2 3 4 55 6 5 8 69 10 11 12 5A(:, 2) = [] % 删除第二行(:代表所有列)A =1 3 4 55 5 8 69 11 12 5A = [A; 4 3 2 1] % 加入第四列A =1 3 4 55 5 8 69 11 12 54 3 2 1A([1 4], :) = [] % 删除第一和第四列(:代表所有行)A =5 5 8 6这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。

小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。

举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。

此外,若要重新安排矩阵的形状,可用reshape命令:B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数B =5 89 125 611 5小提示:A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。

以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。

MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:x = sin(pi/3); y = x^2; z = y*10,z =7.5000若一个数学运算是太长,可用三个句点将其延伸到下一行:z = 10*sin(pi/3)* ...sin(pi/3);若要检视现存於工作空间(Workspace)的变数,可键入who:whoYour variables are:testfile x这些是由使用者定义的变数。

若要知道这些变数的详细资料,可键入:whosName Size Bytes ClassA 2x4 64 double arrayB 4x2 64 double arrayans 1x1 8 double arrayx 1x1 8 double arrayy 1x1 8 double arrayz 1x1 8 double arrayGrand total is 20 elements using 160 bytes使用clear可以删除工作空间的变数:clear AAUndefined function or variable 'A'.另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不到,但使用者可直接取用,例如:pians = 3.1416下表即为MATLAB常用到的永久常数。

小整理:MATLAB的永久常数i或j:基本虚数单位eps:系统的浮点(Floating-point)精确度inf:无限大,例如1/0 nan或NaN:非数值(Not a number),例如0/0pi:圆周率p(= 3....)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargin: 函数的输出引数个数1-2、重复命令最简单的重复命令是for圈(for-loop),其基本形式为:for 变数= 矩阵;运算式;end其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。

因此,若无意外情况,运算式执行的次数会等於矩阵的行数。

举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):x = zeros(1,6); % x是一个16的零矩阵for i = 1:6,x(i) = 1/i;end在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。

我们可用分数来显示此数列:format rat % 使用分数来表示数值disp(x)1 1/2 1/3 1/4 1/5 1/6for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为h = zeros(6);for i = 1:6,for j = 1:6,h(i,j) = 1/(i+j-1);endenddisp(h)1 1/2 1/3 1/4 1/5 1/61/2 1/3 1/4 1/5 1/6 1/71/3 1/4 1/5 1/6 1/7 1/81/4 1/5 1/6 1/7 1/8 1/91/5 1/6 1/7 1/8 1/9 1/101/6 1/7 1/8 1/9 1/10 1/11小提示:预先配置矩阵在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。

相关文档
最新文档