遥感图像处理遥感图像的校正

合集下载

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。

在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。

本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。

一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。

几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。

1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。

这些预处理步骤有助于提高图像的质量和准确性。

2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。

这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。

控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。

3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。

常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。

选择合适的变换模型可以提高校正的准确性和效率。

4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。

这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。

根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。

二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。

分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。

1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。

这些预处理步骤可以提高分类的准确性和可靠性。

遥感影像纠正的方法与技巧

遥感影像纠正的方法与技巧

遥感影像纠正的方法与技巧随着科技的不断发展,遥感技术在各个领域得到了广泛的应用。

遥感影像是通过卫星、飞机等远距离获取地面信息的一种重要手段。

然而,在获取遥感影像后,由于各种原因导致的图像扭曲、色差等问题是不可避免的。

因此,进行遥感影像纠正是必要的。

本文将介绍遥感影像纠正的常用方法与技巧。

一、几何校正方法几何校正是对遥感影像进行坐标、尺度和旋转方位的校正。

常见的几何校正方法有影像配准、地标匹配、插值等。

1. 影像配准影像配准是将待纠正影像与参考影像进行对比,通过匹配相同地物或地点的像素点,从而进行坐标转换。

常用的影像配准方法有基于特征点匹配和基于相位相关匹配两种。

基于特征点匹配的方法是通过提取影像中的特征点,并将其与参考影像中的特征点进行匹配,从而获得坐标转换模型。

OpenCV是一种常用的用于特征点匹配的开源库。

基于相位相关匹配的方法是通过计算两幅影像之间的相关性,确定它们之间的几何转换关系。

这种方法通常用于具有相位重建能力的传感器。

2. 地标匹配地标匹配是通过识别影像中的已知地标(如道路交叉口、建筑物等)并与参考影像中的地标进行匹配来进行校正的一种方法。

这种方法适用于城市建筑等具有明显特征的区域。

3. 插值插值是指通过对图像中间的像素值进行估算,从而使整个图像变得平滑过渡的过程。

常用的插值方法有双线性插值、双三次插值等。

这些方法可以使得图像在进行几何校正后仍保持较好的视觉效果。

二、辐射校正方法辐射校正是指对遥感影像中的亮度进行校正,以保证影像反映地物的真实辐射亮度。

常用的辐射校正方法有直方图匹配、大气校正、辐射转换等。

1. 直方图匹配直方图匹配是指通过将原始图像的灰度值映射到目标图像的灰度值范围来进行校正的方法。

这可以使得影像在亮度上看起来更加准确,同时保证地物的色彩还原度。

2. 大气校正大气校正是指通过估计大气光照对地面目标反射率的影响,将地表反射率从观测影像中恢复出来的一种方法。

这种方法适用于去除由大气散射引起的云、雾等干扰。

遥感图像处理的基本步骤与技巧

遥感图像处理的基本步骤与技巧

遥感图像处理的基本步骤与技巧遥感技术是指利用航天器、飞机、卫星等高空平台获得的遥感图像进行信息提取和数据分析的过程。

随着科技的不断进步和应用范围的扩大,遥感图像处理已经成为许多领域中的重要工具。

本文将介绍遥感图像处理的基本步骤与技巧,以帮助读者更好地理解和应用这一技术。

一、图像预处理遥感图像预处理是遥感图像处理的第一步,旨在通过去除噪声、辐射校正和几何校正等处理,使图像质量更高,方便后续处理。

其中,去除噪声主要是采用滤波算法,如中值滤波、均值滤波等。

辐射校正主要用于将图像的辐射能量转换为表观反射率,以消除云、阴影等因素的影响。

几何校正是通过对图像进行几何变换,将其与地理坐标系统对齐,以便于后续的地理信息提取。

二、特征提取特征提取是遥感图像处理的核心环节,目的是从遥感图像中提取出具有代表性和区分度的特征信息。

常用的特征包括光谱特征、纹理特征、形状特征等。

光谱特征是指根据图像像素的光谱反射率或辐射能量,提取出不同波段的特征。

纹理特征是指从图像中提取出地物的纹理信息,包括纹理方向、纹理密度等。

形状特征是指从图像中提取出地物的形状信息,包括面积、周长等。

三、分类与识别分类与识别是遥感图像处理中的重要任务,目的是将地物按照其属性进行分类和识别。

常见的分类方法包括监督分类和无监督分类。

监督分类是指根据已知的样本类别信息,通过训练分类器将图像中的地物分到不同的类别中。

无监督分类是指根据图像像素之间的相似性将其分为一定数量的类别。

分类结果可以用于制作地图、监测资源变化等。

四、变化检测变化检测是遥感图像处理中的一项重要任务,主要应用于监测和分析地表物体的变化。

遥感图像在不同时间获取的变化信息可以帮助我们了解自然和人类活动对地表的影响。

常见的变化检测方法包括像素级变化检测和对象级变化检测。

像素级变化检测是指比较两幅图像对应像素之间的差异,以确定变化的位置和类型。

对象级变化检测是指先将图像分割成不同的对象,然后比较不同时间获取的对象之间的差异。

如何进行遥感影像的几何校正与处理

如何进行遥感影像的几何校正与处理

如何进行遥感影像的几何校正与处理遥感影像的几何校正与处理是遥感技术中非常重要的环节,它涉及到遥感影像数据的准确性与可靠性。

本文将从几何校正的意义、校正方法和影像处理方面展开论述。

一、几何校正的意义几何校正是指将遥感影像与地球表面几何特征进行匹配,消除影像的位置偏移、旋转和尺度变化等因素,以实现影像在地球表面的精确准位。

几何校正的意义在于:1. 提高遥感影像的空间准确性:经过几何校正的影像能够准确反映地球表面目标的位置和形状,使得遥感分析结果具有更高的可信度。

2. 为后续影像处理提供基础:几何校正是影像处理的基础,只有经过几何校正的影像才能进行后续的影像处理,如图像拼接、变化检测等。

3. 便于地理信息的提取和分析:几何校正后的影像与地理坐标系相一致,可以方便地与其他地理信息数据进行集成,进行地理信息的提取和分析。

二、几何校正的方法目前常用的几何校正方法主要包括控制点法、全自动匹配法和传感器模型方法。

其中,控制点法是最常用的方法,具体步骤如下:1. 选择控制点:在影像上选择一些地面特征明显、位置准确的点,并测量其地理坐标。

2. 特征提取与匹配:通过图像处理技术提取影像和地面控制点的特征,并进行特征匹配。

3. 几何变换:根据控制点的匹配关系,运用几何变换模型(如多项式变换或仿射变换)进行影像的几何变换。

4. 前后视觉精度检查:经过几何校正后,通过前后视觉精度检查来评估影像的校正效果,并及时调整参数以提高校正精度。

除了控制点法,全自动匹配法和传感器模型方法也在一些特定情况下得到应用。

全自动匹配法基于图像匹配算法实现几何校正,传感器模型方法则通过利用传感器系统的几何模型进行影像校正,适用于高精度的几何校正需求。

三、影像处理方面几何校正完成后,还需要进行一系列的影像处理操作,以进一步提取有用的信息。

1. 影像增强:通过图像增强技术,改善影像的对比度、清晰度和色彩等,以提高影像的可视化效果。

2. 影像拼接:在几何校正的基础上,将多个遥感影像进行拼接,生成大尺度的影像,以满足大范围的遥感监测需求。

遥感图像处理的基本步骤和技巧

遥感图像处理的基本步骤和技巧

遥感图像处理的基本步骤和技巧遥感图像处理是利用遥感技术获取的遥感图像数据进行分析、处理和解释的过程。

遥感图像处理技术在环境监测、资源管理、农业和城市规划等领域具有广泛的应用。

本文将介绍遥感图像处理的基本步骤和技巧。

一、图像预处理图像预处理是遥感图像处理的第一步,目的是改善图像质量,消除噪声和其他不必要的干扰。

常见的图像预处理技术包括辐射校正、大气校正和几何纠正。

辐射校正是将原始图像中的数字数值转换为辐射亮度值,以消除由于不同仪器和观测条件引起的辐射差异。

大气校正则是通过对图像进行大气光校正,消除大气吸收和散射效应,获得更准确的地物辐射亮度信息。

几何纠正是校正图像中的几何畸变,使其与实际地面特征对应。

二、图像增强图像增强是通过增加图像的对比度和清晰度,突出感兴趣的地物信息。

常见的图像增强技术包括直方图均衡化、滤波和波段变换。

直方图均衡化是通过调整图像像素的亮度分布,增强图像对比度。

滤波是通过应用各种滤波器来去除图像中的噪声和模糊。

波段变换是将图像从一种波段转换到另一种波段,以提取不同地物特征。

三、特征提取特征提取是从图像中提取与感兴趣地物相关的信息。

常见的特征提取技术包括阈值分割、边缘检测和纹理分析。

阈值分割是将图像分为不同的区域,使每个区域具有相似的亮度或颜色特征。

边缘检测是寻找图像中的边界线,以辅助划分地物边界。

纹理分析是通过提取图像的纹理特征来描述地物的空间结构。

四、分类与识别分类与识别是将特定地物进行分类和识别的过程。

常见的分类与识别技术包括监督分类、无监督分类和目标检测。

监督分类是通过使用已知类别的训练样本,建立分类器对图像进行分类。

无监督分类是根据图像像素的统计特征将图像自动分为不同的类别。

目标检测是在图像中检测和识别特定的目标,例如建筑物、道路等。

五、图像解译与分析图像解译与分析是对处理后的遥感图像进行解释和分析的过程。

通过对图像分析可以获取地表特征的数量和质量信息,用于环境变化监测、资源管理和规划决策。

遥感图像的几何扭曲校正技术与应用方法

遥感图像的几何扭曲校正技术与应用方法

遥感图像的几何扭曲校正技术与应用方法近年来,随着遥感技术的飞速发展,遥感图像在各个领域的应用已经成为一种不可或缺的手段。

遥感图像的几何扭曲校正是遥感图像处理中的一个重要环节,它能够纠正因传感器、平台或地球表面等因素引起的图像几何变形,提高遥感图像的空间分辨率和准确度。

一、几何扭曲的原因和类型在进行遥感图像几何扭曲校正之前,我们首先要了解图像扭曲的原因和类型。

首先,传感器自身的非线性响应和畸变会引起图像的几何扭曲。

其次,不同位置的地面在图像中映射的位置会发生扭曲,这是由于地球表面的曲率和遥感平台的摆动等因素引起的。

此外,由于飞行速度、姿态控制和平台晃动等因素,遥感图像也可能出现增大或缩小的尺度扭曲。

根据扭曲的类型和性质,几何扭曲可以分为两类:刚体扭曲和非刚体扭曲。

刚体扭曲是指图像中的各个部分在平移、旋转和缩放等运动下保持形状不变,非刚体扭曲则是图像中的不同部分受到不同的形变。

针对刚体扭曲,我们可以采用刚体变换或仿射变换等方式进行校正;而对于非刚体扭曲,需要采用更为复杂的非刚体变换方法。

二、几何扭曲校正技术几何扭曲校正技术主要有两种方法:几何模型方法和控制点方法。

几何模型方法是根据遥感图像的特点和几何形态建立数学模型,通过变换矩阵对图像进行校正。

这种方法适用于刚体扭曲校正,常用的模型有多项式模型、平面投影模型和球面投影模型等。

多项式模型是最常见的方法,它通过多项式函数对图像进行变换,能够较好地纠正图像的几何扭曲。

另一种方法是控制点方法,它通过选取一定数量的控制点,根据真实地物在图像中的位置和坐标进行匹配,从而确定变换参数,并对图像进行扭曲校正。

这种方法适用于非刚体扭曲校正,能够更准确地还原图像的形状和变形情况。

控制点方法的关键在于控制点的选取和匹配精度,需要利用地面测量技术或其他高精度图像进行辅助。

三、几何扭曲校正的应用几何扭曲校正技术在遥感图像处理中有广泛的应用。

其中最常见的应用是地图制作和地理信息系统(GIS)建设。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image2.图像几何校正(Geometric Correction3.图像拼接处理(Mosaic Imgaes4.生成三维地形表面(3D Surfacing1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→裁剪范围(Subset Definition:ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→OK(关闭Subset对话框,执行图像裁剪方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit →输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数: →输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers:2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置: →AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框→单击OK(退出Subset对话框,执行图像裁剪→单击OK(退出Modeler对话框,完成图像裁剪1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

遥感实验2遥感图像的几何校正

遥感实验2遥感图像的几何校正
遥感实验2遥感图像的几何校正
contents
目录
• 引言 • 遥感图像几何校正的基本原理 • 遥感图像几何校正的步骤 • 实验操作与结果分析 • 问题与解决方案 • 实验总结与展望
01 引言
实验目的
掌握遥感图像几何校 正的基本原理和方法。
了解几何校正对遥感 图像应用的影响。
学会使用遥感软件进 行几何校正操作。
04 实验操作与结果分析
数据准备
数据来源
选择具有代表性的遥感图像,确保数据质量可靠且具有实际 应用价值。
数据预处理
对原始数据进行必要的预处理,如辐射定标、大气校正等, 以提高几何校正精度。
实验操作过程
几何校正方法选择
根据遥感图像的特点和实际需求,选择合适的几 何校正方法,如多项式校正、仿射变换等。
THANKS FOR WATCHING
感谢您的观看
06 实验总结与展望
实验收获与体会
实验收获
通过本次实验,我深入了解了遥感图像 的几何校正方法,掌握了常用的校正算 法。
VS
实验体会
在实验过程中,我遇到了很多困难和挑战 ,但通过不断尝试和探索,最终成功完成 了实验任务。
对实验的改进建议
算法优化
建议对常用的几何校正算法进行优化,提高校正精度和效率。
不同遥感图像的比例尺可 能存在差异,导致图像拼 接时出现不协调。
问题解决方案
使用地理参考数据
通过地理参考数据对遥感图像进行几何校正,使其与实际地形相 匹配。
图像配准技术
利用图像配准技术,将不同来源的遥感图像进行对齐,消除错位现 象。
调整图像比例尺
通过几何变换算法,调整不同图像的比例尺,使其一致,便于拼接。
数据来源多样性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变形图像
校正后
图 4-2
第二节 图像变换

遥感图像数据量很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的
方法对图像进行处理。在图像处理中,常常将图像从空间域转换到另一种域,利用这种域的特性来快速、
方便地处理或分析图像(如傅立叶变换可在频域中进行数字滤波处理),将空间域的处理转换为变换域的处
第四章 遥感图像处理
遥感技术的目的是为了获得地物的几何属性和物理属性。原始的遥感图像并不能地提供实现这个目的 所需的准确而完备的条件。为了实现这个目的,原始遥感影像需要经过图像处理,来消除成像过程中的误 差,改善图像质量。
遥感图像处理包括以下几个阶段:图像的校正(预处理),图像的变换,图像的增强,图像的分类。所 采用的手段有:光学图像处理和数字图像处理两种方法。
本章重点是掌握几何校正与图象变换方法。
图 4-1
第一节 遥感图像的校正
由于遥感成像过程中多种因素影响,致使遥感图像质量的衰减。遥感图像数据的校正处理就是消除遥 感图像因辐射度失真、大气消光和几何畸变等造成的图像质量的衰减。遥感图像质量衰减产生的原因和作 用结果都不相同,因此一般采用不同的校正处理方法。 4.1.1 辐射校正
4.2.1 傅立叶变换
傅立叶变换是图像处理中最常用的变换。它是进行图像处理和分析的有力工具。
针对遥感图像辐射失真或辐射畸变进行的图像校正。由于这种校正是通过纠正辐射亮度的办法来实现 的,因此称作辐射校正。
1. 造成遥感图像辐射畸变的因素 (1) 由遥感器的灵敏度特性引起的辐射失真 (2) 太阳高度及地形引起的辐射失真 2. 辐射校正的方法 总的来说,辐射校正的方法有两种:一是分析辐射失真的过程,建立辐射失真的数学模型,然后对此 数学模型求逆过程,用此逆过程求得遥感图像失真前的图像;二是利用实地测量的地物的真实辐射值,寻 找实测值与失真之后的图像之间的经验函数关系,从而得到辐射校正的方法。显然,第一种校正方法是与 失真过程有关的,第二种校正方法是与失真过程无关的。 4.1.2 大气校正 为消除由大气的吸收、散射等引起失真的辐射校正,称作大气校正。 1. 影响遥感图像辐射失真的大气因素 ( 1 )大气的消光(吸收和散射) ( 2 )天空光(大气散射)照射 ( 3 )路径辐射 2. 大气校正方法 常用的大气校正方法有两类。一类为基于理论模型的方法,该方法必须建立大气辐射传递方程,在此 基础上近似地求解。另一类方法为基于经验或统计的方法,如回归分析方法。 利用大气辐射传输方程来建立大气校正模型在理论上是可行的。实现精确的大气校正,必须找到每个 波段像元亮度值和地物反射率的关系。这需要知道模型中成像时刻气溶胶的密度、水汽的浓度等大气参数。 在现实中,一般很难得到这些数据,需要专门的观测来准确地测量这些数据,因此其方法应用受到一定限 制。
4.1.3 几何校正 1. 几何校正 校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。影响图像几何畸变的因素主要包括: ( 1 )遥感器的内部畸变:由遥感器结构引起的畸变,如遥感器扫描运动中的非直线性等。 ( 2 )遥感平台的运行状态:包括由于平台的高度变化、速度变化、轨道偏移及姿态变化引起的图像畸
理,不仅可减少计算量,而且可获得更有效的处理,有时处理结果需要再转换到空间域。这种转换过程称
为图像变换。遥感影像处理中的图像变换不仅是数值层面上的空间转换,每一种转换都有其物理层面上的
特定的意义。遥感图像处理中的图像变换主要有:傅立叶变换、沃尔什变换、离散余弦变换、小波变换、 K-L
变换、 K-T 变换等。这里主要介绍傅立叶变换、K-L 变换和 K-T 变换三种方法。
2. 几何校正的方法 一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要介绍一种通用的精校正方法。该方 法包括两个步骤: 第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关 系,实现不同图像空间中像元位置的变换; 第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完 成标准图像空间中每一像元亮度值的计算。 实现两个图像空间的转换通常有两种方法,即直接转换法与重采样法。 ( 1 )直接转换法 从原始畸变图像空间中的像元位置出发,建立空间转换关系,确定每个像元在标准图像空间中的正确 位置。 (2) 重采样法 该方法的特点是用标准图像空间中的像元点 G 位置反求其在原始畸变图像空间的共轭点 F(X,Y),然 后再利用某种方法确定这一共轭点的灰度值 ,并把共轭点的灰度值赋给标准图像空间对应点 g。 重采样法能够保证校正空间中网格像元呈规则排列,因而是最常用的几何精校正方法之一。 双线性内插法比与最近邻法相比,计算量增加了,但提高了精度,改善了灰度不连续现象及线状特征 的块状化现象。其缺点是这种方法对图像起到平滑作用,使图像变得模糊。由于这种方法计算量和精度适 中,因而常常被采用。 ( 3 )双三次卷积内插法 该方法采用一元三次多项式来近似函数。从理论上讲, 函数是最佳的插值函数,它考虑到原始畸变图 像空间中共轭点周围其它像元对共轭点灰度值都有各自的贡献,并认为这种贡献随着距离增加而减少。为 了提高内插精度,双三次卷积内插法采用共轭点周围相邻的十六个点来计算灰度值,这种一元三次多项式 内插过程实际上是一种卷积运算,故称为双三次卷积内插。该方法的优点是内插获得好的图像质量,细节 表现更为清楚。但位置校正要求更准确,对控制点选取的均匀性要求更高。其缺点是数据计算量大。
变。 ( 3 )地球本身对遥感图像的影响:包括地球的自转、高程的变化、地球曲率等引起的图像畸变。 几何校正包括几何粗校正和几何精校正。几何校正的方法有两种:一是分析几何畸变的过程,建立几
何畸变的数学模型,然后对此数学模型求逆函数(改为过程),用此逆函数(改为过程)求得遥感图像畸变前的 图像。二是利用实地测量的地物的真实坐标值,寻找实测值与畸变之后的图像之间的函数关系,从而得到 几何校正的方法。实际工作中常常将两种方法结合起来。
相关文档
最新文档