板式换热器的设计

板式换热器的设计
板式换热器的设计

广西科技大学

化工原理课程设计

设计题目:

固定管板式换热器的设计

姓名:

专业:食品科学与工程

班级:食品112班

学号: 201100602071

起止日期: 2013-12-23 — 2013-12-31

指导教师(签名):程谦伟

小组成员:陈小娟李岳群陆惠芝钟承志

韦年茂韦金妹饶川艳周萃妤设计成绩:日期 2013 12 25

目录

设计题目 (3)

说明书编写要求 (3)

设计任务书 (4)

一、设计方案 (5)

1.换热器的选择 (6)

2.结构设计工艺流程 (7)

3.流动空间及流速的确定 (8)

二、确定物性数据 (9)

三、计算总传热系数 (9)

1.热流量 (9)

2.平均传热温差 (9)

3.冷却水用量 (9)

4.总传热系数K (10)

四、计算换热面积 (11)

五、工艺结构尺寸 (11)

1.管径和管内流速 (11)

2.管程数和传热管数 (11)

3.平均传热温差校正及壳程数 (12)

4.传热管排列和分程方法 (12)

5.壳体内径 (12)

6.接管 (13)

六、换热器核算 (13)

1.热量核算 (14)

2.换热器内流体的流动阻力 (15)

3.换热器主要结构尺寸和计算结果 (16)

设备结构图(附图) (17)

主要符号说明 (17)

七、设计评述 (18)

参考文献 (19)

评语 (21)

广西科技大学

化工原理课程设计

说明书

设计题目:大豆油换热器的设计

说明书编写要求:

化工原理课程设计由说明书和图纸两部分组成。设计说明书为打印稿,包括所有论述、原始数据、计算、表格等,设计说明书一般不少于3000字,设计(论文)任务书装订于说明书的前页,其设计说明书具体书写格式及内容如下:

1、标题页

2、设计任务书

3、目录

4、设计方案简介

5、工艺流程草图及说明

6、工艺计算及主体设备设计

7、辅助设备的计算及选型

8、设计结果概要或设计一览表

9、对本设计的评述

10、附图(带控制点的工艺流程简图、主体设备设计条件图)

11、参考文献

12、主要符号说明

化工原理课程设计任务书

一、设计题目

大豆油换热器的设计

二、设计任务

1、处理量:2000kg/h 大豆油

2、设备型式:列管式(固定管板式)换热器

3、操作条件:

a.大豆油:入口温度133°C,出口温度40°C

b.冷却介质:循环水,入口温度30°C,出口温度40°C

c.允许压降:不大于105Pa

三、设计要求

1.设计一个固定管板式换热器

2.设计内容包括:

a.热力设计

b.流动设计

c.结构设计

d.强度设计

3.设计步骤:

1.根据换热任务和有关要求确定设计方案

2.初步确定换热器的结构和尺寸

3.核算换热器的传热面积和流体阻力

4.确定换热器的工艺结构

四、设计原则:

1.传热系数较小的一个,应流动空间较大,使传热面两侧的传热系数接近

2.换热器减少热损失

3.管、壳程的决定应做到便于除垢和修理,以保证运行的可靠性

4.应减小管子和壳体因受热不同而产生的热应力.从这个角度来讲,顺流式就优于

逆流式

5.对于有毒的介质或气相介质,必使其不泄露,应特别注意其密封性,密封不仅要可

靠,而且应要求方便及简洁

6.应尽量避免采用贵金属,以降低成本

五、课程要求:

1.要求每组成员共同进行查阅资料,在计算、绘图中进行分工合作

2.要求在1月10日前完成说明书的编写和绘图过程

3.要求每人上交一份说明书,每组一份图纸

(用A1图纸绘制装置图一张:一个设备大图,包含设备技术要求、主要参数、接管表、部件明细表、标题栏)

一、设计方案

方案简介:

列管式换热器又称管壳式换热器,是化工生产中应用最为广泛的一种换热设备,结构简单坚固,耐高压,可靠程度高、适应性强,制造材料范围广;单位体积所具有的传热面积大并传热效果好;而且种类多,型号全,制造工艺比较成熟。因此,本次设计就对传热过程所用设备——列管式换热器进行一次选型设计。

列管式换热器抗结构可分为固定管板式,浮头式、U形管式三种类型。选用时可根据应用条件的不同及各自的优缺点设计适宜的换热器。

要设计一个较完善的换热器,除了能满足传热方面的要求外,还力求传热效率高,体积小、重量轻、消耗材料少,制造成本低,清洗维护方便和操作安全等。因此列管式换热器的设计,首先必须根据化工生产工艺条件的要求通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,决定管数,管程数和壳程数,然后进行机械选型设计。

列管换热器选型设计过程已有成熟的资料,具体步骤如下:

(1)根据流体的物性及生产工艺条件的要求,确定流体通入的空间。

(2)确定流体在换热器两端的温度,选择列管换热器的型式。

(3)计算流体的定性温度,确定流体的物性数据。

(4)根据传热任务计算热负荷。

(5)依对流传热系数a2和a1,确定污垢热阻Rs2和Rsl。再计算总传热系数K计。据总传热系数的经验值范围,或按实际情况,选定总传热系数K选值。

(6)通过化工工艺计算,由总传热速率方程Q=KSΔt m初步算出传热面积S,并确定换热器的基本尺寸按系列标准选择设备规格。

(7)计算管程、壳程

(8)计算初选设备的管、壳程流体的压强降,如超过工艺允许的范围,需调整流速,再确定管程数或折流板间距,或选择另一规格的换热器,重新计算压降直到压强降满足要求为止。以上设计过程还要牵涉到大量公式,其具体计算式子可以参考文献[1]。

1.换热器的选择:

两流体温度变化情况:热流体大豆油的入口温度133℃,出口温度40℃;冷流体(循环水)进口温度30℃,出口温度40℃。由于两流体的温度不同,所以使管束和壳体的温度也不一样,因此它们的热膨胀程度也有差别。

列管式换热器中,由于冷热两流体温度不同,使壳体和管束的温度也不同。因此它们的热膨胀程度也有差别。若两流体的温度相差较大时,就可能由于应力而引起设备的变形,甚至弯曲和断裂,或管子从管板上松脱,因此必须采用适当的温差补偿措施,消除或减小热应力。根据采取热补偿方法的不同,列管换热器可分为以下几种主要型式:

(1)固定管板式。所谓固定管板式,即两端管板和壳体连接成一体的结构形式,因此它具有结构简单和造价低廉的优点,但壳程清洗困难,因此要求壳方流体应是较清洁且不容易结垢的物料。当两流体的温度差较大时,应考虑热补偿。而具有补偿圈(或称膨胀节)的固定管板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束膨胀不同时,补偿圈发生弹性变形(拉伸或压缩),以适应外壳和管束的不同热膨胀。此法适用于两流体温度差小于120℃壳程压力小于60MPa的场合。

(2)U形管换热器。U形管换热器每根管子都弯成U形,管子两端均固定在同一管板上,因此每根管子可以自由伸缩,从而解决补偿问题。这种型式换热器的结构也较简单,质量轻,适用于高温和高压的情况。其主要缺点是管程清洗比较困难;且因管子需一定的弯曲半径,管板利用率较差。

(3)浮头式的换热器。浮头式换热器两端管板中有一端不与外壳固定连接,该端称为浮头,这样当管束和壳体因温度差较大而热膨胀不同时,管束连同浮头就可在壳体内自由伸缩,而与外壳无关,从而解决热补偿问题。另外,由于固定端的管板是以法兰与壳体相连接的,因此管束可以从壳体中抽出,便于清洗和检修。所以浮头式换热器应用较为普遍,但结构比较复杂。金属耗量多,造价较高。

本设计所需要的换热器用循环冷却水冷却,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,当两流体的温度差较大时,可以选用固定管板式。而且它具有结构简单和造价低廉的优点。故本次设计初步确定选用固定管板式。

一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。

2.结构设计工艺流程

2.1 列管式换热器的选用步骤:

哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。

(1)不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3)压强高的流体宜走管内,以免壳体受压。

程,且可采用多管程以增大流速。

(4)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降。

本设计以油和循环冷却水作为传热媒介,水走管内,油走壳程,因为水的压强高、循环冷却水较易结垢、需要提高流速。为便于水垢清洗,应使循环水走管程,大豆油走壳程,综合考虑做此选择。

2.2 流体流速的选择

增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求:选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,单程变为多程使平均温度差下降。由于本换热器设计,总热负荷小,不需要太高的对流传热系数,油和水又是液体,再加之平均温度的下降影响了换热,所以在常见流速中选择了0.5m/s。

2.3 流体两端温度的确定

若换热器中冷热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。本次化工原理课程设计任务书的操作条件给出换热器中冷热流体的温度,因此就不存在确定流体两端温度的问题。

2.4 管子的规格和排列方法

(1)选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有ф25×2mm及ф19×2mm两种规格的管子。

管子的选用可参照GB151—1999,由于本设计要求大豆油为传热媒介黏度大,选择ф25×2mm。

(2)管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、2.5、3、4.5或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~10(对直径小的换热器可大些)。

本设计选用3m以配合管子的排列和管子数量能满足换热要求。

(3)如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排

列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。

本设计选用等边三角行排列,水对管子的腐蚀程度不高,相对于气体,液体为媒介的换热器更重要的是传热系数高。

(4)管子在管板上排列的间距(指相邻两根管子的中心距),随管子与管板的连接方法

,且相邻两管外壁间距不应小于6mm,即t 不同而异。通常,胀管法取t=(1.3~1.5)d

o

≥(d+6)。本设计采用焊接法连接,所以排列间距取t=32mm(管间距)。

(5)管程和壳程数的确定。当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。列管式换热器的系列标准中管程数有1、2、4和6程等四种。采用多程时,通常应使每程的管子数大致相等。考虑到选用管子直径小,为了不影响达到换热要求,本设计选用4程。

2.5 外壳直径的确定

换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。根据计算出的实际管数、管径、管中心距及管子的排列方法等,一般在初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。待全部设计完成后,仍应用作图法画出管子排列图。

2.6 材料选用

列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。在高温下一般材料的机械性能及耐腐蚀性能要下降。同时具有耐热性、高强度及耐腐蚀性的材料是很少的。常用的金属材料有碳钢、不锈钢,低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用。本设计壳体采用碳钢,管程采用不锈钢。本设计允许压降不大于105Pa,参照GB151—1999,不锈钢可以承受。

3.流动空间及流速的确定

管径选用ф25×2的较高级冷拔传热管(不锈钢),管内流速取U i= 0.5m/s。

二、确定物性数据

(1)定性温度:可取流体进口温度的平均值。(大豆油沸点>150℃)

壳程大豆油的定性温度为: T=(133+40)/2=86.5(℃)

管程流体的定性温度为: t=(30+40)/2=35℃

根据定性温度,分别查取壳程和管程流体的有关物性数据。 (2)大豆油在90℃下的有关物性数据如下:

密度: ρo =875.2 kg/m 3

定压比热容: c p o =2.052kJ/(kg·℃) 导热系数: λo =0.150W/(m·℃) 粘度: μo =0.00665 Pa·s (3)循环冷却水在35℃下的物性数据:

密度: ρi =993.95 kg/m 3

定压比热容: c pi 4.174 kJ/(kg·℃) 导热系数: λi =0.6257W/(m·℃) 粘度: μi =0.000728 Pa·s 三、计算总传热系数 1.热流量 :

Q o =m 0C p o Δt o =2000×2.052×(133-40)=381672 kJ/h=106.02 (kW) 2.平均传热温差:

△t m '=2

1

2

1ln t -t t t

????=

30

-4040-133ln

30)

-(40-40)-(133=37.2(℃)

3.冷却水用量 :

W i =

i

t Q ?Pi 0C ==

)/(03.9144)3040(174.4381672

h kg =-? 4.总传热系数K : 管程传热系数 :

Re=

i i 1μρu d i =86010.00072895

.9933.0021.0=??

Pr i =

i

i λ

μi p c =86.46257

.01028.710174.44

3=???-

αi =0.023

e

i d λRe 0.8Pr i 0.4

=0.023

02

.0626

.0(8601)0.8(4.86)0.4=1812W/(m 2 ℃) 壳程传热系数:

假设壳程的传热系数:αo =200 W/(m 2

℃); 污垢热阻:R si =0.00034394 m 2·℃/W ,

R so =0.00051590m 2·℃/W

管壁的导热系数λ=17.4 W/(m 2℃)

=

200

1

0005159.00.023×4.17025.0002.0021.0025.000034394.0021.01812025.01

+

+?+?+?

=149.09 W /(m·℃)

四、计算传热面积

S ’=

m t o ?K Q =37.2

×09.149106020=19.12(m 2)

假设考虑15%的面积裕度,则:S =1.15×S′=1.15×19.12=21.99(m 2)。

五、工艺结构尺寸

1.管径和管内流速:

选用ф25×2mm 传热管(不锈钢),取管内流速u i =0.5m/s

2.管程数和传热管数:

依据传热管内径和流速确定单程传热管数: n s =

u d V

i 24π=

3.0021.0021.0785.0)

95.9933600/(03.9144????=24.61

可取n s =28

按单程管计算,所需的传热管长度为L=

s o n d S π=28

025.014.399.21??=10.00(m) 按单管程设计,传热管过长,宜采用多管程结构,现取传热管长L=3m, 则该换热器管程数位:N= L/l=10.00/3=3.33≈4(管程) 传热管总根数:N=28×4=112(根) 3.平均传热温差校正及壳程数: 平均传热温差校正系数

R=

30

4040

133--=9.3

P=

30

13330

40--=0.097

按单壳程,双管程结构,温差校正系数应查有关图表。但R =10的点在图上难以读出,因而相应以1/R 代替R ,PR 代替P ,查同一图线,可得 φΔt =0.84

平均传热温差: Δt m=φΔt Δ′t m=0.84×37.2=31.25(℃)

4.传热管排列和分程方法:

采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。取管心距:t=1.25 d o 则

t =1.25×25=31.25≈32(mm )

横过管束中心线的管数:n C =1.19N =1.19112=12.59≈13(根) 5.壳体内径:

采用多管程结构,取管板利用率η=0.7,则壳体内径为

D=1.05t η/N =1.057.0/11232?=425.01(mm)

可取D =450mm 6.折流板

采用弓形折流板,取弓形折流板圆缺高度为壳体内径的20%,则切去的圆缺高度为h=0.20×450= 90(㎜) 则h 取90(mm )

取折流板间距B=0.2D ,则

B=0.2×450=90(㎜),则B 取90(㎜)

折流板数 N B

=1-折流板间距传热管长=

190

3000

-= 33(块) 折流板圆缺面水平装配。 7.接管:

壳程流体进出口接管:取接管内油品流速为 u =0.5m/s ,则接管内径为

d=

u

V

π4=5.014.3)2.8753600/(20004???=0.040m

则取标准管径为40mm 。

管程流体进出口接管:取接管内循环水流速 u =2.0m/s ,则接管内径为

d=

u

V π4=214.3)95.9933600/(594364???=0.040m

取标准管径为40mm.

六、换热器核算 1.热量核算:

①壳程对流传热系数 对圆缺形折流板,可采用凯恩公式

αo =0.36

e o d λRe o 0.55Pr 1/3(w

o u u

)0.14 当量直径,由正三角形排列得 :

(m)

壳程流通截面积:

S o =BD(1-

t

d o )=0.09)032.0025.01(450.0-??=0.0089(m 2

)

壳程流体流速及其雷诺数分别为

u o =

0089

.0)

2.8753600/(2000?=0.071m/s

Re o =

00665

.02

.875071.002.0??=187

普兰特准数 :

Pr=15

.000665.010052.23??=90.97

粘度校正

αo =0.36

02

.015

.01870.5590.971/3=215 W/(m 2·℃) ②管程对流传热系数

管程流通截面积S i =0.7852

112

021.0021.0??? =0.0194(m 2) 管程流体流速 :

U i =

0194.0)

95.9933600/(03.9144?=0.132m/s

R ei =

000728

.095

.993×0.132×021.0=3785

普兰特准数Pr=626

.01028.710174.44

3-???=4.86

αi =0.023

021

.06257

.0(3785)0.8(4.86)0.4=940W/(m 2·℃) ③传热系数

K

215

1

0005159.0023.04.17025.0002.0021.0025.000034395.0021.0940025.01

+

+??+?+?

=143.51 W/(m·℃)

④传热面积: S=

m t ?K Q =25

.3151.143106020?=23.64(m 2) 该换热器的实际传热面:

S p =)(e o n N L d -π=3.14?0.025?3?112=26.38( m 2)

该换热器的面积裕度为: H=

%100?-S

S

S P =(26.38-23.64)/23.64=11.59% 传热面积裕度合适,该换热器能够完成生产任务. 2.换热器内流体的流动阻力 ①管程流动阻力:

∑ΔP i =(ΔP 1+ΔP 2)F t N s N p

N s =1, N p =4, F t =1.4

由Re =8061,传热管相对粗糙度取0.006,查表得

λ

=0.033W/(m·℃),

流速:u i =0.132 m/s ,ρ=993,95 kg/m 3,所以

295

.993132.0021.03033.021???

=?P =324.72 P a 2

95

.993132.0322??=?P =25.98 P a

1×44.1)72.32498.25(??+=?∑i P =1963.9 P a <105P a

管程流动阻力在允许范围之内。

②壳程阻力

∑ΔP o=(ΔP 1′+ΔP 2′)F t N s N s =l ,F t =1.15

流体流经管束的阻力: 2

)

1(2'1

o

B c o u N n Ff P ρ+=?

F=0.5 ; 13=c n ; B N =33 ; u o =0.071

fo=1.52

ΔP 1′=0.5?1.52?13×(33+1)?993.95?0.0722/2=841.56a P 流体流过折流板缺口的阻力: B=0.090 m ;D=0.450m

ΔP 2′2

95

.993071.0450.00.09×25.3(332??

-?=)=256.29 Pa 总阻力: )29.25656.841(+=?∑i P ×1×1.15=1262.53(Pa )<105 Pa 壳程流动阻力也比较适宜。

3.换热器主要结构尺寸和计算结果

换热器主要结构尺寸和计算结果见表1

表1 换热器主要结构尺寸和计算结果

换热器形式:固定管板式管口表

换热面积,m2 : 26.38 符号尺寸用途连接型式工艺参数 a DN40 循环水口平面名称管程壳程 b DN40 油品入口平面物料名称循环水大豆油 c DN20 排气口平面操作压力,MPa0.4 0.3 d DN40 油品出口平面操作温度,℃30/40 133/40 e DN20 放净口平面流量,kg/h 9144.03 2000 f DN20 循环水口平面流体密度,kg/m3993.95 875.2

流速,m/s 0.071 0.132

传热量,kW 106.02

总传热系数,W/m2·K149.09

对流传热系,W/m2·K215 143.51

污垢系数,m2·K/W0.00034394 0.00051590

阻力降,MPa0.001964 0.001263

程数 4 1

推荐使用材料不锈钢碳钢

管子规格ф25×2管数:112 管长,

mm:3000

管间距,mm 32 排列方式正三角形

折流板型式上下间距,mm 90 切口高度:

20%

壳体内径,mm 450

设备结构图(附图)

主要符号说明

英文字母

B——折流板间距,m C——系数,无量纲;

△P——压降,Pa; Q——热负荷,W;

R——热阻,㎡·℃/W;因数; Re——雷诺准数;

S——传热面积,㎡; t——冷流体温度,℃;管心距,m;T——热流体温度,℃; u——流速,m/s;

W——质量流量,Kg/s Pr——普朗特系数;

b -----板厚,mm; K——总传热系数,℃

/;

m

W?2 d——管径,m; D——换热器外壳内径,m;

W h----煤油处理量,kg/s; f——摩擦系数;F——系数; h——圆缺高度,m;L——管长度,m; m――程数;

n——指数;管数;程数; N——管数;p——压力,Pa;因数; q——热通量,W/m2;

Q——传热速率,W r——半径,m;汽化潜热,KJ/Kg。

希腊字母

α——对流传热系数W/(㎡·℃);△——有限差值;λ——导热系数,W/(m·℃);μ——粘度,Pa·s;ρ——密度,㎏/m3;?——校正系数。

下标

C——冷流体; h——热流体;

i——管内; m——平均;

o——管外; s——污垢。

七、设计评述

列管式换热器(固定管板式),具有结构简单、紧凑、布管多,管内便于清洗,更换、造价低的特点。适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。

本文提出的换热器的设计,在工艺设计上考虑了传热系数、管壳程压降等对换热器设计的影响,同时对管壳式大豆油冷却器的结构及相关的技术参数进行了设计和计算.虽然所列公式繁多,但严格按照化工原理的公式,计算,能满足设计要求,符合有关技术规范(GB151—1999)。

(1)根据换热器的特性,比较散热结构、材料确定了大豆油冷却器结构形式设计方案。

(2)计算大豆油冷却器传热部分如传热系数、平均温度等,以及校核相关设计参数。

(3)根据设计参数和传热计算数据确定了大豆油冷却器具体结构尺寸,如壳程数、壁厚、管束数、内径、管长、折流板数、折流板间距等。

回顾本次设计的整个过程,以及我们的设计成果,现总结如下:

首先,从设计的过程和结果来看,我认为本次设计的工艺计算、选型过程是严谨的、合理的;所选换热器的型号、结构也能满足工艺的要求,基本上达到了设计任务的要求。

其次,从校核的结果来看,管程的压力降为0.4MPa,是合理的,可用的。而壳程的压力降0.3MPa在经验值的范围内似乎略显大了些;究其原因,可能是由于壳程流体的流速选择偏大的缘故,但考虑到实际流速在可造经验值的范围内,所以也认为是可用的。

最后,通过这次课程设计,培养了我们的独立思考、工作的能力,使我们初步了解和掌握了一些有关化工设计方面的基础知识,受到一次化工设计技能方面的基本训练。因此,从始至终,不论是查文献、计算、还是绘图,大家的积极性始终高涨,大家一致认为,通过设计不仅学到了知识、技能,而且还充满了乐趣。这也是老师安排课程设计的目的所在。同时也增强了我们的团队精神。

从设计结果可看出,冷却水出口温度不同,若要保持总传热系数,温度越大、换热管数越多,折流板数越多、壳径越大,这主要是因为水出口温度增高,总的传热温差下降,所以换热面积要增大,才能保证Q和K。因此,换热器尺寸增大,金属材料消耗量相应增大。通过这个设计,我们可以知道,为提高传热效率,降低经济投入,设计参数的选择十分重要.

本次设计所选的列管式换热器及工艺流程符合设计要求。设计过程中,我们除了考虑换热器的处理量和换热效果外,也考虑了生产成本。如在选择板材时,有多种材料可供选择,但我们考虑到碳钢来源方便,而且价格相对便宜,就选择了碳钢。我们明白实际生产中还要考虑很多因素,所以设计还存在一些缺陷。

通过对列管式换热器的设计,我们懂得了工艺设计的基本方法。了解了如何根据设计要求确定工艺设备,并学会了如何根据工艺过程的条件查找相关资料,并从各种资料中筛选出较适合的资料,根据资料确定主要工艺流程,主要设备及计算出主要设备及辅助设备的各项工艺参数及数据,经过计算核算是否满足设计要求。设计中,我们查阅了许多关于换热器的资料,不但进一步了解了其设备结构及工艺流程,还学习到了主体设备图和工艺流程图的制法。同时,通过计算,我们熟悉了化工原理课程设计的流程,加深了对冷却器设备的了解,而且学会了更深入的利用图书馆及网上资源,对前面所学课程知识有了更深入的了解和认识。但由于本课程设计属第一次设计,而且时间比较仓促,查阅文献还有限,本课程设计还不够完善,不能够进行有效可靠的计算。

课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是我们学生理论

联系实际的一次很好的机会,化工原理课程设计是食品及化工类专业学生运用自己已学课程的知识来解决常规化工设计中的问题的一次很好地、全面地锻炼过程,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。通过设计可以不断增强学生运用综台知识的能力,解决工程实际问题的能力和全面分析问题的能力。课程设计需8要同学自己做出决策,自己确定实验方案、选择流程、查取资料、进行过程和设备的计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是增强工程观念、培养提高学生独立工作能力的有益实践。因此,我们在学完化工原理课程后,安排了此次为期两周的课程设计。

近年来,依靠计算机按规定的最优化程序进行自会寻优的方法得到日益广泛的应用。传统列管换热器设计选型过程是根据生产任务,用手工计算,手工选型。该过程往往要反复选型,反复计算,设计时间长,计算复杂、繁琐,因此,计算机软件提供了列管换热器型号库,并通过计算程序来代替上述复杂的参数计算,能快速按照生产任务设计出符合要求的换热器,设计周期短,方便。计算机软件能运用于工业实际设计,可以快速、准确设计出生产所需换热器。

总之,化工生产本身是复杂的,影响因素很多。综合平衡、全面考虑各种复杂的影响因素,是设计成功与否的关键。要获得这方面的知识和能力.唯一的途径是多次进行设计的实践本次设计,当然也必然存在它的不足,相信通过多次这样的设计训练,我们所设计出的成果定将日趋完善。

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

板式换热器的结构设计与计算

摘要 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效紧凑换热器。各相邻板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器的传热性能与板面的波纹形状、尺寸及流程组合方式都有密切关系。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数高,结构紧凑,占地面积小,价格低,安装方便,易清洗,在适用的范围内有取代管壳式换热器的趋势。板式换热器应用很广,尤其是更适宜用于医药、食品、制酒、化工等工业,并且随着板型、结构上改进,正在进一步扩大它的应用领域。 本文对板式换热器的发展及应用领域作了简要的介绍,通过板式换热器的传热原理,进行板式换热器热力计算和阻力计算,在满足了校核条件下,设计出板片波纹形式为双人字形、板片数为149片的并联流程组合的可拆卸式板式换热器。在此基础上,用AutoCAD绘制板式换热器零件图及装配图。设计的换热器工艺性好,安全可靠,便于操作、安装,成本低。 关键词:板式换热器;结构设计;传热计算;阻力计算

Abstract Plate heat exchanger is a new compact and efficient heat exchanger, consists of a series of corrugated sheet metal with a certain shape made of stacked. Formed thin rectangular channels between adjacent plates, through plates exchange heat. Plate heat exchanger heat transfer performance are closely related with plate’s corrugated shape, size and process combinations. Compared with the conventional shell and tube heat exchanger, at the same flow resistance and pump power consumption, it has the advantages of high heat transfer coefficient, compact, small footprint, low price, easy to install and clean. It has the trends replace shell and tube heat exchanger within applicable range. Plate heat exchanger applications is very broad, especially more suitable for medicine, food, wine, chemical and other industries. With the improvement of plate’s shape and structural, its field of application is further expanding. In this paper, the development and applications of plate heat exchanger was made a brief introduction.Through the principles of heat transfer of the plate heat exchanger, performed thermal and resistance calculations, under meeting the checking conditions, designs detachable plate heat exchanger, that plate’s corrugated shape is double herringbone, plate number is 149, process composition is parallel. On this basis, using AutoCAD to draw plate heat exchanger parts and assembly drawings. Designed heat exchanger technology is good, safe, reliable, easy to operate, install, and low cost. Keywords:plate heat exchanger; structural design; heat transfer calculation; resistance calculation

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修) 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器是液—液、液—汽进行热交换的理想设备。它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。本课件由暖通南社独立完成整合编辑,欢迎转载,但请注明出处。 板式换热器基本结构及运行原理 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹

板、水平平直波纹板和瘤形板片三种。 钎焊换热器结构 板式换热器主要结构 ⒈板式换热器板片和板式换热器密封垫片 ⒉固定压紧板 ⒊活动压紧板 ⒋夹紧螺栓 ⒌上导杆 ⒍下导杆 ⒎后立柱 由一组板片叠放成具有通道型式的板片包。两端分别配置带有接管的端底板。 整机由真空钎焊而成。相邻的通道分别流动两种介质。相邻通道之间的板片压制成波纹。型式,以强化两种介质的热交换。在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。

图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。 板式换热器所有备件都是螺杆和螺栓结构,便于现场拆卸和修复。 运行原理 板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

(完整版)固定管板式换热器毕业设计论文

优秀论文审核通过 未经允许切勿外传 新疆工程学院 毕业设计(论文) 2013 届 题目固定管板式换热器设计 专业设备维修技术 学生姓名韩向阳 学号 小组成员侯磊、张立东、蒋颖超 指导教师蔡香丽、薛风 完成日期

新疆工程学院教务处印制

新疆工程学院 毕业论文(设计)任务书班级化设备10-6班专业设备维修技术姓名韩向阳日期 2013.3.4 1、论文(设计)题目:固定管板式换热器设计 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的内容和工作量,最好是独立完成。(2)选题有一定的理论意义与实践价值,必须与所学专业相关。 (3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域内的成果及其最新进展。 (5)格式规范,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在5月15日之前交论文初稿。 3、论文(设计)日期:任务下达日期 2013.3.4 完成日期 2013.4.10 4、指导教师签字: 新疆工程学院 毕业论文(设计)成绩评定 报告

序 号 评分指标具体要求分数范围得分1 学习态度 努力学习,遵守纪律,作风严谨务实,按期完成规 定的任务。 0—10分 2 能 力 与 质 量 调研论 证 能独立查阅文献资料及从事其它形式的调研,能较 好地理解课题任务并提出实施方案,有分析整理各 类信息并从中获取新知识的能力。 0—15分 综合能 力 论文能运用所学知识和技能,有一定见解和实用价 值。 0—25分 论文(设 计)质量 论证、分析逻辑清晰、正确合理,0—20分 3 工作量 内容充实,工作饱满,符合规定字数要求。绘图(表) 符合要求。 0— 15分4 撰写质量 结构严谨,文字通顺,用语符合技术规范,图表清 楚,字迹工整,书写格式规范, 0— 15分 合计0—100分评语: 成绩: 评阅人(签名): 日期: 毕业论文答辩及综合成绩

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

板式换热器设计

南京工业大学 《材料工程原理B》课程设计 设计题目:板式换热器1-油处理能力17000公斤 /小时 专业:高分子材料与工程 班级:高材1001班 学号: 1102100124 姓名: 联系方式: 日期: 2013-1-5---2013-1-14 指导教师:张振忠 设计成绩:日期: 2013-1-14

目录 设计任务书 (3) (一)设计题目 (3) (二)设计任务及操作条件 (3) 第一章设计方案简介 (4) 1.1 板式换热器概述 (4) 1.2 确定设计原则 (7) 第二章板式换热器的工艺设计计算 (10) 2.1 设计计算步骤 (10) 2.2 工艺设计数据一览表 (11) 2.3 板式换热器设计计算 (12) 2.4 压降核算 (16) 2.5 换热器主要结构尺寸及计算结果一览表 (17) 第三章辅助设备的计算与选择 (19) 3.1 水泵的选择 (19) 3.2 油泵的选择 (19) 第四章附图 (21) 4.1 工艺流程图 (21) 4.2 主体设备工艺图 (22) 第五章设计小结 (24) 5.1 设计小结 (24) 5.2 参考文献 (25) 5.3 答辩及评语 (26)

设计任务书 (一)设计题目 板式换热器-油处理能力17000公斤/小时 (二)设计任务及操作条件 1、处理能力见下表 2、设备型式板式换热器 3、操作条件 (1)油:入口温度100℃,出口温度40℃ (2)冷却介质:冷却塔循环水,入口温度30℃,出口温度50℃。(3)油侧与水侧允许压强降:不大于5×105 Pa (4)油定性温度下的物性参数: 名称 ρ(kg/m3)Cp (KJ/ ㎏·℃) μ(Pa.s)λ(W/m·℃)油825 2.22 8.66×10-40.14 油的中性温度= 240 100+=70℃

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

固定管板式换热器设计结构设计说明

固定管板式换热器设计结构设计 第一章绪论 1 研究的目的和意义 随着现代工业的发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1]。 换热器是一种实现物料之间热量传递的节能设备,在石油、化工、冶金、电力、轻工、食品等行业应用普遍。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%一45%。近年来随着节能技术的发展,换热器的应用领域不断扩大,带来了 显著的经济效益[2]。 目前,在换热设备中,管壳式换热器使用量最大。因此对其进行研究就具有很大的意义。 换热器换热过程是为了实现下列目的:⑴通过减小设计传热面积来减小换热器的体积和质量⑵.提高已有换热器的换热能力⑶.使换

热器能在较低额温差下正常工作⑷.通过减小换热器的流体阻力来减少换热器的动力消耗 2 国内外发展状况 2.1管程强化传热研究进展 换热管是管壳式换热器的主要组成部分,以下是列举的集中国内外新型高效换热管以及它们的作用 2.1.1螺旋槽管 螺旋槽管是一种管壁上具有外凸和内凸的异形管,管壁上的螺旋槽能在有相变和无相变的传热中明显提高管内外的传热系数,起到双边强化的作用。根据在光管表面加工螺旋槽的类型螺旋槽管有单头和多头之分,其主要结构参数有槽深e、槽距p和槽旋角β。美国、英国、日本从1970年至1980年间对螺旋槽管进行了大量的研究[1] 2.1.2横纹管 华南理工大学曾研究过1974年前苏联提出的一种换热管,研究表明:在相同流速下,横纹管的流体阻力较单头螺旋槽管的流体阻力要小。[2] 2.1.3螺旋扁管 梁龙虎[3]经实验研究,表明螺旋扁管管内膜传热系数通常比普通圆管大幅度提高,在低雷诺数时最为明显,达2~3倍;随着雷诺数的

设备选型—换热器

一、换热器类型的选取 1.换热器分类: (1)按照使用目的分类:冷却器、加热器、再沸器、冷凝器等; (2)按照结构分类:管壳式、板式、管式等。 2.换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、制造条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。3.管壳式换热器 管壳式换热器的应用范围很广,适应性很强,还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。以下内容均用于管壳式换热器 二、工艺条件的选定 1.压降 较高的压降值导致较高的流速,因此会导致较小的设备和较少的投资,但运行费用会增高,较低的允许压降值则与此相反。所以,应该在投资和运行费用之间进行一个经济技术比较。换热器的压降可以参考相关的经验数据。 允许压降必须尽可能加以利用,如果计算压降与允许压降有实质差别,则必须尝试改变设计参数。 在设计中要充分利用允许压降用;而增加一点压降会增加很大的经济性,则应再

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论 (3) 1.1什么是管壳式换热器······································3 1.2管壳式换热器的分类········································3 第二章总体结构设 计·············································4 2.1固定管板式换热器结构 (4) 第三章机械设计 (4) 3.1工艺条件··················································4 3.2设计计算 (4) (1)管子数 n···············································5 (2)换热管排列形式········································5(3)管间距的确定···········································5 (4)壳程选择···············································5 3.3 筒体 (6) (1)换热器壳体内径的确定··································6 (2)换热器封头的选择 (6) 3.4 折流板 (6) (1)折流板切口高度的确定 (6) (2)确定折流板间距........................................6(3)折流板的排列方式.. (7) (4)折流板外径的选择······································7(5)折流板厚度的确定······································7 (6)折流板的管孔确定 (7) 3.5 拉杆、定距管 (7) (1)拉杆的直径和数量 (7) (2)拉杆的尺寸 (8) (3)拉杆的布置············································9 (4)定距管 (9) 3.6、防冲

人字形波纹板片结构的板式换热器

人字形板片,其结构如图1所示,波纹板片相互倒置后叠放在一起,上下成人字形的波纹,从而形成周期性变化的通道,流体流过此通道时呈不规则的流动形态,即形成交叉流及曲折流等湍流强度较高的流体形态。 如图1所示,3块换热板片形成了上、下两通道,分别流经冷流体和热流体,由于存在温度差,热流体将热量经过中间板片传递给冷流体的同时,受到上、下板片所形成的人字形的扰动,从而形成曲折流,在较低雷诺数(Re≈23~400)就能发生湍流,同时由于实验模型可有多种样式,采集数据量大,因而采用数值模拟形式具有很大的优越性。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德是全球领先的板式换热器板片生产商和销售商,拥有国内品种最全,型号最多的板式换热器板片!能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的全部常用型号的板式换热器板片。

艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。艾瑞德(ARD艾瑞德板式换热器(江阴)有限公司)在全球设有多个标准化工厂及库存中心,服务和销售网点遍布全球。 ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD 艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐 /AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式换热器板片和垫片。全球约有1/5的板式换热器正在使用ARD艾瑞德板式换热器(江阴)有限公司提供的换热器配件或接受ARD艾瑞德板式换热器(江阴)有限公司的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD艾瑞德板式换热器(江阴)有限公司都能为

固定管板式换热器的设计

固定管板式换热器的设计 第一章.设计方案概述和简介 一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。化工生产中换热器的使用十分普遍,由于物料的性质、要求各不相同,换热器的种类很多。了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。 按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器三种。化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量:另一种流体温度较低,吸收热量。换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位 二、列管式换热器的分类 1、 U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 2、固定管板式换热器 固定管板式换热器主要是由筒体、封头、管板、换热管、管箱、折流板及法兰等组成,管束两端固定在管板上,管板和筒体之间是刚性连接在一起,相互之间无相对移动,换热器结构简单、制造方便、造价较低;在相同直径的壳体内可排列较多的换热管,而且每根换热管都可单独进行更换和管内清洗;但管外壁清洗较困难。当两种流体的温差较大时,会在壳壁和管壁中产生温差应力,一般当温差大于50摄氏度时就应考虑在壳体上设置膨胀节以减小温差应力。但当管、壳温差大于70摄氏度时,壳程压力超过0.6Mpa时,导致膨胀节过厚失去温差补偿作用。因此,固定管板式换热器适用于壳程流体清洁,不易结垢,管程常用要清洗,冷热流体温差不太大的场合。

板式换热器选型设计原则及方法

板式换热器选型设计原则及方法 单板面积的选择一般板式换热器选择首先是按流速确定角孔直径,角孔处流速一般控制在6m/s,当板片角孔确定后,板片的系列就能确定了。角孔直接一定的情况下,不同的制造商有不同板型,有的就一~种,有些较多。我知道的有一公司,在100mm角孔直接下,有多达7种板片。面积大小有3个规格,流道宽度有2个。至于单片面积的大下,我的经验是在满足工艺要求的情况下,应从价格上考虑。从单片面积的造价比,越大越便宜,但是整机价格得考虑框架的价格,所以而个应综合考虑。单片面积小,框架价格低,但是板片单价高。并且单片面积太下,处除了占地大,一般也难达到单流程的板片布置。(2)板间流速的选取基本同意楼主的观点,一般0.2m/s是下限,但是上限0.8m/s好象稍低了。不过这得看制造商的板片波纹。(3)流程的确定补充楼主观点:板式换热器流程在工业上一般都布置成单流程,这样在检修时可不用拆处接管。在卫生和食品上,多流程的应用较多。因为换热器一般都比较小。(4)流向的选取一般的板式换热器都是取纯逆流布置的。 可拆式板式换热器在换热站的应用情况 加热载体为 1.1MPa、230℃的蒸汽;供暖载体为热水,供水温度为92℃,回水温度为70℃,供水压力为0.5MPa、回水压力为0.14MPa。因原管壳式换热器设备陈旧,维修量大,并且蒸汽的消耗量有逐年递增的趋势。于是在2006年大修期间,将原管壳式换热器改造成板式换热器。1、板式换热器 板式换热器(plateheatexchangers,简称PHE)是一种新型高效换热器。其发明始于1872年,最初主要用于食品工业,后来逐渐扩大至造纸、医药、冶金、矿山、机械制造、电力、船舶、采暖及石油化工等其它工业领域。目前世界较知名的板式换热器生产厂家有瑞典的Alfa-laval(阿法拉伐)、SWEP(舒瑞普)、德国的GEA公司、英国的APV、日本的Hisaka(日版制作所)等。板式换热器由一系列具有一定波纹形状的金属片叠装而成,由于其特殊结构,使得板式换热器具有以下优点。 1.1 、总传热系数高,设备占地面积小 板式换热器的板片一般制成槽形或波纹形,介质在流道内的流动呈复杂的三维流动结构,其流动方向及流动速度均不断变化,造成很大的扰动,在低雷诺数(一般Re=50~200)下即可诱发湍流(而列管式换热器则要求雷诺数达到2000以上)。由于大的扰动减薄了液膜的厚度,可防止杂质在传热面上沉积粘附,从而减小污垢热阻,加之板片厚度仅0.6~0.8mm,热阻较小,另外在板式换热器中,冷热流体分别从板片的两侧通过,流体流道较小,不会出现象管壳式换热器那样的旁路流,故总传热系数较高。若以水/水为传热介质,板式换热器的总传热系数可达8360~25080kJ/m2•;h•;℃为管壳式换热器传热系数的3~5倍,但其设备体积仅为管壳式换热器的30%左右。 1.2 、传热效率高。板式换热器的传热效率非常高,国际上已有多家公司能提供最小对数平均温差△Tm=1℃的板式换热器产品。但冷热物流最小对数平均温差过小将导致换热器的换热面积很大,从工程应用角度而言并不经济。 1.3 、对数平均温差大。提高传热对数平均温差是强化传热效果的重要手段。流体的流动方向和方式都会影响对数平均温差。板式换热器内流体的流动总体上呈并流或逆流的方式,其传热平均温差的修正系数通常为0.95左右。而在管壳式换热器中,两种流体分别在壳程和管程内流动,总体上是错流的流动方式,即在壳程为混合流动,在管程为多股流动,所以传热平均温差的修正系数一般较小(约0.8左右)。 1.4 、组装灵活,操作弹性大。使用维修方便板式换热器由若干张板片组装而成,只需增、减板片的数量即可方便地调节换热面积的大小,因此使用非常灵活,操作弹性大,并且不象管壳式那样,需要预留出很大的空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,维修方便。 2 、板式换热器的适用条件及应用于换热站的实施方案 板式换热器虽然具有以上优点,但它并不能完全取代管壳式换热器。一方面是因为板式换热器对介质的洁净程度要求较高,它要求介质中杂质颗粒直径小于 1.5~2mm;另一方面是因为早期的板框式换热器(俗称可拆式板式换热器)只能适用于工作压力小于 1.6MPa、工作温度介于120~165℃之间的工况。 因换热站热源采用的是 1.1MPa;230℃的过热蒸汽,受密封垫片的耐温限制(普通EPDM垫片耐温150℃,耐高温的EPDM垫片耐温

板式换热器的基本结构

板式换热器的基本结构 板式换热器主要由框架和板片两大部分组成。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫

相关文档
最新文档