微积分知识点英语版

微积分知识点英语版
微积分知识点英语版

简介微积分

数学就像一种奇妙的幻想,但这种奇妙幻想最终还是会真实的体现在现实中。做数学运算有一种在做一个想象的发明的感觉,但它确定是强化我们的洞察力的过程,所以我们在周围任何地方都可以发现那样的情景模式,我们数学教育的目标是为了飞跃到现实的脚步之前并分享数学运算带来的理智愉悦的体验。

微积分的发展史是数学的重要做成部分。极限、函数、导数、积分和无穷级数等内容在微积分中所体现。微积分这门学科依然在现代数学教育史中占据一席之地。微分学和积分学统称为微积分学。这两大部分间起桥梁作用的是著名的微积分学基本定理。微积分研究的主要内容是丰富、变化的。微积分课程是先进思想的传播课程,后来人们也将微积分称为数学分析。微积分作为工具广泛用于在科学,经济学,工程等领域,用于解决许多问题,这是代数这门学科独自解决是不能满足的。

一、微积分

希腊数学家阿基米德是第一个找到切线方向的曲线,除了一个圆圈,在一个方法类似于微积分。当研究螺旋时,他一个点的运动分开成两个部分,一个径向运动部件和一个圆周运动部件,然后继续增加双组分在一起从而找到切线运动的曲线。

印度数学家及天文学家阿雅巴塔在499年为解决无穷小天文问题,采用了新的观念和表达方式,创造性的利用了一种基本微分方程形式。Manjula,在世纪十周年开个玩会,详细阐述了该微分方程一个评论。该方程skara最终导致Bha 二世时12世纪发展一种衍生为代表无穷小观念的改变,而他描述早期版本的“罗尔定理”。在15世纪,一个早期版本中值定理parameshvara是在天文学的喀拉拉学校里他的评定中和数学登顶,巴卡拉II被首次描述(1370-1460)。

在17世纪,欧洲数学家撒向后拉线,皮埃尔、德、费,布莱斯帕斯科,约翰沃利斯和其他学者讨论了概念的衍生体系,特别是,在Methodus广告disquirendam maximan最小风险,在tangentibus等linearum curvarum,开发出一种方法测定费最大值、最小值,并对各种曲线的切线相当于分化。艾萨克、牛顿后来写他自己的想法微分早期直接来自“费马研究极值的问题”。

二、积分学

计算面积和体积是微积分的基本功能。这可以追溯到莫斯科纸莎的手写稿(约1820年),其中一名埃及数学家成功的运用微积分知识计算金字塔形锥体的体积。希腊geometers被人认为是利用无穷小解决问题的显著体现者。德谟克利特是称自己是第一个经过慎密,严肃考虑后,将对象划分成无数的横切面。但他不能把其合理化,如果想把光滑的斜坡构思成数学中的一个离散的锥形截面,这个问题是他走入到了思想紧闭区,所以他必须创造出新的理论。大约在相同的时间点上,季诺也急于这方面的思考,使得他焦头烂额后,给出了无穷小理论的悖论。

安提和欧多克斯把它们进行分割成若干的部分,能过计算出地区和固体的面积和体积,这个过程穷尽了他们所熟悉的一般方法,阿基米德进一步创造了这一方法,利用启发式思想,最后得出结论是有点类似于现代的概念。(阿基米德将方形上的抛物线的研究方法应用于球体和圆柱体。)到了牛顿时代,这些方法都

过时了,它不应该被认为是无穷理论的基础,这一说法在此期间流传,然而,希腊数学家说恰是它的这种方法被应用于几何证明是可以被确定为一个正确的理论。

11世纪积分学走上了一个新的层次,一位在埃及工作的伊拉克籍数学家实在欧洲挺有盛誉的,他提出的问题推动了对四次方程求根问题的思考。在他所学的书中,有效解决了上述问题。其中,采用了一种方法很容易的确定出整数求和的问题。他在抛物面上求体积,而且能够将其进行推广,最终得到多项式的积分,并以此获得新的荣誉,他的这种方式接近于一般多项式的积分,但是还有限制因素就是四次多项式。

三、现代微积分

詹姆斯、格雷戈里能证明17世纪中叶微积分一个版本第二基本定理是受限制的。牛顿和莱布尼兹判别法通常被人为是现代的发明,微积分理论日渐成熟与17世纪后期。他们最重要的贡献是发展发展微积分基本定理。同时,大量利用莱布尼兹判别法做出一致的工作和有用的符号以及概念,牛顿是第一个在该领域组织成为一个一致的主题,并提供了一些方法,也是最重要的应用,尤其是积分学的理论基础。巴德费惠更斯,沃利斯以及其他许多人也做出了重要贡献。

四、应用

微积分作为工具解决了物理学以及天文学的问题,这是当代科学的起源。18世纪这些应用不断增多,直接接近拉普拉斯和拉格朗日整体研究的分析领域,拉格朗日(1773年)称我们应该引入动态的潜力理论,虽然名称是“潜在功能”,但科学基本的回忆录必须是绿色的(1827年,1828年印)。进入分析物理问题的其他应用程序种类繁多,在这个地方是不可能的,赫姆霍兹用自己的劳动特别声明,因为在他的动力,电力等理论所做出的贡献,并带来了他伟大的分析能力,并用来承担力学的基本公理,以及对于那些纯粹的数学。此外,微积分被引入到社会科学,新古典经济学。今天它成为主流经济学的有价值得工具。

博耶,卡尔、数学史、纽约:约.威利父子,1991年。

威廉.瑟斯顿,通告阿米尔数学SOC.1990年

Introduction to the calculus

Mathematics is like a flight of fancy,but one in which the fanciful turns out to be real and to have been present all long.Doing mathematics has the feel of fanciful invention,but it is really a process for sharpening for sharpening our perception so that we discover patterns that are everywhere around.To share in the delight and the intellectual experience of mathematics-to fly where before we walked-that is the goal mathematical education.

History of Calculus is part of the history of mathematics focused on limits,functions,derivatives,integrals,and infinte series.the subject,known historicall as infinitesimal calculus,constitutes a major part of modern mathematics education.It has two major-branches,differential calculus and integral calculus,which are related by the fundamental theorem of calculus.calculus is the study of change,in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations.A course in calculus is a gateway to other,more advanced courses in mathematics devoted to the study of functions and functions and limits,broadly called mathematical analysis.Calculus has widespread applications in science,economics,and engineering and can solve many problems for which algebra alone is insufficient..

Differential calculus

The Greek mathematician Archimedes was the first to find the tangent to a curve,other than a circle,in a method akin to differential calculus.while studying the spiral,he separated a point's motion into two components,one radial motion component and one circular motion component,and then continued to add the two component motions together thereby finding the tangent to the curve.

The Indian mathematician astronomer Aryabhata in499used notion of infinitesimals and expressed an astronomical problem in the from of a basic differential equation.Manjula,in the10th century,elaborated on this differential equation in a commentary.this equation eventually led Bh a skara II in the12th century to develop the concept of a derivative representing infinitesimal change,and he described an early from of“Rolle’s theorem”.In the15th century,an early version of the mean value theorem was first described by parameshvara(1370-1460)from the Kerala school of astronomy and mathematics in his commentaries on.

Govindasv miand and Bhaskara II.

In the17th century,European mathematicians Isaac Barrow,Pierre de Fermat,Blaise pascal,John Wallis and others discussed the idea of a derivative.In particular,in Methodused disquirendam maximamet minima and in De tangentibus linearum curvarum,Fermat developed a method for detemining maxima,minima and tangents to various curves that was equivalent to differentiation..Isaac Newton would later write that his own early ideas about calculus came directly from“Fermat’s way of drawing tangents”.

Integral calculus

Calculating volumes and areas,the basic function of integral calculus,can be

traced back to the Moscow papyrus(c.1820BC),in which an Egyptian mathematician successfully calculated the volume of a pyramidal frustum.Greek geometers are credited with a significant use of infinitesimals.Democritus is the first person recorded to consider seriously the division of objects into an infinite number of cross sections,but his inability to rationalize discrete cross sections with a cone’s smooth prevented him from accepting the idea.At approximately the same time,zeno of Elea discredited infinitesimals further by his articulation of the paradoxes which they create.

The next major step in integral calculus came in the11th century,when I bal-haytham(known as Alhacen in Europe),an Iraqi mathematician working in Egypt,devised what is now known as“Alhazen’s problem”,which leads to an equation of the fourth degree,in his Book of Optics.while solving this problem,he his the first mathematician to derive the formula for the sum of the fourth powers,using a method that is readily generalizable for determining the general formula for the sum of any integral powers.He performed integration in order to find the volume of a parabolic,and was able to generalize his result for the integrals of polynomials up to the fourth degree.He thus came close to finding a general formula for the integrals of polynomials,but he was not concerned with any polynomials higher than the fourth degree.

Antiphon and later Emulous are generally credited with implementing the method of exhaustion,which made it possible to compute the area and volume of regions and solids by breaking them up into an infinite number of recognizable shapes.Archimedes developed this meth further,while also inventing heuristic methods which resemble modern day concepts somewhat.(See Archimedes’Quadrate of the Parabla,The Method,Archimedes on spheres Cylinders.)It was not until the time of Newton that these methods were made obsolete.It should not be thought that infinitesimals were put on rigorous footing during this time,however.only when it was supplemented by a proper geomeyric proof would Greek mathematicians accept a proposition as true.

Modern calculus

James Gregory was able to prove a restricted version of the second fundamental theorem of calculus in the mid-17thcentury.Newton and Leibniz are usually credited with the invention of modern infinitesimal calculus in the late17th century.their most important contributions were the development of the fundamental theorem of calculus.Also,Leibniz did a great deal of work with developing consistent and useful notation and concepts.Newton was the first to organize the field into one consistent subject,and also provided some of the first and most important applications,especially of integral calculus.Important contributions were also made by barrow,de fermat,Huygens,Wallis and many others.

Applications

The application of the infinitesimal calculus to problems in physics and astronomy was contemporary with the origin of the science.All throught the eighteenth century these applications were multiplied until at its close Laplace and Lagrange had brought the whole range of the study of forces into the realm of

analysis.To Lagrange(1773)we owe the introduction of the theory of the potential into dynamics,although the name“potential function”and the fundamental memoir of the subject are due to Green(1872,prited in1828).The labors of Helmholtz should be especially mentioned,since he contributed to the theories of dynamics,electricity,etc,and brought his great analytical powers to bear on the fundamental axioms of mechanics as well as on those of pure mathematics.Furthermore,infinitesimal calculus was introduced into the social sciences,starting with Neo classical economics.Today,iit is a valuable tool in mainstream economics.

Boyer,car.a History of Mathematies.New York:John Wiley Sons,1991.

William Thurston,Notices Amir.Math.Soc.1990.

微积分英文专业词汇

微积分词汇 第一章函数与极限 Chapter1Function and Limit 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X ontoY 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection 算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值函数absolute value 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if(iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 单调函数monotone function 函数的奇偶性parity(odevity)of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 反函数inverse function 直接函数direct function 复合函数composite function 中间变量intermediate variable 函数的运算operation of function 基本初等函数basic elementary function 初等函数elementary function 幂函数power function 指数函数exponential function 对数函数logarithmic function 三角函数trigonometric function 反三角函数inverse trigonometric function 常数函数constant function 双曲函数hyperbolic function 双曲正弦hyperbolic sine 双曲余弦hyperbolic cosine 双曲正切hyperbolic tangent 反双曲正弦inverse hyperbolic sine 反双曲余弦inverse hyperbolic cosine 反双曲正切inverse hyperbolic tangent

高等数学 英文试题A

西南大学课程考核

《高等数学IA 》课程试题 【A 】卷 (1) The function 4 14 )(-= x x f at x = 4 is ( ). A. not continuous, f (4) does not exist and )(lim 4 x f x → does not exist. B. continuous. C. not continuous, )(lim 4 x f x → exists but f (4) does not exist D. not continuous, )(lim 4 x f x → and f (4) exist but )4()(lim 4 f x f x ≠→. (2) For the function y = arcsin x , we have the assert ( ). A .'y is undefined at x = -1 and x = 1, so its graph has not tangent lines at ??? ??2π, 1 and ??? ? ? --2π,1. B .since its graph has not tangent lines at ??? ??2π, 1 and ??? ? ? --2π,1,'y is undefined at x = -1 and x = 1. C .'y is defined at x = -1 and x = 1, and its graph has tangent lines at ??? ??2π, 1 and ??? ?? --2π,1. D .'y is undefined at x = -1 and x = 1, and its graph has tangent lines at ?? ? ??2π, 1 and ??? ? ?--2π,1. (3) =?x x x d )(ln 1 5( ) . A. C x x +- 4 )(ln 41 B. C x +-6)(ln 61. C. C x +- 4)(ln 41 D. C x x +-6 ) (ln 61 . (4) The definite integral =+?-x x x d 131 1 32 ( ). A. 334 B. 324. C. 423 D. 4 33 (5) Area of shaded region in the following figure is ( ).

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

(完整版)微积分术语中英文对照

微积分术语中英文对照 A、B: Absolute convergence :绝对收敛 Absolute extreme values :绝对极值 Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值 Absolute value function :绝对值函数Acceleration :加速度 Antiderivative :原函数,反导数 Approximate integration :近似积分(法) Approximation :逼近法 by differentials :用微分逼近 linear :线性逼近法 by Simpson’s Rule :Simpson法则逼近法 by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数 Arc length :弧长 Area :面积 under a curve :曲线下方之面积 between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线 horizontal :水平渐近线 slant :斜渐近线 vertical :垂直渐近线 Average speed :平均速率 Average velocity :平均速度 Axes, coordinate :坐标轴 Axes of ellipse :椭圆之对称轴 Binomial series :二项式级数 Binomial theorem:二项式定理 C: Calculus :微积分 differential :微分学 integral :积分学 Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西中值定理Chain Rule :链式法则 Circle :圆 Circular cylinder :圆柱体,圆筒 Closed interval :闭区间 Coefficient :系数 Composition of function :复合函数 Compound interest :复利 Concavity :凹性 Conchoid :蚌线 Conditionally convergent:条件收敛 Cone :圆锥 Constant function :常数函数 Constant of integration :积分常数 Continuity :连续性 at a point :在一点处之连续性 of a function :函数之连续性 on an interval :在区间之连续性 from the left :左连续 from the right :右连续 Continuous function :连续函数 Convergence :收敛 interval of :收敛区间 radius of :收敛半径 Convergent sequence :收敛数列 series :收敛级数 Coordinates:坐标 Cartesian :笛卡儿坐标 cylindrical :柱面坐标 polar :极坐标 rectangular :直角坐标 spherical :球面坐标 Coordinate axes :坐标轴 Coordinate planes :坐标平面 Cosine function :余弦函数 Critical point :临界点 Cubic function :三次函数 Curve :曲线 Cylinder:圆筒, 圆柱体, 柱面 Cylindrical Coordinates :圆柱坐标 D: Decreasing function :递减函数 Decreasing sequence :递减数列 Definite integral :定积分 Degree of a polynomial :多项式之次数 Density :密度 Derivative :导数 of a composite function :复合函数之导数 of a constant function :常数函数之导数directional :方向导数 domain of :导数之定义域 of exponential function :指数函数之导数higher :高阶导数 partial :偏导数 of a power function :幂函数之导数 of a power series :羃级数之导数 of a product :积之导数 of a quotient :商之导数 as a rate of change :导数当作变化率 right-hand :右导数 second :二阶导数 as the slope of a tangent :导数看成切线之斜率Determinant :行列式 Differentiable function :可导函数 Differential :微分 Differential equation :微分方程 partial :偏微分方程 Differentiation :求导法 implicit :隐求导法 partial :偏微分法 term by term :逐项求导法 Directional derivatives :方向导数Discontinuity :不连续性

微积分试卷及答案6套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 三. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 四. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 五. 若当0x x →时,α与β 是等价无穷小量,则=-→β β α0 lim x x 。 六. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 七. )ln(arcsin )(x x f =的连续区间是 。 八. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 九. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 十. ='?))((dx x f x d 。 十一. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大 时产量Q 是 。 二. 单项选择题 (每小题2分,共18分) 十二. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极 限一定不存在 十三. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点

(D) 连续点 十四. =+-∞→13)1 1(lim x x x ( )。 (A) 1 (B) ∞ (C) 2e (D) 3e 十五. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 十六. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以 除外)存在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或∞,则a x g x f x x =''→)() (lim 0或∞ (B) 若a x g x f x x =''→)()(lim 0或∞,则a x g x f x x =→) () (lim 0或∞ (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 十七. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 十八. 曲线2 ) 2(1 4--= x x y ( )。 (A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线, 又有垂直渐近线 十九. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有 (A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值 二十. 若?(x )的导函数是2 -x ,则?(x )有一个原函数为 ( ) 。 x

微积分试卷及答案

. 2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 3 1 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设 ()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+ 2.设 2 d 11x k x +∞=+? ,则k = ( ).

. (A) 2π (B) 22π (C) (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 13(1)2n n n n ∞ =-∑ (D) 1 1(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1. 2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分) 1.设 arctan y z x =,求2,.z z z x y x y ???????,

英文版-微积分试卷答案-(1).doc

1、 (1) lim sin 2x 0 . x x (2) d(arctan x) 1 2 dx 1+x (3) 1 dx x-cot x+C sin 2 x (4). ( e 2 x )(n) 2n e 2 x . (5) 4 2xdx 26/3 1 2、 (6) The right proposition in A. If lim f (x) exists and lim the following propositions is ___A_____. g (x) does not exist then lim( f (x) g( x)) does not exist. x a x a x a B. If lim f (x) , lim g (x) do both not exist then lim( f ( x) g (x)) does not exist. x a x a x a C. If lim f (x) exists and lim g (x) does not exist then lim f ( x) g(x) does not exist. x a x a x a D. If lim f (x) exists and lim g (x) does not exist then lim f ( x) does not exist. x a x a x a g( x) (7) The right proposition in the following propositions is __B______. A. If lim f (x) f (a) then f ( a) exists. x a B. If lim f (x) f (a) then f (a) does not exist. x a C. If f (a) does not exist then lim f (x) f (a) . x a D. If f ( a) y f (x) (a, f (a)) . does not exist then the cure does not have tangent at (8) The right statement in the following statements is ___D_____. lim sin x 1 A. 1 B. lim(1 x) x e x x x C. x dx 1 x 1 C b 1 5 dx b 1 5 dy D. x a 1 y 1 a 1 (9) For continuous function f ( x) , the erroneous expression in the following expressions is ____D__. A. d ( b f (b) B. d ( b f (a) f ( x)dx) f (x)dx) db a da a C. d ( b 0 D. d ( b f (b) f ( a) f (x)dx) f (x)dx) dx a dx a (10) The right proposition in the following propositions is __B______. A. If f (x) is discontinuous on [ a, b] then f ( x) is unbounded on [ a,b] . [ 第 1 页 共 5 页 ]

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

微积分常用英文词汇 分章

英汉微积分词汇 English-Chinese Calculus Vocabulary 第一章函数与极限 Chapter 1 Function and Limit 高等数学higher mathematics 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 象限quadrant 原点origin 坐标coordinate 轴axis x 轴x-axis 整数integer 有理数rational number 实数real number 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心center of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X onto Y 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection

算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值absolute value 绝对值函数absolute value function 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if (iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 最小上界least upper bound 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 严格递减strictly decreasing 严格递增strictly increasing 单调函数monotone function 函数的奇偶性parity (odevity) of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 周期函数periodic function 反函数inverse function 直接函数direct function 函数的复合composition of function

微积分考试题

2011年微积分CI 期末试题 一、计算下列各题(本题有5个小题,每小题6分,共30分) 1. 求极限 () n n n n n cos lim 424 +-+∞ → 2. 求极限 ?? ? ??+-+-→1212111lim 1 x x x x 3. 求极限 ??? ? ? ?-- ∞ →21 8lim 3n n n 4. 求极限 x x e x x sin ) 1ln(1lim 0++--∞→ 5. 已知 ?+=C xe dx x f x )(,求? +dx x f x ) (1 二.计算下列各题(本题有6个小题,每小题6分,共36分) 6. 设 x x y )2cos 1(+=,求π=x dy |。 7. 设函数?? ?≤>++=0 , 0,)1ln()(x a x b ex x f x ,)1,0(≠>a a 确定b a ,的值,使得)(x f 在0=x 处可导,并求)0('f 。 8. 设 ) ()('x f x e e f y =,其中)(x f 二阶可导,求'y 。 9. 设)(x f y =是由方程0162 =-++x xy e y 所确定的隐函数,求)0("y 。 10.求不定积分 ? -+---dx e e e e x x x x 2 22。 11. 求不定积分 ? +xdx x arctan )1(2。 三.综合题(本题有4个小题,共34分) 12(8分) 证明不等式1,1) 1(2ln >+-> x x x x 。 13(8分) 已知函数)(x f 在区间]1,0[上连续,在)1,0(内可导,且0)0(=f ,1)1(=f 。 证明:(1)存在)1,0(∈ξ使得ξξ-=1)(f 。 (2)存在两个不同的)1,0(,∈ξη使得1)(')('=ηξf f 14(8分)某服装公司正在推广某款套装。公司确定,为卖出该款服装x 套,其单价应为

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

微积分(下)英文教材

Chapter 1 Infinite Series Generally, for the given sequence ,.......,......,3,21n a a a a the expression formed by the sequence ,.......,......,3,21n a a a a .......,.....321+++++n a a a a is called the infinite series of the constants term, denoted by ∑∞ =1 n n a , that is ∑∞ =1 n n a =.......,.....321+++++n a a a a Where the nth term is said to be the general term of the series, moreover, the nth partial sum of the series is given by =n S ......321n a a a a ++++ 1.1 Determine whether the infinite series converges or diverges. Whil e it’s possible to add two numbers, three numbers, a hundred numbers, or even a million numbers, it’s impossible to add an infinite number of numbers. To form an infinite series we begin with an infinite sequence of real numbers: .....,,,3210a a a a , we can not form the sum of all the k a (there is an infinite number of the term), but we can form the partial sums ∑===0 000k k a a S ∑==+=1 101k k a a a S ∑==++=2 2102k k a a a a S

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

英文版微积分试卷答案(1)

1、 (1) sin 2lim x x x →∞= 0 . (2) d(arctan )x = 2 1 d 1+x x (3) 21 d sin x x =? -cot +C x x (4).2() ()x n e = 22n x e . (5) x =? 26/3 2、 (6) The right proposition in the following propositions is ___A_____. A. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim(()())x a f x g x →+does not exist. B. If lim ()x a f x →,lim ()x a g x →do bot h not exist then lim(()())x a f x g x →+does not exist. C. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim ()()x a f x g x →does not exist. D. If lim ()x a f x →exists and lim ()x a g x →does not exist then () lim () x a f x g x →does not exist. (7) The right proposition in the following propositions is __B______. A. If lim ()()x a f x f a →=then ()f a 'exists. B. If lim ()()x a f x f a →≠ then ()f a 'does not exist. C. If ()f a 'does not exist then lim ()()x a f x f a →≠. D. If ()f a 'does not exist then the cure ()y f x =does not have tangent at (,())a f a . (8) The right statement in the following statements is ___D_____. A. sin lim 1x x x →∞= B. 1 lim(1)x x x e →∞+= C. 11d 1x x x C ααα += ++? D. 5511 d d 11b b a a x y x y =++?? (9) For continuous function ()f x , th e erroneous expression in the following expressions is ____D__. A. d (()d )()d b a f x x f b b =? B. d (()d )()d b a f x x f a a =-?

英文版 微积分试卷答案 (1)

1、 (1) sin 2lim x x x →∞ = 0 . (2) d(arctan )x = 2 1d 1+x x (3) 2 1 d sin x x = ? -cot +C x x (4).2()()x n e = 22n x e . (5)0 x =? 26/3 2、 (6) The right proposition in the following propositions is ___A_____. A. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim (()())x a f x g x →+does not exist. B. If lim ()x a f x →,lim ()x a g x →do bot h not exist then lim (()())x a f x g x →+does not exist. C. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim ()()x a f x g x →does not exist. D. If lim ()x a f x →exists and lim ()x a g x →does not exist then ()lim () x a f x g x →does not exist. (7) The right proposition in the following propositions is __B______. A. If lim ()()x a f x f a →=then ()f a 'exists. B. If lim ()()x a f x f a →≠ then ()f a 'does not exist. C. If ()f a 'does not exist then lim ()()x a f x f a →≠. D. If ()f a 'does not exist then the cure ()y f x =does not have tangent at (,())a f a . (8) The right statement in the following statements is ___D_____. A. sin lim 1x x x →∞ = B. 1 lim (1)x x x e →∞ += C. 1 1d 1x x x C α αα += ++? D. 5 5 11d d 11b b a a x y x y = ++? ? (9) For continuous function ()f x , the erroneous expression in the following expressions is ____D__. A.d (()d )() d b a f x x f b b =? B. d (()d )()d b a f x x f a a =-? C. d (()d )0 d b a f x x x =? D. d (()d )()()d b a f x x f b f a x =-? (10) The right proposition in the following propositions is __B______. A. If ()f x is discontinuous on [,]a b then ()f x is unbounded on [,]a b .

相关文档
最新文档