固体物理基本概念题参考解答
固体物理试题分析及答案

固体物理试题分析及答案一、选择题(每题2分,共10分)1. 固体物理中,晶格振动的量子化描述是()。
A. 声子B. 电子C. 空穴D. 磁子答案:A分析:晶格振动的量子化描述是声子,声子是晶格振动的量子化激发,是固体物理中描述晶格振动的基本准粒子。
2. 能带理论中,导带和价带之间的能量差称为()。
A. 能隙B. 费米能级C. 功函数D. 电子亲和能答案:A分析:能带理论中,导带和价带之间的能量差称为能隙,能隙的大小决定了材料的导电性质。
3. 布拉格定律描述的是()。
A. X射线衍射B. 电子衍射C. 光的干涉D. 电子的散射答案:A分析:布拉格定律描述的是X射线衍射现象,它给出了X射线在晶体中衍射的条件,是晶体结构分析的重要理论基础。
4. 金属中的自由电子模型中,电子的准经典描述是()。
A. 费米气体B. 玻色气体C. 爱因斯坦模型D. 德布罗意波答案:A分析:金属中的自由电子模型中,电子的准经典描述是费米气体,它描述了金属中电子的统计行为和能量分布。
5. 固体中的超导现象是由于()。
A. 电子-电子相互作用B. 电子-声子相互作用C. 电子-光子相互作用D. 电子-电子排斥答案:B分析:固体中的超导现象是由于电子-声子相互作用,这种相互作用导致了电子配对,从而形成了超导态。
二、填空题(每题2分,共10分)1. 固体物理中,晶格常数的倒数与晶格振动频率成正比,这个关系称为________。
答案:德拜模型分析:德拜模型描述了晶格振动频率与晶格常数的关系,指出晶格常数的倒数与晶格振动频率成正比。
2. 能带理论中,材料的导电性由________决定。
答案:费米能级分析:能带理论中,材料的导电性由费米能级决定,费米能级位于导带和价带之间,决定了材料的电子分布和导电性质。
3. 在固体物理中,________是指晶体中原子排列的规则性和周期性。
答案:晶格分析:晶格是指晶体中原子排列的规则性和周期性,它是固体物理中描述晶体结构的基本概念。
固体物理学习题解答(完整版)[1]
![固体物理学习题解答(完整版)[1]](https://img.taocdn.com/s3/m/b770b80b7cd184254b353568.png)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,R f R b31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123oo o a n h da n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()ooa n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为 (001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(28(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量
固体物理试题解答

一.简答题(20)1、玻恩-卡门边界条件及其重要意义。
玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。
书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。
P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。
这就是金属一般较软的原因之一。
显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。
但事实上位错是很难消除的。
相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。
金属淬火就是增加位错的有效办法。
将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。
这些点缺陷容易形成位错。
也就是说,在高温时,晶体内的位错缺陷比常温时多得多。
高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。
数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。
3、杂化轨道理论。
P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。
碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。
固体物理习题解答-完整版

ρ
π / 6 ≈ 0.52
3π / 8 ≈ 0.68 2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
1/ 2
3a / 4
2a / 4
a/2
2a 3
c ⎛3⎞ 1.2 证明理想的六角密堆积结构(hcp)的轴比 = ⎜ ⎟ 2 ⎝8⎠
ε A ,对六角晶系,绕 x 轴
(即 a 轴)旋转 180 度和绕 z 轴(即 c 轴)旋转 120 度都是对称操作,坐标变换矩阵分别为
⎛1 0 0⎞ ⎜ ⎟ Ax = ⎜ 0 − 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛ −1/ 2 ⎜ Az = ⎜ − 3 / 2 ⎜ ⎜ 0 ⎝
3 / 2 0⎞ ⎟ −1/ 2 0⎟ ⎟ 0 1⎟ ⎠
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤
面指数越简单的晶面,其晶面的间距越大 晶面上格点的密度越大,这样的晶面越容易解理 1.7 写出体心立方和面心立方晶格结构中,最近邻和次近邻的原子数,若立方边长为a,写 出最近邻和次近邻原子间距 解 简立方 最近邻数 最近邻间距 次近邻数 次近邻间距 6 a 12 面心立方 12 体心立方 8
固体物理习题解答-完整版

2.3
若一晶体的相互作用能可以表示为 u ( r ) = − 求 1 )平衡间距 r 0
α
r
m
+
β
rn
3 )体弹性模量 4 )若取
2 )结合能 W (单个原子的)
m = 2, n = 10, r0 = 0.3 nm, W = 4 eV ,计算 α , β 值。
解 1)晶体内能 U ( r ) =
N α β (− m + n ) 2 r r
⎛ ε 11 3ε 22 ⎜ + 4 4 0 ⎞ ⎜ ⎟ ⎜ 3ε 11 3ε 22 ε 23 ⎟ = ⎜ − + 4 4 ⎜ ε 33 ⎟ ⎠ ⎜ 3ε 23 − ⎜ 2 ⎝ − 3ε 11 3ε 22 + 4 4 3ε 11 ε 22 + 4 4 − − 3ε 23 ⎞ ⎟ 2 ⎟ ε ⎟ − 23 ⎟ 2 ⎟ ε 33 ⎟ ⎟ ⎠
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
⎛ ε 11 ε 12 ⎜ 假 设 六 角 晶 系 统 的 介 电 常 数 为 ε = ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
⎛ ε 11 ε 12 ⎜ ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
ε 13 ⎞ ⎟ ε 23 ⎟ 则 由 ε = AT ε Ax 得 ε 33 ⎟ ⎠
x
ε 13 ⎞ ⎛ ε 11 − ε 12 − ε 13 ⎞ 0 ⎞ ⎛ ε 11 0 ⎟ ⎟ ⎜ ⎟ ⎜ ε 23 ⎟ = ⎜ − ε 21 ε 22 ε 23 ⎟ 可见 ε = ⎜ 0 ε 22 ε 23 ⎟ 将上式代入 ε = AzT ε Az ⎜ ⎜0 ε ε 33 ⎟ ε 33 ⎟ ε 33 ⎟ 32 ⎠ ⎠ ⎝ ⎠ ⎝ − ε 31 ε 32
固体物理学概念和习题 答案

《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最小平行单元。
2.给出维格纳-赛茨原胞的定义。
答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。
3.二维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七大晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。
7. 给出三维、二维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布里渊区的定义。
10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。
12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。
13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以与光学支、声学支各自的振动特点。
(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。
17. 请描述金属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声子碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。
23. 写出金属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电子运动的布洛赫定律。
27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。
28. 给出空穴概念。
29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。
大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是()。
A. 电子的量子化B. 光子的量子化C. 晶格振动的量子化D. 磁场的量子化答案:C2. 能带理论中,价带和导带之间的区域称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A3. 在固体中,电子的自由度不包括()。
A. 位置B. 动量C. 能量D. 质量答案:D4. 固体物理中,金属的自由电子模型是由哪位科学家提出的?()A. 薛定谔B. 泡利C. 德鲁德D. 海森堡答案:C5. 固体物理中,半导体的能带结构中,导带和价带之间的能隙称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A6. 晶格常数是指()。
A. 晶格中原子间的平均距离B. 晶格中原子间的最大距离C. 晶格中原子间的最小距离D. 晶格中原子间的任意距离答案:A7. 固体物理中,费米能级是指()。
A. 最高占据能级的电子能量B. 最低未占据能级的电子能量C. 电子从导带跃迁到价带所需的能量D. 电子从价带跃迁到导带所需的能量答案:B8. 固体物理中,布拉格反射定律描述的是()。
A. X射线在晶体中的衍射现象B. 电子在晶体中的衍射现象C. 光在晶体中的反射现象D. 声波在晶体中的反射现象答案:A9. 固体物理中,超导现象是指()。
A. 材料在低温下电阻突然消失的现象B. 材料在高温下电阻突然消失的现象C. 材料在低温下电阻突然增加的现象D. 材料在高温下电阻突然增加的现象答案:A10. 固体物理中,霍尔效应是指()。
A. 电流通过导体时,导体两端产生电压的现象B. 电流通过导体时,导体两侧产生磁场的现象C. 电流通过导体时,导体内部产生电场的现象D. 电流通过导体时,导体内部产生磁场的现象答案:B二、填空题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是晶格振动的_______。
答案:量子化2. 固体物理中,金属的自由电子模型中,电子被视为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理概念题 1. 自由电子气体模型的三个基本近似是什么两个基本参数是什么 自由电子近似;独立电子近似;弛豫时间近似 自由电子数密度;弛豫时间
2. 名词解释:K空间;k空间态密度 把波矢k看做空间矢量,相应的空间称为k空间; K空间中单位体积内许可态的代表点数称为k空间态密度。
3. 自由电子模型的基态费米能和激发态费米能的物理意义是什么费米能与哪些因素有关 物理意义:费米面上单电子态的能量称为费米能,表示电子从低到高填满能级时其最高能级的能量。基费米能时指T=0 K时的费米能。激发态费米能指的是T≠0 K时的费米能。 因素:费米能量与电子密度和温度有关。
4. 何为费米面金属电子气模型的费米面是何形状 费米面:在K空间将占据态与未占据态分开的界面。 金属电子气模型的费米面是球形。
5. 说明为什么只有费米面附近的电子才对比热、电导和热导有贡献 对比热、电导和热导有贡献的电子是其能态能够发生变化的电子,只有费米面附近的电子才能从外界获得能量发生能态跃迁。因为,在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上。只有费米面附近的电子吸收声子后能跃迁到费米面附近或以外的空状态上。对电导,考虑到泡利不相容原理的限制,只有费米面附近的电子才有可能在外电场作用下,进入较高能级,因而才会对金属电导率有贡献。热导与电导相似。
6. 简述化学势的意义,它与费米能级满足什么样的关系。 化学势的意义是:在体积不变的条件下,系统没增加一个电子所需要的自由能。在温度接近于0时,化学势和费米能近似相等。
7. 什么是等离子体振荡给出金属电子气的振荡频率。 等离子体中的电子在自身惯性作用和正负电荷分离所产生的静电恢复力的作用下发生的简谐振荡称为等离子体振荡。
金属电子气的振荡频率 8.名词解释:晶格,单胞,原胞,基元,布拉维格子基矢 基元:在空间无限重复排列构成晶体的全同原子团 晶格:将基元抽象为格点,格点的集合称为晶格 晶胞:能够完整反映晶体的化学结构与晶体周期性的重复单元 原胞:体积最小的晶胞 布拉维格子基矢:原胞的基矢 9.在三维情况下有多少种不同类型的晶格满足点对称群的要求它们可以划分为哪7个晶系 14种布拉维格子,它们可以划分为7个晶系:三斜,单斜,正交,四方,三角,六角,立方。
10.什么是晶面指数什么是方向指数它们有何联系 晶面指数:晶面在在坐标轴上的截距的倒数的最简整数比。 方向指数:垂直于晶面的矢量,晶面指数为(hkl),则方向指数为[hkl] 联系:方向[hkl]垂直于具有相同指数的晶面(hkl)。
11.名词解释:倒格子,倒格矢
12.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件 衍射条件为:*)sin(*2nd,波矢表达式为22GGk 13.什么是布里渊区请画出二维简单正方晶格的第一布里渊区。 如果在k空间内把原点和所有倒格子格矢G之间的联线的垂直平分面都画出来,k空间被分成许多区域,在每个区域内能态E对k是连续变化的,而在这些区域的边界处E(k)函数发生突变,这些区域常称为布里渊区。 14. 能带理论作了那些近似和假定得到哪些结果 一是绝热近似,即把电子系统与原子核(离子实)分开考虑的处理方法。 二是平均场近似(单电子近似),即把每个电子的运动看成是独立的在一个等效势场中的运动。 三是周期场近似,即晶体中单电子势具有平移对称性。 在绝热近似、平均场近似和晶格周期场假定条件下,多电子体系问题可以简化为晶格周期场下的单电子问题。能从理论上得到材料的能带结构,以及相关的费米面、能态密度和电子云的的分布,或笼统的简称为材料的能带结构或电子结构。
15.什么是布洛赫电子什么是布洛赫波布洛赫波有哪些性质 能用krkrure表示,而且满足kknururR的这种被周期函数所调幅的平面波函数称为布洛赫波。把能用布洛赫波函数描述其运动状态的电子称为布洛赫电子。 布洛赫波性质:电子的共有化运动性质,即在晶格周期场中的电子在各原胞对应点出现的几率均相同,电子可以看做在整个晶体中自由运动。平面波的因子描述了晶体电子共有化运动,而周期函数因子则描述可电子在原胞中的运动,它取决于原胞中电子的势场。
16.为什么k称为布洛赫电子的“准动量”或“晶体动量” 由于布洛赫波函数波矢动量的本征值,而是晶格周期势场中电子能量的本征值。因此,k不是晶格电子的真实动量,它只是一个具有动量量纲的量。在研究电子在外场作用下的运动,以及研究电子与声子、光子的相互作用时,k起着动量的作用,所以k称为布洛赫电子的“准动量”或“晶体动量”。
17.什么是禁带禁带出现在什么位置 相邻两个能带之间可能出现电子不允许有的能量间隙,称为禁带,也成为能隙。
在一维晶格中,禁带发生在波矢/ka和/ka处,或者一般的表述为禁带出现在k空间倒格矢的中点上。在三维空间,可以表述为禁带出现在布里渊区界面上。
18.什么是弱周期场近似按照弱周期场近似,禁带产生的原因是什么 弱周期场近似也称为近自由电子近似,是假定周期场的起伏比较小,作为零级近似,可以用势场的平均值代替晶格势场,周期势的起伏作为微扰处理。
对于在倒格矢G中垂面及其附近的波矢k,即布里渊区界面附近的波矢k,由于采用简并微扰计算,致使能级间产生排斥作用,从而使()Ek函数在布里渊区界面处“断开”,即发生突变,从而产生了禁带。
19. 什么是紧束缚近似按照紧束缚近似,禁带是如何产生的 当晶体是由相互作用较弱的原子组成时,周期场随空间的起伏比较显着。此时,电子在某一个原子附近时,将主要受到该原子场的作用,其他原子场的作用可以看做一个微扰作用。基于这种设想建立的近似方法,称为紧束缚近似。禁带是分离能级在较弱交叠微扰作用下分裂而产生。 20. 什么是赝势赝势法的基本思想是什么 价电子波函数在离子实附近振荡,即等价于受到一个排斥势作用,这种排斥势对离子实强吸引势的抵消,使价电子受到的势场等价于一个弱的平滑势,称为赝势(Pseudopotential,简称为PP)。 赝势法的基本思想是:适当选取一个平滑势,波函数用少数波函数展开,使计算出的能带结果与真实的接近。
21.声子碰撞时的准动量守恒为什么不同于普通粒子碰撞时的动量守恒U过程物理图像是什么它违背了普遍的动量守恒定律吗 声子碰撞时,其前后的总动量不一定守恒,而是满足以下的关系式
nGqqq321 其中上式中的nG表示一倒格子矢量。 U过程没有违背普遍的动量守恒定律,因为声子不是实物量子,所以其满足的是准动量守恒关系。
22.什么叫声子长光学支格波与长声学支格波的本质上有何区别 声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计。 长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式。 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数。 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波。长光
学波的本质是电磁波,而长声学波是弹性波。
23、晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设各取得了什么成就各有什么局限性为什么德拜模型在极低温度下能给出精确结果 在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则
以连续介质的弹性波来代表格波以求出)(的表达式。
爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容Vc亦趋近于零的结果,这是经典理论所不能得到的结果。其局限性在于模型给出的是比热容Vc以指数形式趋近于零,快于实验给出的以3T趋近于零的结果。 德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度3T成比例,与实验结果相吻合。其局限性在于模型给出的德拜温度D应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度D是不同的。 在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对比热容产生影响。而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。
24.温度降到很低时。爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。试解释其原因。
按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.在极低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在极低温下, 德拜模型与事实相符, 自然与实验相符。
25.什么是有效质量有效质量为何有正有负 有效质量并不代表真正的质量,而是代表能带中电子受外力时,外力与加速度的一个比例系数,有效质量一般是波矢K的函数。它可以大于惯性质量,也可以小于惯性质量,甚至可以是负的。例如在能带底(极小值),m*>0;而在能带顶(极大值),m*<0。负的有效质量说明晶格对电子作负功,即电子要供给晶格能量,而且电子供给晶格的能量大于外场对电子作功。
26.什么是本征载流子什么是杂质导电 本征载流子:指本征半导体中由热激发产生的电子,这些电子可以参与导电 杂质导电:半导体中杂质可使原是满带的能带缺少一些电子,形成不满带,从而导电。
27.什么是空穴空穴有哪些性质 共价键中的一些价电子由于热运动摆脱约束成为自由电子,同时在共价键上留下空位,即为空穴。电量与电子相等但符号相反;有效质量数值等于价带顶空态所对应的电子有效质量,但符号相反;速度为价带顶空带所对应的电子速度;浓度等于空态密度。
28. 简述金属的霍尔效应和磁(电)阻效应。横向磁(电)阻变化与外磁场满足怎样的关系 当电流I 垂直于外磁场B通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差U H,这一现象便是霍尔效应。在通有电流的金属或半导体上施加磁场时,电阻值将会发生改变的现象称为磁(电)阻效应。 金属在B2可以忽略的情况下,横向磁阻为零;金属在B2 不能忽略的情况下,横向磁阻的磁电阻率的相对变化与磁感应强度的平方成正比。