谱聚类算法

合集下载

复杂网络中的社团发现算法对比和性能评估

复杂网络中的社团发现算法对比和性能评估

复杂网络中的社团发现算法对比和性能评估在复杂网络的研究中,社团发现算法对于揭示网络中隐含的组织结构和功能模块具有重要意义。

社团发现算法目的是将网络的节点划分为不同的社团或群集,使得同一个社团内的节点之间具有紧密的连接,而不同社团之间的连接则相对较弱。

本文将对几种常见的复杂网络社团发现算法进行对比和性能评估。

1. 强连通性算法强连通性算法主要关注网络中的强连通分量,即其中的节点之间互相可达。

常见的强连通性算法有Tarjan算法和Kosaraju算法。

这些算法适用于有向图和无向图,并且能够有效地识别网络中的全部强连通分量。

2. 谱聚类算法谱聚类算法是一种基于图谱理论的社团发现算法,通过将网络表示为拉普拉斯矩阵,使用特征值分解或近似方法提取主要特征向量,从而实现节点的划分。

常见的谱聚类算法包括拉普拉斯特征映射(LE)和归一化谱聚类(Ncut)。

谱聚类算法在复杂网络中表现出色,尤其在分割不规则形状的社团时效果较好。

3. 模块度优化算法模块度优化算法通过最大化网络的模块度指标,寻找网络中最优的社团划分。

常见的模块度优化算法有GN算法(Girvan-Newman)和Louvain算法。

这些算法通过迭代删除网络中的边或合并社团,以最大化模块度指标。

模块度优化算法具有较高的计算效率和准确性,广泛应用于实际网络的社团发现中。

4. 层次聚类算法层次聚类算法通过基于节点之间的相似度或距离构建层次化的社团结构。

常见的层次聚类算法有分裂和合并(Spectral Clustering,SC)和非重叠连通(Non-overlapping Connector,NC)算法。

这些算法通过自顶向下或自底向上的方式逐步划分或合并社团。

层次聚类算法能够全面地刻画网络中的社团结构,但在大规模网络上的计算复杂度较高。

5. 基于物理模型的算法基于物理模型的算法通过模拟物理过程来发现网络中的社团结构。

常见的基于物理模型的社团发现算法有模拟退火算法(Simulated Annealing,SA)和蚁群算法(Ant Colony Algorithm,ACA)。

常用的聚类算法

常用的聚类算法

常用的聚类算法
1聚类算法概述
聚类算法是一种无监督学习算法,它可以根据样本的内在特征将它们分组到不同的簇中,而不需要人工的参与。

它的实质是把同类的对象划分到同一个簇,把不同类的对象分到不同的簇,以达到将类似的物体进行自动分组的目的。

聚类的结果要求能将类似的对象划分到同一簇,而将不同的对象划分到不同簇,相邻簇中可以有极少数据点的相异。

2常用聚类算法
1.K-Means
K-means是最流行的聚类算法,它简单、速度快,可以根据数据特征把数据点分成K个不同簇,是一种基于划分的聚类算法。

2.层次聚类算法
层次聚类算法是一种树形聚类算法,将数据按照层级结构编码成树结构,采用分支和合并的方法,将给出的数据逐步聚合。

3.谱聚类算法
谱聚类算法对密集网络数据具有很好的分类能力,将相似性LR矩阵作为分析基础,使用其提取节点之间的相似程度,将节点分为多个簇。

4.EM聚类算法
EM聚类算法是一种高效的聚类算法,主要利用期望最大算法,利用概率模型对数据进行聚类,通过计算数据的对应度和估计模型参数,将数据划分到若干个类中。

总的来说,聚类算法最终的目的都是将一些数据表示的对象,根据某种特征的相似性,划分到不同的组中,以构建一种新的结构,使具有相似特征的样本分为一组,从而帮助更好地理解数据并协助作出正确的决策。

谱聚类算法 python

谱聚类算法 python

谱聚类算法 python谱聚类是一种基于图论的聚类算法,它通过构建数据的相似度矩阵和拉普拉斯矩阵来实现数据的聚类。

下面是谱聚类算法的Python实现参考内容。

1. 导入所需库和数据模块:```pythonimport numpy as npfrom sklearn.cluster import KMeansfrom sklearn.metrics import pairwise_distancesfrom sklearn.datasets import make_blobs```2. 定义谱聚类函数:```pythondef spectral_clustering(data, n_clusters, sigma=1):# 构建相似度矩阵similarity_matrix = pairwise_distances(data, metric='rbf', gamma=1.0/(2*sigma**2))# 构建拉普拉斯矩阵row_sums = np.sum(similarity_matrix, axis=1)laplacian_matrix = np.diag(row_sums) - similarity_matrix# 计算拉普拉斯矩阵的特征值和特征向量eigvals, eigvecs = np.linalg.eig(laplacian_matrix)# 根据特征值进行排序indices = np.argsort(eigvals)[:n_clusters]# 提取特征向量的前n_clusters个列向量eigvecs_selected = eigvecs[:, indices]# 使用K-means算法对特征向量进行聚类kmeans = KMeans(n_clusters=n_clusters)kmeans.fit(eigvecs_selected)labels = bels_return labels```3. 生成示例数据并调用谱聚类函数进行聚类:```pythondata, ground_truth = make_blobs(n_samples=100, centers=3, random_state=0)labels = spectral_clustering(data, n_clusters=3, sigma=1)print("聚类结果:", labels)```以上就是谱聚类算法的Python实现参考内容。

谱聚类算法计算公式

谱聚类算法计算公式

1 / 1
谱聚类算法计算公式
谱聚类(Spectral Clustering )算法的计算公式如下:
1. 构建相似度矩阵W ,一般选择高斯核函数计算样本点之间的相似度,公式如下:
22,i j x x i j W e σ−−=
其中,i x 和j x 分别表示第i 个和第j 个样本点,σ为高斯核函数
的参数。

2. 构建拉普拉斯矩阵L ,一般有两种方式:
(1) 随机游走型拉普拉斯矩阵,公式如下:
1
1
22
L D WD −−= 其中,D 为度矩阵,其对角线元素为每个样本点的度。

(2) 对称型拉普拉斯矩阵,公式如下:
L D W =−
其中,D 和W 分别为度矩阵和相似度矩阵。

3. 对拉普拉斯矩阵L 进行特征分解,得到L 的特征向量矩阵U 。

4. 对特征向量矩阵U 进行k-means 聚类或者谱聚类,将样本点划分到k 个簇中。

谱聚类算法的主要思想是将原始数据映射到低维空间中,从而实现聚类。

该算法具有较好的性能,并且可以处理非球形簇和噪声数据。

谱聚类算法

谱聚类算法
1 1 2 2 1 2
其中: assoc(A k , V )
i
Ak ,j V
w ij
Melia 指出Ncut 和MNcut 的差异之处仅在于所使用的 谱映射不同, 并且当k= 2 时, MNcut 与Ncut 等价。多路规 范割集准则在实际应用中合理有效, 但其优化问题通常难以 解决。
相似矩阵、度矩阵及Laplacian 矩阵
cut(A ,B )
i ,
w ij Aj B
通过最小化上述剪切值来划分图G, 这一划分准则被称 为最小割集准则。他们用这个准则对一些图像进行分割, 并 产生了较好的效果, 同时他们也注意到, 该准则容易出现歪 斜( 即偏向小区域) 分割。规范割集准则及比例割集准则均 可避免这种情况的发生。
谱聚类算法
根据不同的准则函数及谱映射方法, 谱聚类算法发展了很多
不同的具体实现方法, 但是都可以归纳为下面三个主要步骤 :
构建表示样本集的矩阵Z; 通过计算Z 的前k 个特征值与特征向量, 构建特征向量空间; 利用k-means 或其它经典聚类算法对特征向量空间中的特征向 量进行聚类。 上述步骤是谱聚类算法的一个框架, 在具体实现过程中,不同 的算法在数据集矩阵Z 的表示上存在着不同。例如根据2 way cut 的目标函数, Z= W; 根据随机游动关系, 则Z=D- 1W 等。划分准则一 般分为2 way 和k way, 本文根据所使用的划分准则, 将算法分为迭 代谱和多路谱两类, 并分别讨论了各类中典型的谱聚类算法。
可以看出Avcut 和Ncut 函数都表示无向图G 中边界损
失与分割区域相关性的比值之和, 因此最小化Avcut 与Ncut 目标函数都能产生较准确的划分。其共同缺点是倾向于欠 分割且易分割出只包含几个顶点的较小子图。文献通过实 验发现, 当把Normalized cut 和Average cut 准则分别用于同

谱聚类算法

谱聚类算法

谱聚类(Spectral Clustering)是一种常用的机器学习非监督学习算法,它可以将数据集进行非均匀划分,自动检测出数据集之间的联系,形成聚类,来支持分类和聚类任务。

谱聚类算法利用图分割技术进行数据集划分,其前提是,一个具有相似关系的数据集可以被抽象成一个图结构,它由节点(node)和边(edge)组成。

这种图将相似的节点连接起来,形成相关性的网络,这就是谱聚类的基本原理。

在谱聚类算法中,我们首先需要将数据集抽象为图结构,有了图后,会根据一些度量(局部密度、连接强度、等等)将其划分为一些小子集,再根据邻域性确定子集的内部结构和边界,从而将图分成若干聚类。

谱聚类的优势在于它可以实现非均匀的聚类,可以根据数据集的特征自动聚类,它不仅可以将数据集划分成几个大的聚类,还可以自动检测出数据集之间更复杂的联系,从而形成聚类。

此外,谱聚类算法还可以处理高维数据,它能够捕捉数据集中所有数据之间的复杂关系,从而实现更好的聚类。

综上所述,谱聚类算法是一种有效的机器学习非监督学习算法,它可以自动检测出数据之间的关系,进行非均匀的聚类,为聚类和分类任务提供有力的支持,是机器学习算法领域的重要研究成果。

谱聚类算法综述

谱聚类算法综述

谱聚类算法综述一、本文概述谱聚类算法是一种基于图理论的机器学习技术,它在数据分析和模式识别中发挥着重要作用。

本文旨在对谱聚类算法进行全面的综述,从理论基础、算法流程、应用领域以及最新进展等多个方面进行深入的探讨。

我们将简要介绍谱聚类算法的基本概念和原理,包括图论基础、拉普拉斯矩阵、特征值分解等关键知识点。

然后,我们将详细阐述谱聚类算法的基本流程和主要步骤,包括数据预处理、构建相似度矩阵、计算拉普拉斯矩阵、求解特征向量和聚类等。

接下来,我们将重点分析谱聚类算法在不同领域中的应用,如图像处理、社交网络分析、机器学习等,并探讨其在这些领域中取得的成果和优势。

我们还将对谱聚类算法的性能进行评估,包括其时间复杂度、空间复杂度以及聚类效果等方面。

我们将对谱聚类算法的最新研究进展进行综述,包括新的算法模型、优化方法以及应用领域的拓展等方面。

通过对这些最新进展的梳理和总结,我们可以更好地了解谱聚类算法的发展趋势和未来研究方向。

本文旨在对谱聚类算法进行全面的综述和分析,为读者提供一个清晰、系统的认识框架,同时也为该领域的研究者提供有价值的参考和启示。

二、谱聚类算法的基本原理谱聚类算法是一种基于图理论的聚类方法,它通过将数据点视为图中的节点,数据点之间的相似性视为节点之间的边的权重,从而构建出一个加权无向图。

谱聚类的基本原理在于利用图的拉普拉斯矩阵(Laplacian Matrix)的特征向量来进行聚类。

构建相似度矩阵:需要计算数据点之间的相似度,这通常通过核函数(如高斯核函数)来实现,从而构建出一个相似度矩阵。

构建图的拉普拉斯矩阵:根据相似度矩阵,可以构建出图的度矩阵和邻接矩阵,进而得到图的拉普拉斯矩阵。

拉普拉斯矩阵是相似度矩阵和度矩阵之差,它反映了数据点之间的局部结构信息。

求解拉普拉斯矩阵的特征向量:对拉普拉斯矩阵进行特征分解,得到其特征向量。

这些特征向量构成了一个新的低维空间,在这个空间中,相似的数据点更接近,不相似的数据点更远。

谱聚类算法研究综述

谱聚类算法研究综述
Survey of Spectral Clustering Algorithms BAI Lu1,2,3, ZHAO Xin1,2,3, KONG Yuting1,2,3, ZHANG Zhenghang1,2,3, SHAO Jinxin1,2,3, QIAN Yurong1,2,3
1.College of Software, Xinjiang University, Urumqi 830046, China 2.Key Laboratory of Software Engineering, Xinjiang University, Urumqi 830046, China 3.Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Urumqi 830046, China
变化而改变,因此 σ 需要经过多次取值实验才能确定[23]。
度矩阵是记为 D 的对角矩阵,度值为对角元素。
计算方式如公式(2)所示:
∑ Dij = Wij j
(2)
规范相似矩阵一般形式定义为:
W nor
=
-
D
12WD-
1 2
Wnor(i,j) =
W (i,j) D(i.j) D(i,j)
(3) (4)
1 谱聚类算法概述
谱聚类算法的思想起源于谱图划分理论[18],谱聚类 通过样本相似度生成无向加权图,样本点可看作图的顶 点,样本点间的相似度为两点间边的权重,而对无向加 权图进行谱图划分就是将图划分为若干个子图,该过程 与聚类算法的聚类过程对应。图论的最优划分准则[14] 与聚类最优准则在思想上具有一致性,为聚类问题转化 为图划分问题提供思路与理论支撑。对于谱图划分而 言,图划分准则的选取将直接影响划分结果,常用的图 划分准则有规范割集、最小割集、平均割集、比例割集等 准则[19]。与谱图划分相比,谱聚类算法考虑问题连续放 松 形 式 ,将 图 分 割 问 题 转 换 为 求 相 似 矩 阵 的 谱 分 解 问 题[20]。谱聚类算法依据划分准则的不同,总体分为迭代 谱聚算法与多路谱聚类算法。目前多路谱聚类算法因 其简单易于理解特性应用更为广泛,NJW 算法是经典 多路谱聚类算法。多路谱聚算法实现细节略有差异,但 核心思想基本一致,其主要思想如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本理论:
图划分准则:
谱聚类算法的思想来源于谱图划分理论 。假定将每个 数据样本看作图中的顶点V, 根据样本间的相似度将顶点间 的边E赋权重值W, 这样就得到一个基于样本相似度的无向 加权图G= (V, E) 。那么在图G 中, 就可将聚类问题转化为在 图G 上的图划分问题。基于图论的最优划分准则就是使划 分成的两个子图内部相似度最大, 子图之间的相似度最小。
如何处理特征向量: 在应用谱方法进行聚类问题的研究中, 用多 少个特征向量进行聚类, 如何选取、计算及使用这些特征向量
等问题均没有得到很好的理论解释, 这些都是未来急需解决的
问题。 如何自动确定聚类数目: 聚类数目的多少直接影响聚类的质量。
如何选取Laplacian 矩阵: 谱聚类算法所使用的Laplacian 矩阵有
或任意其它经典算法, 得到k 个聚类; 将数据点
y i划分到聚类j 中, 当且仅当Y 的第i行被划分到聚类j 中。
小结:
针对图谱的不同划分规则,都有相应的算法如PF、SM、 SLH、Mcut、NJW、MS算法,比较如下:
难点分析
如何构造相似矩阵W: 谱聚类算法中相似矩阵W的构由于尺度参
数R是人为选取的, 使得该函数带有一定的局限性。
Kannan 将该算法与SM 算法、KVV 算法进行了比较, 发现
Mcut 算法能够产生更加平衡的划分结果, 尤其当类间重叠较大时, 效果更为明显。
多路谱聚类算法
NJW 算法 Ng, Jordan 等人选取拉氏矩阵
Lsym的前k 个最大特征值对应的特征
向量, 使其在 R k 空间中构成与原数据一一对应的表述, 然后在 R k 空间中
x T (D W ) x y T (D W ) y x TWx y TWy
最小化上式可得:
min Mcut(A,B ) min
q q
J N (A,B ) 1 J N (A,B ) / 2
q Wq
即求:
min J N (A ,B )
q
q 其中 J (A,B ) J (q ) q T (D W ) N N T
cut(A,B )
w ij i Aj B
,
通过最小化上述剪切值来划分图G, 这一划分准则被称 为最小割集准则。他们用这个准则对一些图像进行分割, 并 产生了较好的效果, 同时他们也注意到, 该准则容易出现歪 斜( 即偏向小区域) 分割。规范割集准则及比例割集准则均 可避免这种情况的发生。
叠较大时,Mcut 比Ncut 更加高效。
多路规范割集准则 (Multiway Normalized cut)
上述五种划分准则所使用的目标函数都是将图G 划分为 2 个子图的划分函数, Meila 提出一种可以将图G同时划分为 k 个子图的规范割目标函数: cut(A , V A ) cut(A , A ) ... cut(Ak , Ak ) V V MNcut(A,B ) assoc(A , ) assoc(A , ) assoc(A k , ) V V V
1 1 2 2 1 2
其中: assoc(A k , ) V
i
Ak ,j V
w ij
Melia 指出Ncut 和MNcut 的差异之处仅在于所使用的 谱映射不同, 并且当k= 2 时, MNcut 与Ncut 等价。多路规 范割集准则在实际应用中合理有效, 但其优化问题通常难以 解决。
相似矩阵、度矩阵及Laplacian 矩阵
Lsym D

1 2
LD
Байду номын сангаас
1 2
I D WD

1 2

1 2
Lrw D 1L I D 1W
势函数、Fiedler 向量及谱
势函数为表示某样本划分归属的指示向量( indicator vector)其定义为 : 1若i A qi 0若i B 若最终势函数中某样本对应的值为1, 则该样本属于集合 A, 若为0 则属于集合B。但实际划分求解得到的结果qi常为 0 到1 之间的实数值, 此时可用k 均值聚类等方法进一步决定 样本的归属。 许多谱聚类算法都将图划分问题转化为求解Laplacian矩 阵的第二小特征向量问题。这里的第二小特征向量就是第 二个最小特征值对应的特征向量, 它代表了最佳图划分的一 个解( 即势函数) , 把这一特征向量称为Fiedler 向量。与特 征向量( 不一定是Fiedler 向量) 对应的特征值称为谱。
将相似矩阵的每行元素相加, 即得到该顶点的度, 以所 有度值为对角元素构成的对角矩阵即为度矩阵, 度矩阵常用 D表示。 Laplacian 矩阵分为非规范Laplacian 矩阵和规Laplacian 矩阵。非规范Laplacian 矩阵表示为L = D - W, 规范 Laplacian 矩阵有两种形式, 分别是:
谱聚类算法
根据不同的准则函数及谱映射方法, 谱聚类算法发展了很多
不同的具体实现方法, 但是都可以归纳为下面三个主要步骤 :
构建表示样本集的矩阵Z; 通过计算Z 的前k 个特征值与特征向量, 构建特征向量空间; 利用k-means 或其它经典聚类算法对特征向量空间中的特征向 量进行聚类。 上述步骤是谱聚类算法的一个框架, 在具体实现过程中,不同 的算法在数据集矩阵Z 的表示上存在着不同。例如根据2 way cut 的目标函数, Z= W; 根据随机游动关系, 则Z=D- 1W 等。划分准则一 般分为2 way 和k way, 本文根据所使用的划分准则, 将算法分为迭 代谱和多路谱两类, 并分别讨论了各类中典型的谱聚类算法。
三种形式( 见本文2. 2 节) , 但这三种形式的Laplacian 矩阵所应 用的具体环境还没有得到彻底解决。
自适应谱聚类算法ASC
ASC 算法的主要思想为:首先根据尺度参数集Σ 中的不 同尺度参数构造出不同的相似性矩阵,进而得到不同的拉普 拉斯矩阵,然后用迭代的方法(核选取的方法) 求解出一个新
量, 然后选择合适的特征向量聚类不同的数据点。谱聚类
算法最初用于计算机视觉、VLSI 设计等领域, 最近才开始 用于机器学习中 , 并迅速成为国际上机器学习领域的研究 热点。 谱聚类算法建立在图论中的谱图理论基础上, 其本质
是将聚类问题转化为图的最优划分问题, 是一种点对聚类
算法,对数据聚类具有很好的应用前景。
进行聚类。NJW算法描述如下: 计算矩阵 Lsym的前k 个最大特征值所对应的特征向量 ( 必要时需作正交化处理) , 构造矩阵 X
1 2
x ,x ,...x
k
x1,x 2 ,... k x

2
将矩阵X 的行向量转变为单位向量, 得到矩阵Y, 即
Yij
X ij EX ij
将矩阵Y 的每一行看作是 R k 空间中的一个点,对其使用k 均值算法
由于图划分问题的本质, 求图划分准则的最优解是一个 NP 难问题。一个很好的求解方法是考虑问题的连续放松形 式, 这样便可将原问题转换成求解相似矩阵或Laplacian 矩 阵的谱分解, 因此将这类方法统称为谱聚类, 可以认为谱聚 类是对图划分准则的逼近。 相似矩阵通常用W 或A 表示,该矩阵的定义为: d(si ,s j ) W ij exp( ) 2 2R d(si ,sj ) 一般取 si s j 2, R为 其中:si 表示每个数据样本点, 事先指定的参数。
cut(A ,B ) Rcut(A ,B ) min( A , B )
其中| A| , | B| 分别表示子图A, B 中顶点的个数。最小化
Rcut 函数只考虑了类间相似性最小, 减小了过分割的可能
性, 但运行速度较慢。
平均割集准则: (Average cut)
cut(A,B ) cut(A,B ) 平均割目标函数为: Avcut(A,B ) A B
Spectral Clustering algorithm
Stay Hungry. Stay Foolish. 常保饥渴求知,常存虚怀若愚
author: jingang-feng Faculty adviser: yuancheng-li
算法概念:
聚类( clustering) 就是将数据对象分组成为多个类或簇 (cluster) , 使得在同一簇中的对象之间具有较高的相似度,而 不同簇中的对象差别较大。传统的聚类算法, 如k2-means算
在约束条件 x T e 0 下, 将x 松弛到连续域[-1,1], 根据Rayleigh 商原理,上面的优化问题等于求解下式的第二小特征值问题: k (D W ) Dx 其中 x 1 k 因此, 将图G 划分为两个子图的Mcut 算法可以简单描述如下: 计算上式Fiedler 向量。 在Fiedler 向量中, 寻找使Mcut 值最小的划分点。 用基于连接的聚类算法进行优化。
法、EM 算法等都是建立在凸球形的样本空间上, 但当样本
空间不为凸时, 算法会陷入局部最优。 为了能在任意形状的样本空间上聚类, 且收敛于全局最 优解, 学者们开始研究一类新型的聚类算法, 称为谱聚类算 法(Spectral Clustering Algorithm) 。
该算法首先根据给定的样本数据集定义一个描述成对 数据点相似度的亲合矩阵, 并计算矩阵的特征值和特征向
Vol(A)、 Vol(B)分别是子图A, B 内所有顶点之间的连接
权值之和。
最小化Ncut 函数被称为规范割集准则。该准则不仅能 够衡量类内样本间的相似程度, 也能衡量类间样本间的相异 程度。通常情况下都是通过最小化Ncut 函数获取图的最优 划分。
比例割集准则:(Ratio cut)
Hagen 和Kahng 提出了比例割目标函数(Rcut) :
一图像的分割问题时, Normalized cut 准则能够产生更好的
相关文档
最新文档