2018年七年级下学期数学期中考试题
福建省厦门一中2018-2019学年第二学期七年级期中考试数学试卷【含答案】

2018-2019福建省厦门一中初一下学期期中考试数学试卷(试卷满分:150 分考试时间:120 分钟)一、选择题( 本大题共 10 小题,每小题 3 分,共 30 分.每小题有且只有一个选项正确) 1.如果将汽车向东行驶 3 千米记为+3 千米,那么记为-3 千米表示的是()A .向西行驶 3 千米B .向南行驶 3 千米C .向北行驶 3 千米D .向东南方向行驶 3 千米2.生产厂家检测 4 个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数, 其中最接近标准质量的篮球是()A .+2.5B .-0.6C .+0.7D .-3.53.(-1)4 可表示为()A . (-1)×4B . (-1)+(-1)+(-1)+(-1)C .-1×1×1×1D . (-1)×(-1)×(-1)×(-1)4. 下列各组是同类项的是() A .a 3和 a2B .12a 2和 2a 2 C .2xy 和 2x D .3 与 a5. a 表示有理数,则下列说法正确的是()A . a 表示正数B . -a 表示负数C . |a |表示正数D .-a 表示 a 的相反数6. 下列变形不正确的是()A. 若 x =y ,则 x +c =y +c B . 若 x =y ,则 x -c =y -c C . 若 a =b ,则 ac =bcD . 若 a =b ,则 a =bc c7. 长方形的周长为 10,它的长是 a ,那么它的宽是()A .10-2aB . 10-aC .5-aD . 5-2a8.有理数 a ,b 在数轴上表示如图,下列判断正确的是()A . -a <-bB . -a >bC . a >-bD . a <-b( )9. 设 n 是自然数,则 (-1)n +(-1)n +12的值为 ()A .0B .1C .-1D .1 或-110. 若 ab >0,且 a +b <0,那么下列选项正确的是()A . a >0,b >0B . a >0,b <0C . a <0,b <0D . a <0,b >0二、填空题( 本大题共 9 小题,每空 2 分,共 46 分) 11.(1) 3 的相反数是 ; (2) -2 的绝对值是 ; (3) -1的倒数是;5(4) 比较大小:-1-3 用“>”、“<”或“=”填空). 3412.(1) 光年是天文学中的距离单位.1 光年大约是 9500000000000km ,用科学记数法表示为 km.(2) 用四舍五入法取近似值:3.145≈ (精确到百分位).13.在-1,0,-1.5,-8,11,20%中,整数有.2 4 14.直接写出结果: (1) -1+1= ; (2) 3-7= ; (3) 4÷(-2=;3 (4) -7×0.5= ; (5) (-2)3=; (6) (-1)2n =(n 为正整数);(7) 4x =0 的解是;(8) -1x =4 的解是.515.(1)单项式-3x 2y 的系数是 ;(2)多项式 a 2-2a +1 的一次项系数是.16.(1)已知 x =5 是关于 x 的方程 3x -2a =1 的解,则 a 的值是 .(2)当 x =时,代数式 x -2 与 2x 的值互为相反数.17. 如图 1 是一个圆环,外圆与内圆的半径分别是 R 和 r .当 R =5cm ,r =3cm 时,则圆环(阴影部分)的面积为cm 2.(结果保留π)图 1图 218. 若 A 是一个单项式,B 是一个多项式,且 A +B =1,请写出一组符合条件的 A 、B ,A =,B =.19. 用同样大小的黑色棋子按图 2 所示的方式摆图形,按照这样的规律摆下去,则第 n 个图形需要棋子枚(用含 n 的代数式表示).÷三、解答题( 本大题共 10 小题,共 72 分)20.(本题满分 4 分) 画出数轴并把下列各数标在数轴上:-4, 21, -1.5, 0.221.(每小题 3 分,共 12 分)计算下列各题:(1) (-4)-(+8)-(-7)(2) 4×(-5)-12÷(-6)(3) (1+5- 7)×(-24)(4) -14-(1+0.5)×14 2 6 12322.(每小题 3 分,共 12 分)化简下列各题:(1) 2a -5b -3a +b (2) 3(a -b )-4(a -b )-5(a -b )(3) 4(x 2+xy -1)-2(2x 2-xy )(4) a 2-3[a 2-2(a 2-a )+1]23.(每小题 3 分,共 6 分)解下列方程:(1) 4x =5+3x ; (2) 2x -19=7x +624.(本题满分 5 分)先化简,再求值:5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2),其中 a =-1,b =1225.(本题满分 6 分) 小明家中买了一辆小轿车,他连续记录了 7 天中每天行驶的路程为下表,以 50km 为标准,超过50km 记为“+”,不足 50km 的记为“-”.问:(1)小明家的轿车在这 7 天中共行驶多少千米?(2)小明家的轿车这 7 天中平均每天行驶约多少千米?(精确到 0.1).26.(本题满分6 分) 如图2,是由两个正方形组成的图形.(1)用图中所给的数字和字母列代数式表示出阴影部分的面积S.(结果要求化简)(2)当a=4 时,求阴影部分的面积.图 227.(本题满分6 分) 定义:若两个有理数a,b 满足a+b=ab,则称a,b 互为特征数.(1)3 与互为特征数;(2)正整数n (n>1)的特征数为;(用含n 的式子表示)(3)若m,n 互为特征数,且m+mn=-2,n+mn=3,求m+n 的值.28.(本题满分9 分) 某班将举行知识竞赛活动,班长安排小明购买奖品.小明去文化用品店买了两种大小不同的笔记本一共a 本,其中大笔记本单价8 元,小笔记本单价5 元.若设买单价5 元小笔记本买了x 本.(1)填写下表:(2 分)(2)列式表示:小明买大小笔记本共花元.(3)若小明从班长那里拿了300 元,买了40 本大小不同的两种笔记本(a=40),还找回55 元给班长,那么小明买了大小笔记本各多少本?(4)若这个班下次活动中,让小明刚好花400 元购买这两种大小笔记本,并且购买的小笔记本数量x 要小于60 本,但还要超过30 本(30<x<60),请列举小明有可能购买的方案,并说明理由.29.(本题满分8 分)(1)设a、b 为有理数,比较|a+b|与|a|+|b|(a、b 为有理数)的大小关系,并用文字语言叙述此关系;(2) 根据(1)中的结论,当|x|+2018=|x-2018|时,则x 的取值范围为.(3) 已知a、b、c、d 是有理数,|a-b|≤6,|c-d|≤16,|a-b-c+d|=22,求|b-a|-|d-c|的值.× × 答案一、选择题(每小题 4 分,共 40 分)二、填空题(每空 2 分,共 46 分)11.-3;2;-5;>12. 9.5×1012 ;3.15 13.0、-8 14.0;-4;-6;-3.5;-8;1;x =0;x =-20 15.-3、-216.7、23 19.3n +1三、解答题(共 10 题,共 72 分) 20.解:如图:17.16π18.-x 、x +1 (答案不唯一,符合题意即可得分)21.(1) 解:原式=-4-8+7(2)解:原式=-20+2=-12+7=-18=-5(3) 解:原式= 1 2 ×(-24)+5 6 ×(-24)- 712×(-24)(4) 解:原式=-1-3 ×1 12 3 4 =-12-20+14 =-1-1 12 4 =-32+14 =-1-18 =-18=-9822.(1) 解:原式=2a -3a -5b +b(2)解:原式=(3-4-5)(a -b )=-a -4b=-6(a -b )=-6a +6b(3) 解:原式=4x 2+4xy -4-4x 2+2xy(4) 解:原式=a 2-3(a 2-2a 2+2a +1)=4x 2-4x 2+4xy +2xy -4 =a 2-3a 2+6a 2-6a -3 =6xy -4=4a 2-6a -323.(1) 解:4x -3x =5(2)解:2x -7x =6+19x =5-5x =2524.解:原式=5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=5a 2+2a 2-5a 2+3b 2-2b 2+3b 2 =2a 2+4b 2当 a =-1,b =1时,原式=2×(-1)2+4×( 2=2+1=31)22 x =-525.解:(1) 50×7-8-21-14+0-16+41+28=360 千米答:7 天共行驶 360 千米 (2) 360÷7≈51.4 千米答:平均每天行驶约 51.4 千米26.解:(1) S =a 2+62-1a 2-1(a +6)×62 2=a 2+36-1a 2-3a -182 =1a 2-3a +18 2(2) 当 a =4 时, S =1a 2-3a +18=142-3×4+18=142 227.解:(1) 32 (2) nn -1(3) ∵ m ,n 互为特征数∴ m +n =mn又 m +mn =-2 ①, n +mn =3 ②①+②得:m +n +2mn =1∴ m +n +2(m +n )=1 ∴ m +n =1328.解:(1) a -x ,8(-x )(2) 8a -3x(3) 根据题意得:8×40-3x =300-55 解得:x =2540-25=15 (本)答:小明买了小笔记本 25 本,大笔记本 15 本(4) 根据题意得:400=8a -3x 解得:a =50+3x8 ∵ 30<x <60且 a 、x 为正整数,a >x∴ x =32,a =62,a -x =30 x =40,a =65,a -x =25 x =48,a =68,a -x =20 x =56,a =71,a -x =15∴ 方案①是小笔记本 32 本,大笔记本 30 本;方案②是小笔记本 40 本,大笔记本 25 本;方案③是小笔记本 48 本,大笔记本 20 本;方案④是小笔记本 56 本,大笔记本 15 本;29.解:(1) |a |+|b |≥|a +b | (当 a 、b 同号或者有一个等于 0 时取等号)文字表述:两数绝对值的和大于等于这两个数和的绝对值 (2) ∵ |-2018|=2018∴ |x |+2018=|x |+|-2018|=|x -2018|∴x ≤0即:当|x |+2018=|x -2018|时,x ≤0(3) ∵ |a-b|≤6,|c-d|≤16,|a-b-c+d|=22∴ |a-b-c+d|=|(a-b)-(c-d)|=22∴ (a-b)与(c-d) 异号,且|a-b|=6,|c-d|=16 ∴ |b-a|-|d-c|=6-16=-10。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)

北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
晋城市七年级下学期数学期中考试试卷

晋城市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七下·钦州期末) 下列的点在第二象限的是()A . (2,3)B . (﹣2,3)C . (2,﹣3)D . (﹣2,﹣3)2. (2分) 3的平方根是()A . 3B . -3C .D . ±3. (2分) (2016八上·无锡期末) 在-0.1,,,,,0中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个4. (2分)(2018·聊城模拟) 如图,直线l1∥l2 ,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=()A . 31°B . 45°C . 30°D . 59°5. (2分)已知点P(a,b)在第三象限,则点Q(-a,-b)在第象限。
A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)观察图,在下列四种图形变换中,该图案不包含的变换是()A . 旋转B . 轴对称C . 位似D . 平移7. (2分) (2019八上·越秀期中) 如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A .B .C .D .8. (2分)(2017·顺义模拟) 9的算术平方根是()A . 3B . ﹣3C . ±3D . 99. (2分)(2017·泰兴模拟) 如图,半径为1的半圆的圆心在原点,直径AB在x轴上,过原点的任意一条半径与半圆交于点P,过P作PN垂直于x轴,N为垂足,则∠OPN的平分线过定点()A . (0,﹣1)B . (0,﹣)C . (0,﹣)D . (0,﹣)10. (2分) (2017七下·云梦期末) 下列命题中,假命题是()A . 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B . 在同一平面内,过一点有且只有一条直线与已知直线垂直C . 两条直线被第三条直线所截,同旁内角互补D . 两直线平行,内错角相等二、填空题 (共6题;共6分)11. (1分)化简: =________.12. (1分) (2016八上·怀柔期末) 若实数x,y满足,则代数式x+y的值是________.13. (1分) (2019七下·江苏月考) 如图,AD为△ABC的中线,△ABC的面积为10,则△ABD的面积为________14. (1分)若2(x+4)﹣5<3(x+1)+4的最小整数解是方程 x﹣mx=5的解,则m2﹣2m+11的平方根是________.15. (1分) (2019八上·洪泽期末) 直线与两坐标轴围成的三角形面积为________.16. (1分)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是________ .三、解答题 (共8题;共87分)17. (10分)(2014·海南) 计算:(1)12×(﹣)+8×2﹣2﹣(﹣1)2(2)解不等式≤ ,并求出它的正整数解.18. (10分)(1)已知,,且,求的值.(2)先化简,再求值:,其中 .19. (5分) (2017七下·钦北期末) 解方程组:.20. (15分)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.21. (10分) (2017七下·云梦期中) 如图,直线AB∥CD,∠B=∠D=120°,E,F在AB上,且∠1=∠2,∠3=∠4(1)求证:AD∥BC;(2)求∠ACE的度数;(3)若平行移动AD,那么∠CAF:∠CFE的值是否发生变化?若变化,找出变化规律或求出其变化范围;若不变,求出这个比值.22. (11分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型公交车x 辆,完成下表:数量(辆)购买总费用(万元)载客总量(万人次)A型车x________60xB型车________________________(3)若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?23. (11分) (2019七下·高安期中) 如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.24. (15分)如图,直线y=2x+m(m>0)与x轴交于点A(-2,0),直线y=-x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共87分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、24-3、。
2018-2019学年山东省青岛市市北区七年级下学期期中数学试卷 (解析版)

2018-2019学年山东省青岛市市北区七年级第二学期期中数学试卷一、选择题1.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段()的长.A.BP B.CP C.DP D.BD2.下列运算正确的是()A.2m•4m2=8m2B.(mn2)2=mn4C.D.9x3y2÷(﹣3x3y)=﹣3y3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°4.下列式子正确的是()A.(x+3y)(x﹣3y)=x2﹣3y2B.(a+2b)(a﹣2b)=a2﹣4b2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣b25.如果∠A的余角等于25°,则∠A=()A.65°B.75°C.155°D.205°6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.7.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为()A.2a+b B.4a+b C.a+2b D.a+3b8.已知:如图AB∥EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A.∠β=∠α+∠γB.∠α+∠β+∠γ=180°C.∠α+∠β﹣∠γ=90°D.∠β+∠γ﹣∠α=90°二、填空题(本题满分24分,共有8道小题,每小题3分)9.桃花的花粉直径大约是30微米,用科学记数法表示,相当于米.10.已知a m=3,a n=2,那么a2m+n的值为.11.两条直线相交所成的四个角中,有两个角分别是(2x﹣10)°和(110﹣x)°,则x =.12.若(x+2)(x﹣1)=x2+mx+n,则m+n=.13.如图,将长方形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上过点E处,若∠AGE=32°,则∠GHC等于°14.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.15.有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数,它的百位数字是原数中偶位数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的.最后这个相同的数就叫它为“黑洞数”.请你以2004为例尝试一下(可自选另一个自然数作检验,不必写出检验过程):2004,一步之后变为,再变为,再变为,…,“黑洞数”是.16.如图,正方形ABCD和正方形CEFG的边长分别为a、b,如果a+b=14,ab=60,那么阴影部分的面积是.三、作图题(本期满分5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.如图,已知直线AB和AB外的一点P,作一条经过点P的直线CD,使CD∥AB.四、解答题(本题共有6道小题,满分67分)18.(16分)计算:(1)(﹣2a2)3+a8÷a2+3a•a5(2)(2x﹣y)(3x+y)﹣2x(y+3x)(3)(a﹣b﹣1)(a+b﹣1)(4)利用乘法公式计算:20182﹣2017×2019(5)(2x+5)(2x﹣5)﹣4(x﹣1)219.如图,∠ABC=∠BCD,∠1=∠2,图中共有几对平行线?请说明理由.20.果实成熟从树上落到地面,它下落的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91…高度h/米 4.9×0.25 4.9×0.36 4.9×0.494.9×0.644.9×0.814.9×1…(1)上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)请你按照表中呈现的规律,列出果子下落的高度h(米)与时间t(秒)之间的关系式;(3)如果果子经过2秒落到地上,请计算这果子开始下落时离地面的高度是多少米?21.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.22.小明家和学校同处在一条南北向笔直的大道上,他骑单车上学,当骑了一段路时,小明想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题.(1)小明家到学校的距离是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共用了分钟,共骑了米.(4)在整个上学的途中(填具体时间段)小明骑车速度最快,最快的速度是米/分.(5)观察图象,除上述信息外,你还能得到什么信息?写出一条即可.23.(21分)观察:已知x≠1.(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4…猜想:(1﹣x)(1+x+x2+…+x n)=;应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25)=;②2+22+23+24+…+2n=;拓广:①(x﹣1)(x99+x98+x97+…+x2+x+1)=;②判断22010+22009+22008+…+22+2+1的值的个位数是几?并说明你的理由.参考答案一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段()的长.A.BP B.CP C.DP D.BD【分析】根据垂线段的性质:垂线段最短进行解答即可.解:应测量图中线段CP的长,故选:B.2.下列运算正确的是()A.2m•4m2=8m2B.(mn2)2=mn4C.D.9x3y2÷(﹣3x3y)=﹣3y【分析】分别运用同底数幂运算法则、幂的乘方、负整数指数幂、零指数幂进行计算.解:2m•4m2=8m3,故选项错误;B.(mn2)2=m2n4,故选项错误;C.(﹣)﹣4+(π﹣3)0=16+1=17,故选项错误;D.9x3y2÷(﹣3x3y)=﹣3y,故选项正确.故选:D.3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.下列式子正确的是()A.(x+3y)(x﹣3y)=x2﹣3y2B.(a+2b)(a﹣2b)=a2﹣4b2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣b2【分析】根据平方差公式和完全平方公式计算出结果,即可做出判断.解:A、(x+3y)(x﹣3y)=x2﹣9y2,原计算错误,故此选项不符合题意;B、(a+2b)(a﹣2b)=a2﹣4b2,原计算正确,故此选项符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、原(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意.故选:B.5.如果∠A的余角等于25°,则∠A=()A.65°B.75°C.155°D.205°【分析】根据余角的和等于90°列式计算即可求解.解:根据题意得,∠A=90°﹣25°=65°.故选:A.6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.7.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为()A.2a+b B.4a+b C.a+2b D.a+3b【分析】先计算出这9张卡片的总面积,其和为一完全平方式,因式分解即可求得大正方形的边长.解:由题可知,9张卡片总面积为4a2+4ab+b2,∵4a2+4ab+b2=(2a+b)2,∴大正方形边长为2a+b.故选:A.8.已知:如图AB∥EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A.∠β=∠α+∠γB.∠α+∠β+∠γ=180°C.∠α+∠β﹣∠γ=90°D.∠β+∠γ﹣∠α=90°【分析】分别过C、D作AB的平行线CM和DN,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.解:如图,分别过C、D作AB的平行线CM和DN,∵AB∥EF,∴AB∥CM∥DN∥EF,∴∠α=∠BCM,∠MCD=∠NDC,∠NDE=∠γ,∴∠α+∠β=∠BCM+∠CDN+∠NDE=∠BCM+∠MCD+∠γ,又BC⊥CD,∴∠BCD=90°,∴∠α+∠β=90°+∠γ,即∠α+∠β﹣∠γ=90°,故选:C.二、填空题(本题满分24分,共有8道小题,每小题3分)9.桃花的花粉直径大约是30微米,用科学记数法表示,相当于3×10﹣5米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:30微米=30×10﹣6米=3×10﹣5米.故答案为:3×10﹣5米.10.已知a m=3,a n=2,那么a2m+n的值为18.【分析】将所求式子利用同底数幂的乘法逆运算法则变形,再利用幂的乘方逆运算法则变形,将各自的值代入计算,即可求出值.解:∵a m=3,a n=2,∴a2m+n=(a m)2•a n=9×2=18.故答案为:1811.两条直线相交所成的四个角中,有两个角分别是(2x﹣10)°和(110﹣x)°,则x =40或80.【分析】根据两条直线交叉相交,形成4个角,对顶角相等,在同一条直线的两个角的和是180°解答即可.解:两条直线相交所成的四个角中,对顶角相等,邻补角互补,根据题意可得:(2x﹣10)°=(110﹣x)°或(2x﹣10)°+(110﹣x)°=180°,解得:x=40或x=80,故答案为:40或8012.若(x+2)(x﹣1)=x2+mx+n,则m+n=﹣1.【分析】直接利用多项式乘法去括号,进而得出m,n的值求出答案.解:∵(x+2)(x﹣1)=x2+mx+n,∴x2+x﹣2=x2+mx+n,∴m=1,n=﹣2,则m+n=1﹣2=﹣1.故答案为:﹣1.13.如图,将长方形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上过点E处,若∠AGE=32°,则∠GHC等于106°【分析】由折叠可得∠DGH=∠DGE=74°,再根据平行线的性质即可得到∠GHC=180°﹣∠DGH=106°.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故答案为:106°.14.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.15.有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数,它的百位数字是原数中偶位数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的.最后这个相同的数就叫它为“黑洞数”.请你以2004为例尝试一下(可自选另一个自然数作检验,不必写出检验过程):2004,一步之后变为404,再变为303,再变为123,…,“黑洞数”是123.【分析】根据题意,得2004经过一步之后变为404,经过第二步后变为303,再变为123,再变为123,再变为123,即发现黑洞数是123.解:根据题意计算可知2004经过一步之后变为404,经过第二步后变为303,再变为213,再变为123,再变为123,即发现黑洞数是123.故分别填入404,303,123,123.16.如图,正方形ABCD和正方形CEFG的边长分别为a、b,如果a+b=14,ab=60,那么阴影部分的面积是8.【分析】根据两正方形的面积减去两三角形的面积表示出阴影部分面积,化简得到最简结果,将a+b与ab的值代入计算即可求出值.解:根据题意得:S阴影=a2+b2﹣a2﹣b(a+b)=a2+b2﹣ab﹣b2=(a2+b2﹣ab)=[(a+b)2﹣3ab].当a+b=14,ab=60时,S阴影=×(196﹣180)=8.故答案为:8.三、作图题(本期满分5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.如图,已知直线AB和AB外的一点P,作一条经过点P的直线CD,使CD∥AB.【分析】根据直线AB和AB外的一点P,作一条经过点P的直线CD,使CD∥AB即可.解:以点P为圆心,大于P到AB的距离长为半径画弧,交AB于点E、F,作EF的垂直平分线,经过点P,再以点P为圆心,任意长为半径画弧,交AB的垂直平分线于点M、N,作MN的垂直平分线CD,所以CD即为所求作的图形.四、解答题(本题共有6道小题,满分67分)18.(16分)计算:(1)(﹣2a2)3+a8÷a2+3a•a5(2)(2x﹣y)(3x+y)﹣2x(y+3x)(3)(a﹣b﹣1)(a+b﹣1)(4)利用乘法公式计算:20182﹣2017×2019(5)(2x+5)(2x﹣5)﹣4(x﹣1)2【分析】(1)直接利用积的乘方运即同底数幂的除法运算法则分别计算,再合并同类项得出答案;(2)直接利用多项式乘以多项式和单项式乘以多项式分别化简得出答案;(3)直接利用乘法公式将原式变形进而计算得出答案;(4)直接利用乘法公式将原式变形进而计算得出答案;(5)直接利用乘法公式计算得出答案.解:(1)(﹣2a2)3+a8÷a2+3a•a5=﹣8a6+a6+3a6=﹣4a6;(2)(2x﹣y)(3x+y)﹣2x(y+3x)=6x2+2xy﹣3xy﹣y2﹣2xy﹣6x2=﹣3xy﹣y2;(3)(a﹣b﹣1)(a+b﹣1)=[(a﹣1)﹣b][(a﹣1)+b]=(a﹣1)2﹣b2=a2﹣2a+1﹣b2;(4)20182﹣2017×2019=20182﹣(2018﹣1)×(2018+1)=20182﹣20182+1=1;(5)(2x+5)(2x﹣5)﹣4(x﹣1)2=4x2﹣25﹣4(x2﹣2x+1)=4x2﹣25﹣4x2+8x﹣4=8x﹣29.19.如图,∠ABC=∠BCD,∠1=∠2,图中共有几对平行线?请说明理由.【分析】根据平行线的判定和性质定理即可得到结论.解:图中共有2对平行线,理由:∵∠ABC=∠BCD,∴AB∥CD,∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠FCB,∴BE∥CF.20.果实成熟从树上落到地面,它下落的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91…高度h/米 4.9×0.25 4.9×0.36 4.9×0.494.9×0.644.9×0.814.9×1…(1)上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)请你按照表中呈现的规律,列出果子下落的高度h(米)与时间t(秒)之间的关系式;(3)如果果子经过2秒落到地上,请计算这果子开始下落时离地面的高度是多少米?【分析】(1)根据题意,可以写出上表反映了哪两个变量之间的关系,其中自变量是什么,因变量是什么;(2)根据表格中的数据,可以写出果子下落的高度h(米)与时间t(秒)之间的关系式;(3)将t=2代入(2)中关系式,即可求得相应的高度.解:(1)由表格可知,上表反映了时间t和高度h这两个变量之间的关系,自变量是时间t,因变量是高度h;(2)由表格可得,h=4.9t2,即果子下落的高度h(米)与时间t(秒)之间的关系式是h=4.9t2;(3)当t=2时,h=4.9×22=19.6,答:果子开始下落时离地面的高度是19.6米.21.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【分析】(1)根据平行线的性质和判定证明即可;(2)根据角平分线的定义和平行线的性质解答即可.【解答】证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.22.小明家和学校同处在一条南北向笔直的大道上,他骑单车上学,当骑了一段路时,小明想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题.(1)小明家到学校的距离是1500米.(2)小明在书店停留了4分钟.(3)本次上学途中,小明一共用了14分钟,共骑了2700米.(4)在整个上学的途中12~14分钟(填具体时间段)小明骑车速度最快,最快的速度是450米/分.(5)观察图象,除上述信息外,你还能得到什么信息?写出一条即可.小明家距书店600米,书店距学校900米,小明开始骑车的速度是200米/分.【分析】根据函数图象得出信息解答即可.解:(1)小明家到学校的距离是1500米.(2)小明在书店停留了12﹣8=4分钟.(3)本次上学途中,小明一共用了14分钟,共骑了1500+1200=2700米.(4)在整个上学的途中12~14分钟小明骑车速度最快,最快的速度是=450米/分.(5)观察图象,除上述信息外,还能得到小明家距书店600米,书店距学校900米,小明开始骑车的速度是200米/分,故答案为:(1)1500;(2)4;(3)14;2700;(4)12~14分钟;450;(5)小明家距书店600米,书店距学校900米,小明开始骑车的速度是200米/分.23.(21分)观察:已知x≠1.(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4…猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25)=﹣63;②2+22+23+24+…+2n=2n+1﹣2;拓广:①(x﹣1)(x99+x98+x97+…+x2+x+1)=x100﹣1;②判断22010+22009+22008+…+22+2+1的值的个位数是几?并说明你的理由.【分析】根据一系列等式总结出规律即可;应用①利用得出的规律计算即可得到结果;②所求式子变形后,利用得出的规律计算即可得到结果;拓广①所求式子第一个因式提取﹣1变形后,利用得出的规律计算即可得到结果;②所求式子个位上数字为2,理由为:将所求式子变形后,利用规律计算,根据以2为底数的幂结果以2,4,8,6循环,用2011除以4得到余数为3,即可得到结果个位上的数字为2.解:猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②2+22+23+24+…+2n=(1﹣2)(1+2+22+23+24+…+2n)=2n+1﹣2;拓广:①(x﹣1)(x99+x98+x97+…+x2+x+1)=x100﹣1;②个位上数字为2,理由为:∵22010+22009+22008+…+22+2+1=﹣(1﹣2)(22010+22009+22008+…+22+2+1)=﹣1+22011,∵21=2,22=4,23=8,24=16,…,其结果以2,4,8,6循环,∴2011÷4=502…3,则22011个位上数字为8,即﹣1+22011个位上数字为7.。
2018-2019学年第二学期福建省厦门市第十中学七年级(下)期中数学试卷(解析版)

2018-2019学年福建省厦门十中七年级(下)期中数学试卷一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)在平面直角坐标系中,点P(﹣5,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)下列实数中,是无理数的是()A.0B.2C.﹣D.3.(4分)下列命题是真命题的是()A.同位角相等B.将20190000用科学记数法表示为2.019×108C.对顶角相等D.若2x=﹣1,则x=﹣24.(4分)如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°5.(4分)一个正方形的面积是7,估计它的边长大小()A.在2~3之间B.在3~4之间C.在4~5之间D.在5~6之间6.(4分)方程组的解是()A.B.C.D.7.(4分)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则AB 可以通过以下方式平移到CD()A.先向上平移3个单位,再向左平移5个单位B.先向左平移5个单位,再下平移3个单位C.先向上平移3个单位,再右平移5个单位D.先向右平移5个单位,再向下平移3个单位8.(4分)如图,下列条件不能判定AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠B+BCD=180°D.∠B=∠59.(4分)若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)10.(4分)同一平面内,∠A与∠B的两边互相垂直,∠B比∠A的2倍少30°,则∠A是()A.30°B.70°C.20°或110°D.30°或70°二、填空题(本大题共6个小题;每小题4分,共24分)11.(4分)如图,直线a、b相交于点O,若∠1=50°,则∠2=°.12.(4分)命题“两直线平行,内错角相等”的题设是.13.(4分)把方程2x﹣3y=5用含x的式子表示y的形式,则y=.14.(4分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=度.15.(4分)若方程组的解适合方程2x﹣5y=﹣1,那么m=.16.(4分)如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“努力发挥”的真实意思是“今天考试”.若“努”所处的位置为(x,y),根据你找到的密码钥匙,破译“祝你成功”真实意思是.三、解答题17.(10分)计算:(1)﹣﹣(﹣2)2(2)|﹣3|+|π+3|18.(12分)用适当的方法解下列二元一次方程组:(1)(2)19.(7分)已知△A′B′C′是△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化;(2)确定a=b=c=并在平面直角坐标系中画出△ABC;求出△ABC的面积.20.(7分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.21.(7分)养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?22.(8分)如图,线段AC与线段AB相交于A点,与射线CE相交于点C.(1)请按以下要求,完成作图:过点B作射线CE的垂线段BD,垂足为D,与线段AC 交于点O;(2)在(1)条件下,若∠A与∠COD互余,请证明:AB∥CE.23.(10分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知:90+=x+y,其中x是整数,且0<y<1,求x++59﹣y的平方根.24.(12分)已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.25.(13分)已知AB∥CD,点O不在直线AB、CD上,且AO⊥OC于点O.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点O作OE⊥AB于点E,求证:∠AOE=∠C;(3)如图3,在(2)的条件下,点F、G在BE上,OF平分∠AOE,OG平分∠COE,若∠GCD+∠GOC=180°,试判断∠OGC与∠EOF之间的数量关系,并说明理由.2018-2019学年福建省厦门十中七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)在平面直角坐标系中,点P(﹣5,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限的坐标特点即可得到正确答案.【解答】解:点P(﹣5,3)在第二象限.故选:B.2.(4分)下列实数中,是无理数的是()A.0B.2C.﹣D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,2,是有理数,是无理数.故选:D.3.(4分)下列命题是真命题的是()A.同位角相等B.将20190000用科学记数法表示为2.019×108C.对顶角相等D.若2x=﹣1,则x=﹣2【分析】利用平行线的性质、科学记数法、对顶角的性质及方程的解的知识分别判断即可确定正确的选项.【解答】解:A、两直线平行,同位角相等,错误,是假命题;B、将20190000用科学记数法表示为2.019×107,故错误,是假命题;C、对顶角相等,正确,是真命题;D、若2x=﹣1,则x=﹣,故错误,是假命题,故选:C.4.(4分)如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°【分析】根据对顶角相等求出∠2=65°,然后根据CD∥EB,判断出∠B=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选:A.5.(4分)一个正方形的面积是7,估计它的边长大小()A.在2~3之间B.在3~4之间C.在4~5之间D.在5~6之间【分析】先求出边长,然后在估计无理数的大小.【解答】解:一个正方形的面积是7,它的边长为:.∵,∴2,故边长在2~3之间.故选:A.6.(4分)方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选:B.7.(4分)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则AB 可以通过以下方式平移到CD()A.先向上平移3个单位,再向左平移5个单位B.先向左平移5个单位,再下平移3个单位C.先向上平移3个单位,再右平移5个单位D.先向右平移5个单位,再向下平移3个单位【分析】根据向左平移,横坐标减,纵坐标不变,求解即可.【解答】解:由点A(﹣1,4)的对应点为C(4,7)知,平移的方式为先向上平移3个单位,再右平移5个单位,故选:C.8.(4分)如图,下列条件不能判定AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠B+BCD=180°D.∠B=∠5【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴AD∥BC,故本选项正确;B、∵∠3=∠4,∴AB∥CD,故本选项错误;C∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误;D、∵∠B=∠5,∴AB∥CD,故本选项错误.故选:A.9.(4分)若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.10.(4分)同一平面内,∠A与∠B的两边互相垂直,∠B比∠A的2倍少30°,则∠A是()A.30°B.70°C.20°或110°D.30°或70°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠B比∠A的2倍少30°,所以它们互补,可设∠A是x度,利用方程即可解决问题.【解答】解:设∠A是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=2x﹣30解得,x=30,故∠A=30°,②两个角互补时,如图2:x+2x﹣30=180,所以x=70,故∠A=70°.故选:D.二、填空题(本大题共6个小题;每小题4分,共24分)11.(4分)如图,直线a、b相交于点O,若∠1=50°,则∠2=130°.【分析】由直线a、b相交于点O,可知∠1、∠2是邻补角,所以,∠1+∠2=180°,代入∠1=50°,可求出∠2的度数;【解答】解:∵直线a、b相交于点O,∴∠1+∠2=180°,∵∠1=50°,∴∠2=180°﹣50°=130°,故答案为130°.12.(4分)命题“两直线平行,内错角相等”的题设是两直线平行.【分析】根据命题的结构填空即可.【解答】解:题设是条件,结论是结果,故:“两直线平行,内错角相等”的题设是两直线平行.故答案为:两直线平行.13.(4分)把方程2x﹣3y=5用含x的式子表示y的形式,则y=.【分析】把x看做已知数求出y即可.【解答】解:∵2x﹣3y=5,∴﹣3y=5﹣2x,y=﹣,则y=,故答案为:.14.(4分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.15.(4分)若方程组的解适合方程2x﹣5y=﹣1,那么m=.【分析】用含m的代数式表示x,y,即解关于x,y的方程组,再代入2x﹣5y=﹣1可求出m的值.【解答】解:①+②得2x=10m,∴x=5m,①﹣②得2y=6m,∴y=3m,代入2x﹣5y=﹣1可得10m﹣15m=﹣1,∴m=.故本题答案为:.16.(4分)如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“努力发挥”的真实意思是“今天考试”.若“努”所处的位置为(x,y),根据你找到的密码钥匙,破译“祝你成功”真实意思是正做数学.【分析】根据已破译出“努力发挥”的真实意思是“今天考试”,“努”所处的位置为(x,y),则对应文字“今”的位置是:(x﹣1,y﹣2),所以找到的密码钥匙是:对应文字横坐标减1,纵坐标减2,据此判断出“祝你成功”的真实意思即可.【解答】解:∵“努”所处的位置为(x,y),对应文字“今”的位置是:(x﹣1,y﹣2),∴找到的密码钥匙是:对应文字横坐标减1,纵坐标减2,∴“祝你成功”真实意思是“正做数学”.故答案为:正做数学.三、解答题17.(10分)计算:(1)﹣﹣(﹣2)2(2)|﹣3|+|π+3|【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简得出答案.【解答】解:(1)原式=6﹣3﹣4=﹣1;(2)原式=3﹣+π+3=6﹣+π.18.(12分)用适当的方法解下列二元一次方程组:(1)(2)【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:x+4x=5,解得:x=1,把x=1代入②得:y=2,则方程组的解为;(2)方程组整理得:,②×3﹣①得:5x=5,解得:x=1,把x=1代入①得:y=﹣0.5,则方程组的解为.19.(7分)已知△A′B′C′是△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化;(2)确定a=0b=2c=9并在平面直角坐标系中画出△ABC;求出△ABC 的面积.【分析】(1)利用已知点坐标进而分析得出对应点平移规律得出答案;利用平移的性质结合对应点坐标得出答案;(2)直接利用三角形面积求法得出答案.【解答】解:(1)∵B(3,0),B′(7,b)∴对应点向右平移了4个单位长度,∵A(0,0),A′(4,2),∴对应点向上平移了2个单位长度,所以点A、B、C分别向右平移了4个单位长度,然后向上平移了2个单位长度后分别得到了点A′、B′、C′;(2)∵B(3,0),B′(7,b)∴对应点向右平移了4个单位长度,∴a=0,∵A(0,0),A′(4,2),∴对应点向上平移了2个单位长度,∴b=2,∴c=9.如图所示:△ABC即为所求;S△形A′B′C′=S△ABC=×3×5=.故答案为:029.20.(7分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.21.(7分)养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?【分析】根据一头大牛一天的饮料乘以大牛数量+一头小牛一天的饮料乘以小牛数量=大牛和小牛一天的总用饮料数量列出方程组即可.【解答】解:设原来大牛x头,小牛y头,根据题意,得解得x=20,y=13.答:养牛场原有大牛和小牛数量各是20头,13头.22.(8分)如图,线段AC与线段AB相交于A点,与射线CE相交于点C.(1)请按以下要求,完成作图:过点B作射线CE的垂线段BD,垂足为D,与线段AC 交于点O;(2)在(1)条件下,若∠A与∠COD互余,请证明:AB∥CE.【分析】(1)利用基本作图,过B点作BD⊥CE于D;(2)先根据∠A与∠COD互余,∠COD=∠AOB得到∠A+∠AOB=90°,利用三角形内角和得到∠ABO=90°,所以OB⊥AB,然后根据平行线的判定方法得到结论.【解答】(1)解:如图,BD为所作;(2)证明:∵∠A与∠COD互余,∴∠A+∠COD=90°,∵∠COD=∠AOB,∴∠A+∠AOB=90°,∴∠ABO=90°,∴OB⊥AB,∵BD⊥EC,∴∠ODC=∠ABO=90°∴AB∥CE.23.(10分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是5,小数部分是﹣5.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知:90+=x+y,其中x是整数,且0<y<1,求x++59﹣y的平方根.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵5<<6,∴的整数部分是5,小数部分是﹣5,(2)3<<4,由题意可知:a=﹣3,b=5,所以原式=﹣3+5﹣=2;(3)10<<11,有题意可知:x=100,y=﹣10,所以原式=169,所以平方根为﹣13,13.故答案为:5,﹣5.24.(12分)已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=4,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C 的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.【分析】(1)①将x=﹣1,y=m代入x+y=3得m的值;将x=n,y=代入x+y=3得n的值;②由①及原题表格可得A、B、C的坐标,在坐标系中标出即可;(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H,由图象易得x+y=3的解对应的点所组成的图形及其特征;(3)将点P(b,a﹣3),G(﹣a,b+3)代入x+y=3解方程组即可得a与b的值.【解答】解:(1)①将x=﹣1,y=m代入x+y=3得﹣1+m=3∴m=4将x=n,y=代入x+y=3得n﹣=3∴n=故答案为:4,;②由①及原题表格可知A、B、C的坐标分别为:A(﹣3,6)、B(﹣1,4)、C(,)画图如下:(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H猜想x+y=3的解对应的点所组成的图形为直线它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.(3)由题意得:解得:∴a的值为3,b的值为3.25.(13分)已知AB∥CD,点O不在直线AB、CD上,且AO⊥OC于点O.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点O作OE⊥AB于点E,求证:∠AOE=∠C;(3)如图3,在(2)的条件下,点F、G在BE上,OF平分∠AOE,OG平分∠COE,若∠GCD+∠GOC=180°,试判断∠OGC与∠EOF之间的数量关系,并说明理由.【分析】(1)利用平行线的性质以及三角形内角和定理即可解决问题.(2)利用等角的余角相等证明即可.(3)结论:∠OGC=2∠EOF.如图3中,设∠EOF=∠AOF=y,∠COG=∠GOE=x.利用三角形内角和定理构建关系式解决问题即可.【解答】(1)解:如图1中,∵AB∥CD,∴∠1=∠C,∵AO⊥OC,∴∠A+∠1=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°.(2)证明:如图2中,∵AB∥CD∴∠OAE+∠C=∠AOC=90°,∵OE⊥AB,∴∠AEO=90°,∴∠AOE+∠OAE=90°,∴∠AOE=∠C.(3)解:结论:∠OGC=2∠EOF.理由:如图3中,设∠EOF=∠AOF=y,∠COG=∠GOE=x.∵AB∥CD,∴∠DCG+∠CGA=180°,∵∠DCG+∠GOC=180°,∴∠EGC=∠GOC=x,∵OE⊥AB,OA⊥OC,∴∠E=∠AOC=90°,∴∠OGC=∠CGE﹣∠EGO=x﹣[90°﹣2y﹣(90°﹣x)]=2y=2∠EOF.。
福建省福州市福清市2018-2019学年第二学期七年级(下)期中考试数学试卷 解析版

2018-2019学年福建省福州市福清市七年级(下)期中数学试卷一.选择题(共10小题)1.下列实数是无理数的是()A.B.﹣1 C.D.3.142.下图中能判断∠1与∠2一定互为补角的是()A.B.C.D.3.在平面直角坐标系中,点(﹣1,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.下列各组数中,是方程2x+3y=10的解为()A.B.C.D.5.估计+1的结果在哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和66.如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠C=∠CDE D.∠C+∠ADC=180°7.下列语句正确的是()A.a的平方根是(a≥0)B.在同一平面内,垂直于同一条直线的两直线平行C.同旁内角互补D.若ab=0,则点P(a,b)在坐标原点8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,其中一个三角板的斜边与纸条一边重合,则∠1的度数是()A.30°B.40°C.45°D.50°9.已知=a,=b,点A的坐标为(a,b),则点A的坐标不可能是()A.(0,1)B.(1,﹣1)C.(0,0)D.(﹣1,0)10.关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个二.填空题(共6小题)11.25的算术平方根是.12.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.如图,已知∠AOB=62°,将∠AOB沿着射线OC折叠,使OA和OB重合,过OB边上任意一点P作OA的平行线交OC于D,则∠ODP的度数为.15.如图,将直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点由表示﹣2的点A 到达点A',则点A'对应的数是.16.平面直角坐标系中,点A(a,),B(﹣3,﹣),则线段AB的最小值为.三.解答题(共9小题)17.计算题:(1)(2)18.解方程(组):(1)(2)(x﹣3)3=819.已知三角形A1B1C1是由三角形ABC经过平移得到的,其中A、B、C三点的对应点分别是A1、B1、C1,它们在平面直角坐标系中的坐标如表所示:三角形ABC A(0,0)B(﹣1,2) C(2,5)三角形A1B1C1 A1(a,2)B1(4,b)C1(7,7)(1)观察表中各对应点坐标的变化,填空a=,b=;(2)在图中的平面直角坐标系中画出三角形ABC及三角形A1B1C1;(3)P(m,n)为三角形ABC中任意一点,则平移后对应点P′的坐标为.20.阅读并填空完善下列证明过程:如图,已知BC⊥AC于C,DF⊥AC于D,∠1+∠2=180°,求证:∠GFB=∠DEF﹒证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠=90°()∴CB∥FD(同位角相等,两直线平行)∴∠1+∠3=180°()又∵∠1+∠2=180°(已知)∴∠2=∠3()∴∥()∴∠GFB=∠DEF()21.如图,已知直线AD∥BC,且都被直线BE所截,交点分别为A、B,AC⊥BE于点A,交直线BC于点C,∠1=44°,求∠2的度数.22.已知关于x、y的方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为.求原方程组的正确解.23.某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元.(1)求出足球和篮球的的单价分别是多少?(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒24.我们知道:零与任何实数的积为零,任意一个有理数与无理数的和为无理数.现定义一种新运算“⊕”:对于任意有理数a,b,都有a⊕b=a+b,例如:3⊕b=3+b.运用上述知识,解决下列问题:(1)如果a⊕(b﹣1)=0,那么a=,b=;(2)如果(a+b)⊕(2a+b)=2,求﹣ab的平方根.25.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使S△PAB=2S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列实数是无理数的是()A.B.﹣1 C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;﹣1是整数,属于有理数;是分数,属于有理数;3.14是有限小数,属于有理数.故选:A.2.下图中能判断∠1与∠2一定互为补角的是()A.B.C.D.【分析】根据图形和补角的定义得出即可.【解答】解:选项B中的∠1+∠2=180°,其余选项中∠1+∠2≠180°,故选:B.3.在平面直角坐标系中,点(﹣1,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:∵点(﹣1,﹣3)的横纵坐标都为:﹣,∴位于第三象限.故选:C.4.下列各组数中,是方程2x+3y=10的解为()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把代入方程得:左边=2+3=5,右边=10,∵左边≠右边,∴不是2x+3y=10的解;B、把代入方程得:左边=4+3=7,右边=10,∵左边≠右边,∴不是2x+3y=10的解;C、把代入方程得:左边=2+6=8,右边=10,∵左边≠右边,∴不是2x+3y=10的解;D、把代入方程得:左边=4+6=10,右边=10,∵左边=右边,∴是2x+3y=10的解,故选:D.5.估计+1的结果在哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和6【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【解答】解:∵<<,∴3<<4,∴4<+1<5.故选:C.6.如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠C=∠CDE D.∠C+∠ADC=180°【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:根据∠3=∠4,可得BC∥AD;根据∠1=∠2,可得AB∥CD;根据∠C=∠CDE,可得BC∥AD;根据∠C+∠ADC=180°,可得BC∥AD;故选:B.7.下列语句正确的是()A.a的平方根是(a≥0)B.在同一平面内,垂直于同一条直线的两直线平行C.同旁内角互补D.若ab=0,则点P(a,b)在坐标原点【分析】分别根据平方根的定义、平行线的性质、直角坐标系知识进行判定.【解答】解:A.a的平方根是(a≥0),故本项错误;B.在同一平面内,垂直于同一条直线的两直线平行,正确;C.两直线平行,同旁内角互补,故本项错误;D.若ab=0,则点P(a,b)在坐标轴上,故本项错误.故选:B.8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,其中一个三角板的斜边与纸条一边重合,则∠1的度数是()A.30°B.40°C.45°D.50°【分析】根据平行线的性质,即可得到∠2的度数,再根据角的和差关系即可得到∠1的度数.【解答】解:∵a∥b,∴∠2=∠3=45°,∴∠1=90°﹣∠2=45°.故选:C.9.已知=a,=b,点A的坐标为(a,b),则点A的坐标不可能是()A.(0,1)B.(1,﹣1)C.(0,0)D.(﹣1,0)【分析】根据算术平方根、立方根的定义求出a,b,从而得出点A对应的坐标.【解答】解:因为=a,=b,所以a=0或1,b=0或±1,所以点A(a,b)的坐标可能是(0,1)或(1,﹣1)或(0,0),点A的坐标不可能是(﹣1,0),故选:D.10.关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个【分析】首先应用加减消元法,求出方程组的解是多少;然后根据方程组的解为整数,判断出满足这个条件的整数m的个数有多少即可.【解答】解:①﹣②,可得(2﹣m)x=﹣m,解得x=,把x=代入①,解得y=,∴原方程组的解是,∵方程组的解为整数,∴m﹣2=±1,±2或±4.(1)m﹣2=﹣1时,m=1,原方程组的解是,符合题意;(2)m﹣2=1时,m=3,原方程组的解是,符合题意;(3)m﹣2=﹣2时,m=0,原方程组的解是,符合题意;(4)m﹣2=2时,m=4,原方程组的解是,符合题意;(5)m﹣2=﹣4时,m=﹣2,原方程组的解是,不符合题意;(6)m﹣2=4时,m=6,原方程组的解是,不符合题意;∴满足这个条件的整数m的个数有4个:m=0,1,3,4.故选:C.二.填空题(共6小题)11.25的算术平方根是5.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.12.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,已知∠AOB=62°,将∠AOB沿着射线OC折叠,使OA和OB重合,过OB边上任意一点P作OA的平行线交OC于D,则∠ODP的度数为31°.【分析】由折叠的性质可得∠AOC=∠BOC=31°,由平行线的性质可求解.【解答】解:如图,∵将∠AOB沿着射线OC折叠,使OA和OB重合,∴∠AOC=∠BOC=31°,∵PD∥OA,∴∠ODP=∠AOD=31°,故答案为:31°.15.如图,将直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点由表示﹣2的点A 到达点A',则点A'对应的数是﹣2+π.【分析】直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点A运动到了A'的位置,说明AA'之间的距离为圆的周长,再根据数轴的基础知识即可求解出A'所表示的数.【解答】解:由题AA'之间的距离为直径为1个单位长度的圆的周长∴AA'=πd=π∵A所表示的数为﹣2∴A'所表示的数为π﹣2答:点A'对应的数是π﹣2.16.平面直角坐标系中,点A(a,),B(﹣3,﹣),则线段AB的最小值为.【分析】先确定点A在与x轴平行,且在x轴上方的直线l上,直线l与x轴的距离为,当AB⊥l时,线段AB最小,其最小值是A、B两点纵坐标绝对值的和.【解答】解:∵点A(a,),∴点A在与x轴上方,与x轴平行且与x轴距离为的直线l上,∵B(﹣3,﹣),当AB⊥l时,线段AB最小,此时最小值是+,故答案为:+.三.解答题(共9小题)17.计算题:(1)(2)【分析】(1)原式利用算术平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=0﹣4+(﹣2)=﹣4﹣2=﹣6;(2)原式=+2﹣=2.18.解方程(组):(1)(2)(x﹣3)3=8【分析】(1)方程组利用代入消元法求出解即可;(2)方程利用立方根定义开立方即可求出解.【解答】解:(1)由①得y=2x﹣5③,把③代入②得:3x+4(2x﹣5)=2,解得:x=2,把x=2代入③得:y=﹣1,∴原方程组的解为;(2)(x﹣3)3=8,开立方得:x﹣3=2,解得:x=5.19.已知三角形A1B1C1是由三角形ABC经过平移得到的,其中A、B、C三点的对应点分别是A1、B1、C1,它们在平面直角坐标系中的坐标如表所示:三角形ABC A(0,0)B(﹣1,2) C(2,5)三角形A1B1C1 A1(a,2)B1(4,b)C1(7,7)(1)观察表中各对应点坐标的变化,填空a=5,b=4;(2)在图中的平面直角坐标系中画出三角形ABC及三角形A1B1C1;(3)P(m,n)为三角形ABC中任意一点,则平移后对应点P′的坐标为(m+5,n+2).【分析】(1)由点C及其对应点的坐标知,△ABC向右平移5个单位、向上平移2个单位可得△A1B1C1,据此可得答案;(2)根据以上所得点的坐标,描点、连线即可得;(3)根据平面直角坐标系中点的坐标的平移得出答案.【解答】解:(1)由点C及其对应点的坐标知,△ABC向右平移5个单位、向上平移2个单位可得△A1B1C1,∴a=0+5=5,b=2+2=4,故答案为:5、4;(2)如图所示,△A1B1C1即为所求.(3)平移后对应点P′的坐标为(m+5,n+2),故答案为:(m+5,n+2).20.阅读并填空完善下列证明过程:如图,已知BC⊥AC于C,DF⊥AC于D,∠1+∠2=180°,求证:∠GFB=∠DEF﹒证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠ADF=90°(垂直的定义)∴CB∥FD(同位角相等,两直线平行)∴∠1+∠3=180°(两直线平行,同旁内角互补)又∵∠1+∠2=180°(已知)∴∠2=∠3(同角的补角相等)∴DE∥FG(内错角相等,两直线平行)∴∠GFB=∠DEF(两直线平行,同位角相等)【分析】根据垂直的定义、平行线的判定、平行线的性质、补角的性质求解可得.【解答】证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠ADF=90°(垂直的定义)∴CB∥FD (同位角相等,两直线平行)∴∠1+∠3=180°(两直线平行,同旁内角互补)又∵∠1+∠2=180°(已知)∴∠2=∠3(同角的补角相等)∴DE∥FG (内错角相等,两直线平行)∴∠GFB=∠DEF (两直线平行,同位角相等),故答案为:ADF;垂直的定义;两直线平行,同旁内角互补;同角的补角相等;DE;FG;内错角相等,两直线平行;两直线平行,同位角相等.21.如图,已知直线AD∥BC,且都被直线BE所截,交点分别为A、B,AC⊥BE于点A,交直线BC于点C,∠1=44°,求∠2的度数.【分析】根据垂直的定义可求∠4=90°,根据平行线的性质和对顶角的定义可求∠5,再根据平角的定义可求∠2的度数.【解答】解:∵AC⊥BE,∴∠4=90°,∵AD∥BC,∴∠5=∠3,又∵∠3=∠1=44°,∴∠5=∠3=44°,∴∠2=180°﹣∠4﹣∠5=180°﹣90°﹣44°=46°.22.已知关于x、y的方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为.求原方程组的正确解.【分析】直接把x,y的值代入进而得出b的值,进而求出a的值,再解方程组得出答案.【解答】解:把代入②得4×3﹣5b=7,解得:b=1,把代入①得﹣a+7=5,解得:a=2,∴原方程组为,解这个方程组得:.23.某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元.(1)求出足球和篮球的的单价分别是多少?(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒【分析】(1)设足球的单价为x元,篮球的单价为y元,根据“若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个足球,n个篮球,根据总价=单价×数量,即可得出关于m,n的二元一次方程,再结合m,n均为正整数,即可得出各购买方案.【解答】解:(1)设足球的单价为x元,篮球的单价为y元,依题意,得:,解得:.答:足球的单价为60元,篮球的单价为80元.(2)设购买m个足球,n个篮球,依题意,得:60m+80n=800,∴n=10﹣m.∵m,n均为正整数,∴当m=4时,n=7;当m=8时,n=4;当m=12时,n=1.∴有三种购买方案,方案1:购进4个足球,7个篮球;方案2:购进8个足球,4个篮球;方案3:购进12个足球,1个篮球.24.我们知道:零与任何实数的积为零,任意一个有理数与无理数的和为无理数.现定义一种新运算“⊕”:对于任意有理数a,b,都有a⊕b=a+b,例如:3⊕b=3+b.运用上述知识,解决下列问题:(1)如果a⊕(b﹣1)=0,那么a=0,b=1;(2)如果(a+b)⊕(2a+b)=2,求﹣ab的平方根.【分析】(1)已知等式利用题中的新定义化简,计算即可求出a与b的值;(2)已知等式利用题中的新定义化简,计算求出a与b的值,即可求出所求.【解答】解:(1)根据题中的新定义化简得:a+b﹣1=0,可得a=0,b﹣1=0,解得:a=0,b=1;故答案为:0,1;(2)依题意得:(a+b)+(2a+b)=2,∴(a+b)+(2a+b﹣2)=0,∴,解得:,∴﹣ab=4,∵4的平方根是±2,∴﹣ab的平方根是±2.25.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标(﹣4,﹣4),AO和BC位置关系是BC∥AO;(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使S△PAB=2S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.【分析】(1)根据非负数的性质分别求出a、c,得到点B的坐标,根据坐标与图形性质判断AO和BC位置关系;(2)过B点作BE⊥AO于E,根据三角形的面积公式求出AP,得到点P的坐标;(3)分点Q在点C的上方、点Q在点C的下方两种情况,根据平行线的性质解答即可.【解答】解:(1)∵(a+8)2+=0,∴a+8=0,c+4=0,解得,a=﹣8,c=﹣4,则点B的坐标为(﹣4,﹣4),∵点B的坐标为(﹣4,﹣4),点C的坐标为(0,﹣4),∴BC∥AO,故答案为:(﹣4,﹣4),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△PAB=2S△QBC,则AP=2t,OQ=t,∴CQ=4﹣t,∵BE=4,BC=4,∴,,∵S△APB=2S△BCQ,∴4t=2(8﹣2t)解得,t=2,∴AP=2t=4,∴OP=OA﹣AP=4,∴点P的坐标为(﹣4,0);(3)∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ,即∠PQB=∠OPQ+30°;②当点Q在点C的下方时;过Q点作HJ∥AO 如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°,即∠BQP+∠OPQ=150°,综上所述,∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.。
江苏省常州市北郊中学2018-2019学年七年级下期中考试数学试题(word版含答案)
北郊中学2018-2019学年度第二学期七年级期中考试数学试卷一、选择题(每题2分,共16分)1.在下列四个汽车标志图案中,可以看作由“基本图案”经过平移得到的是2.下列计算正确的是A.1243a a a =⋅B.()1243a a =C.()123462a a -=- D.a a a =÷33 3.下列运算中,正确的是(A.()222y x y x -=- B.()()6322-=-+x x x C.2224241221y xy x y x ++=⎪⎭⎫ ⎝⎛+ D.()()22422x y x y x y -=-+- 4.长为11、8、6、4的四根木条,选其中三根组成三角形,有_____种选法A.1B.2C.3D.45.若一个多边形的内角和为1080°,则这个多边形的边数为A.6B.7C.8D.96.如图,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,AB//CD ,若∠1=72°,则∠2的度数为A.54°B.59°C.72°D.108°7.下列命题中,是真命题的有①两条直线被第三条直线所截,同旁内角互补;②若a2=b2,则a=b③多边形的外角和与边数有关;④若线段a 、b 、c 满足b+c>a 则以a 、b 、c 为边一定能组成三角形;⑤如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等。
A.0个B.1个C.2个D.3个8.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是A.102°B.108°C.124°D.128°二、填空题(每题2分,共20分)9.计算:()()=-÷-36x x _______. 10.DMA 是遗传物质脱氧核糖核酸的英文简称,DMA 分子的直径只有0.0000007cm ,则0.0000007用科学记数法表示是____________.11.写出命题“直角三角形的两个锐角互余”的逆命题:_________________________.12.()().____206204205____25.042100100=⨯-=-⨯-; 13.已知,,23==n m a a 则=-n m a2________. 14.若()(),q px x x x ++=+-225则=-q p ______.15.若2542+-kx x 是一个完全平方式,则=k _______.16.如图,将△ABC 沿着AB 方向,向右平移得到△DEF ,若AE=8,DB=2,则CF=______.17.如图,在Rt △ABC 中,∠B=90°,∠ACB=59°,EF//GH ,若∠1=58°,则∠2=_____°.18.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题19.计算(每题4分,共24分)(1)()12024311--⨯+⎪⎭⎫ ⎝⎛--- (2)()28422222a a a a a ÷-⋅+-(3)()()()b a b a b a 2222+--+ (4)()()c b a c b a -+--(5)()()232323-+x x (6)()()()3932++-x x x20.(本题5分)求代数式()()()()232121-+-+-x x x x 的值,其中.21=x21.(本题5分)已知:()().12225=++=+y x y x ,(1)求xy 的值;(2)求xy y x 322-+的值。
湖北省荆州市公安县2018~2019学年下学期期中考试七年级数学试题(含答案)
公安县2018~2019学年度下学期期中考试七年级数学试题本试卷共6页,25题。
全卷满分120分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,-y)在(▲) A.第一象限B.第二象限C.第三象限D.第四象限2.点P(a,b)在第四象限,则点P到x轴的距离是(▲)A.a B.b C.|a|D.|b|3.如图:已知AB⊥BC,垂足为点B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(▲)A.3B.3.5C.4D.54.把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则点N的坐标为(▲)A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1) 5.计算|1+3|+|3-2|=(▲)A.23-1B.1-23C.-1D.36.若x使(x-1)2=4成立,则x的值是(▲)A.3B.-1C.3或-1D.±27.如图所示,下列推理不正确的是(▲)A.若⊥AEB=⊥C,则AE⊥CDB.若⊥AEB=⊥ADE,则AD⊥BCC.若⊥C+⊥ADC=180°,则AD⊥BCD.若⊥AED=⊥BAE,则AB⊥DE8.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角分别是(▲)A.20°,20°B.55°,125°C.35°,145°D.以上都不对9.36的算术平方根是(▲)A.6B.-6C.±6D.610.若⊥A与⊥B是对顶角且互补,则它们两边所在的直线(▲) A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定二、填空题(本大题共8小题,每小题3分,共24分)11.点P(m+3,m+1)在直角坐标系的y轴上,则点P的坐标为▲。
2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷(附答案详解)
2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(本大题共5小题,共25.0分) 1.123−4.5−12×1.3⋅−(1−2)2|−523|=( )A. −720B. −12245C. −17720D. −292452. 已知x 和y 满足2x +3y =5,则当x =4时,代数式3x 2+12xy +y 2的值是( )A. 4B. 3C. 2D. 13. 图中的大,小正方形的边长均为整数,它们面积之和等于74cm 2,则阴影三角形的面积是( )A. 6cm 2B. 7cm 2C. 8cm 2D. 9cm 24. 有理数a 、b 、c 的大小关系如图所示,则下列式子中一定成立的是( )A. a +b +c >0B. |a +b|<cC. |a −c|=|a|+cD. |b −c|>|c −a|5. “希望杯”四校足球邀请赛规定:(1)比赛将采用单循环赛形式;(2)有胜负时,胜队得3分,负队得0分; (3)踢平时每队各得1分.比赛结束后,四个队各自的总得分中不能出现( )A. 8分B. 7分C. 6分D. 5分二、填空题(本大题共5小题,共25.0分)6. 2002年8月,在北京召开了国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,则两条直角三角形的两条边的立方和等于______.7. 关于x ,y 的方程组{3x +4y =32mx +3y =2的解x ,y 的和等于1.则m 的值是______.8. 若k45k9−是能被3整除的五位数,则k 的可能取值有______个;这样的五位数中能被9整除的是______.9. 如图,甲乙两车分别自A 、B 两城同时相向行驶,在C地相遇继续行驶分别达到B 、A 两城后,立即返回,在D处再次相遇.已知AC =30千米,AD =40千米,则AB =______千米,甲的速度:乙的速度=______. 10. For real number a ,let[a]denote tℎe maximum integer wℎicℎ does not exceed a.For example ,[3.1]=3,[−1.5]=−2,[0.7]=0 Now let f(x)=(x +1)/(x −1),tℎen[f(2)]+[f(3)]+⋯+[f(100)]=______.(英汉小词典real number :实数;tℎe maximum integer wℎicℎ does not exceed a :不超过a 的最大整数) 三、解答题(本大题共4小题,共50.0分)11. 1只猴子摘了一堆桃子,第一天吃了这堆桃子的17,第二天吃了余下桃子的16,第三天吃了余下桃子的15,第四天吃了余下桃子的14,第五天吃了余下桃子的13,第六天吃了余下桃子的12,这时还剩下桃子12个,那么第一天和第二天所吃桃子的总数是多少?12. 观察下面的等式:2×2=4,2+2=4,32×3=412,32+3=412,43×4=513,43+4=513,54×5=614,54+5=614,小明归纳上面各式得出一个猜想:“两个有理数的积等于这两个有理数的和”,小明的猜想正确吗?为什么?请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想.13. 平时在顺风情况下,一帆船由甲地经3小时到达乙地.今天这艘帆船照例在顺风情况下从甲地出发,行驶了全程的13;由于风向骤变,船因而以顺风时速度的25行驶8千米,接着风向又变得顺起来,且风力加大了,这时船以顺风时速度的2倍行驶,到达乙地时比往常迟36分钟.求甲、乙两地相距多少千米.14. 规定:正整数n 的“H 运算”是①当n 为奇数时,H =3n +13;②当n 为偶数时,H =n ×12×12×…(其中H 为奇数).如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过257次“H 运算”得到的结果. (2)若“H 运算”②的结果总是常数a ,求a 的值.答案和解析1.【答案】A【解析】解:原式=(53−92)÷(−12×43)−1÷(523),=−176×(−32)−1×235,=174−235,=−720.故选:A.把小数转化为分数通分,计算乘方和绝对值,再把分数按照除法计算.本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.2.【答案】D【解析】解:把x=4代入2x+3y=5得:y=−1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(−1)+1=1,故选:D.根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+ 12xy+y2即可求得.本题考查了二元一次方程的解法,主要运用了代入法,难度适中.3.【答案】B【解析】解:∵大、小正方形的边长均为整数(cm),它们面积之和等于74cm2,∴大正方形的边长是7cm,小正方形的边长是5cm,∴阴影部分的面积=12×(7−5)×7=7(cm2).故选:B.根据大、小正方形的边长均为整数,它们面积之和等于74cm2,则可以分析求得两个正方形的边长分别是5cm和7cm,再进一步求得阴影部分的面积即可.此题考查三角形的面积计算,关键是能够根据已知条件把74分成两个完全平方数,即74=25+49.4.【答案】C【解析】解:根据数轴可知,A、a+b+c<0,本选项错误;B、|a+b|>c,本选项错误;C、|a−c|表示数a的点与数c的点之间的距离,可以用|a|+c表示,本选项正确;D、|b−c|<|c−a|,本选项错误.故选:C.由数轴可知a、b为负数,c为正数,根据绝对值的意义,逐一判断.本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【答案】A【解析】解:因为四校进行单循环赛,则每队能赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,则每队比赛得分可能有:9分,7分,6分,5分,4分,3分,2分,1分,0分.故选:A.四校足球邀请赛采用单循环赛形式,四个队中每队将比赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,计算即可得出得分出现的情况,从而作答.本题考查了比赛积分问题,了解单循环赛的规则及积分规定,是此题的关键.6.【答案】35【解析】解:设每个直角三角形的两条直角边分别是a、b(a>b),小正方形面积为1,大正方形面积为13,即a2+b2=13,a−b=1,解得a=3,b=2,∴a 3+b 3=35,故两条直角三角形的两条边的立方和=a 3+b 3=35 故答案为35.设每个直角三角形的两条直角边分别是a 、b(a >b),则根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a 、b ,求a 3+b 3即可.本题考查了勾股定理在直角三角形中的灵活运用,考查了正方形面积的计算,本题中列出方程组并求解是解题的关键.7.【答案】1【解析】解:解方程组{3x +4y =3x +y =1,得{x =1y =0. 把x =1,y =0代入2mx +3y =2, 得2m +0=2, ∴m =1. 故答案为1.先解二元一次方程组{3x +4y =3x +y =1,把x 、y 的值代入2mx +3y =2,即可求出m 的值.本题考查了一次方程组的解法.先求解二元一次方程组{3x +4y =3x +y =1,可使问题比较简便.本题还可以将x +y =1加入已知方程组中,解二元一次方程组.8.【答案】3 94599【解析】解:已知,五位数k 45k 9能被3整除, 所以(k +4+5+k +9)是3的倍数, 即2k +18是3的倍数, 18是3的倍数, 则2k 是3的倍数,3,6,9,12,15,18…是3的倍数,又K 是1、2、3、4、5、6、7、8、9,其中的数, 如果k =1,2,4,5,7,8时,2k 不是3的倍数, 当k =3,6,9时,2k 是3的倍数, 所以k =3或6或9,得到3个五位数即34539,64569,94599,而这三个五位数中只有94599的5个数的和是9的倍数. 所以这样的五位数中能被9整除的是94599. 故答案分别为:3,94599.由已知,若k 45k 9能被3整除,则(k +4+5+k +9)是3的倍数,即2k +18是3的倍数,由此可求出k ,然后用求得k 的数组成的五位数的5个数的和那个是9的倍数即得答案.此题是考查数的整除性问题,解答的关键是这个五位数能被3或9整除,则有它们5个数的和是3或9的倍数.9.【答案】65 67【解析】解:设甲速度为a ,乙速度为b ,BD 为x 千米,根据题意得:{30a=x+10b40+2xa=2×40+x b, 解方程得x =25,ab =67. 则AB =AD +BD =65(千米). 故答案两空分别填:65、67.设甲速度为a ,乙速度为b ,BD 为x 千米,根据到C 点时甲乙用时相同可列一个方程,再根据到达D 时两人用时也相同可得第二个方程,求方程组的解即可.本题考查了二元一次方程组的应用,解题关键是要读懂题意,看懂图意,根据题目给出的条件找出等量关系,列出方程组再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.【答案】102【解析】解:∵f(x)=x+1x−1, ∴f(2)=2+12−1=3,f(3)=3+13−1=2,f(4)=4+14−1=53,f(5)=5+15−1=32,…f(100)=100+1100−1=10199,∴[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,∴[f(2)]+[f(3)]+⋯+[f(100)],=3+2+1+⋯+1,=5+1×97,=102.故答案为:102.利用函数f(x)=x+1x−1,可得出f(2)…f(100)代表的数据,从而得出[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,的值,进而求出结果.此题主要考查了取整函数的性质,以及由已知得出[f(2)]…[f(100)]代表的数据,这是解决问题的关键.11.【答案】解:设这堆桃子共有x个,则第一天吃了17x个,第二天吃了(1−17)×16x=17x个,第三天吃了(1−17−17)×15x=17x个,第四天吃了(1−17−17−17)×14x=17x,第五天吃了(1−17−17−17−17)×13x=17x个,第六天吃了(1−17−17−17−17−17)×12x=17x个,依题意得:x−17x−17x−17x−17x−17x−17x=12,解得:x=84,∴17x+17x=17×84+17×84=12+12=24.答:第一天和第二天所吃桃子的总数是24个.【解析】设这堆桃子共有x个,则第一天吃了17x个,第二天吃了17x个,第三天吃了17x个,第四天吃了17x,第五天吃了17x个,第六天吃了17x个,根据最后剩下桃子12个,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入(17x+17x)中即可求出第一天和第二天所吃桃子的总数.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】解:(1)小明的猜想显然是不正确的,易举出反例;如1×3≠1+3;(2)将第一组等式变形为:21×2=4,21+2=4, 得出如下猜想:“若n 是正整数,则n+1n×(n +1)=n+1n+(n +1)”,证法1:左边=(1+1n )(n +1)=(n +1)+n+1n=右边,所以猜想是正确的, 证法2:右边=n+1n+n(n+1)n=(n+1)2n=左边,所以猜想是正确的.【解析】(1)可通过实际例子来验证小明的猜想是否正确;(2)通过观察各个算式,归纳出规律,然后用字母表示数并进行进一步的验证. 本题考查了有理数的混合运算,更重要的是考查同学们阅读信息、加工信息、应用信息的能力,是一道综合考查学生学习能力的题目.13.【答案】解:设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时, 依题意得:13×3v v+825v+(1−13)×3v−82v−3=3660,即16v =85, 解得:v =10,经检验,v =10是原方程的解,且符合题意, ∴3v =3×10=30. 答:甲、乙两地相距30千米.【解析】设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v 千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时,利用时间=路程÷速度,结合到达乙地时比往常迟36分钟,即可得出关于v 的分式方程,解之经检验后即可得出v 的值,再将其代入3v 中即可求出甲、乙两地间的距离. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.14.【答案】解:(1)1次=3×257+13=7842次=784×0.5×0.5×0.5×0.5=493次=3×49+13=1604次=160×0.5×0.5×0.5×0.5×0.5=55次=3×5+13=286次=28×0.5×0.5=77次=3×7+13=348次=34×0.5=179次=3×17+13=6410次=64×0.5×0.5×0.5×0.5×0.5×0.5=111次=3×1+13=1612次=16×0.5×0.5×0.5×0.5=1=第10次所以从第10次开始偶数次等于1奇数次等于16257是奇数所以第257次是16.(2)若对一个正整数进行若干次“H操作”后出现循环,此时‘H’运算的结果总是a,则a一定是个奇数.那么,对a进行H运算的结果a×3+13是偶数,再对a×3+13进行“H运算”,即:a×3+13乘以1的结果仍是a2k=A于是(a×3+13)×12k也即a×3+13=A×2k即a(2k−3)=13=1×13因为a是正整数所以2k−3=1或2k−3=13解得k=2或k=4当k=2时,a=13;当k=4时,a=1,所以a为1或13.【解析】(1)按照①②运算一次一次的输入,得出它们的结果,从中发现规律,从第10次开始偶数次等于1,奇数次等于16.从而求数257经过257次“H运算”得到的结果.(2)对a的值分析可得a一定是个奇数,然后按照运算①计算,并变成幂的形式即可得a的值.本题难度较大,考出了学生的水平,学生一定要仔细应对.第11页,共11页。
人教版北京市海淀区2018-2019学年七年级(下)期中考试数学试卷(含答案)
2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.4的算术平方根是()A.16B.±2C.2D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x 值可能为()A.1B.6C.9D.1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学期中考试题 一.选择题(共10小题,每题3分) 1.9的平方根是( ) A .±3 B .± C .3 D .﹣3 2.下列图形中,由∠1=∠2能得到AB ∥CD 的是( ) A . B . C . D . 3.点P (﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( ) A .(﹣3,0) B .(﹣1,6) C .(﹣3,﹣6) D .(﹣1,0) 4.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有( ) A .1个 B .2个 C .3个 D .4个 5.下列图形中,∠1与∠2不是同位角的是( ) A . B . C . D . 6.如图,下列能判定AB ∥CD 的条件有( )个. (1)∠B +∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5. A .1 B .2 C .3 D .4 7.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( ) A .30° B .35° C .40° D .50° 8.下列图形中,不能通过其中一个四边形平移得到的是( ) A . B . C . D . 9.如图,点A (﹣2,1)到y 轴的距离为( ) A .﹣2 B .1 C .2 D . 10.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( )
A.100米B.99米C.98米D.74米
二.填空题(共5小题,每题3分)
11.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁
内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的
是(填序号).
12.的平方根是.
13.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.
14.如图,点E在AC的延长线上,对于给出的四个条件:
(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;
(4)∠D+∠ABD=180°.
能判断AB∥CD的有个.
15.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线
EF于点F,∠AGF=130°,则∠F=.
三.解答题(共8小题)
16.计算:|﹣3|﹣×+(﹣2)2.
17.已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.18.求下列各式中x的值:
(1)4x2﹣81=0;
(2)3(x﹣1)3=24.
19.(1)请写出点A,B,C,D,的坐标.
(2)在如图所示的直角坐标系中描出下列各点:
A(﹣2,0),B(2,5),C(﹣,﹣3)
20.填写推理理由:
如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB.
∴∠3=∠ACB.
21.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
23.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.
七年级下学期数学期中考试题答题卡
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
.(7分)计算:|﹣3|﹣×+(﹣2)2.
.(7分)已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.
第1页
18.求下列各式中x的值:(14分)
(1)4x2﹣81=0;(2)3(x﹣1)3=24.
19.(7分)(1)请写出点A,B,C,D,的坐标.
(2)在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C (﹣,﹣3)
第2页
第3页
20.(8分)填写推理理由:
如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB .
证明:∵CD ∥EF ,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD ∥CB .
∴∠3=∠ACB .
21.(10分)如图,AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E . 求证:AD ∥BC .
22.(10分)如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=65°,求∠2的度数.
22.(12分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.
第4页。