正交试验设计(内容详尽)

合集下载

第8章正交试验设计

第8章正交试验设计

3
5.0
150
75
二、无交互作用的正交试验
4、将因素水平上列
F T
A
B
C
D
含油率 yi %
每个因素上1列;
1
1
1
1 1 27.5
列数>=因素个数; 得到9个试验处理
2
1
2
2 2 24.9
3
1
3
3 3 24.9
5、安排试验( Fisher准则)
4
2
1
2 3 25.3
设置区组:试验环境相同。
第8章 正交试验设计
一、正交表
1.作用 正交表:是根据组合数学的原理排列而成,安排正交试验
的因素和水平,决定试验的组合处理的一种特殊表格。
2.形式
F
L:正交表 源于拉丁方(Latin square) t:试验处理数(Thing)即:正交表的行数;
l l:因素的水平数(Level)
Lt F:可安排的因素数(Factor)即:正交表的列数
y7= yA3+ yB1+ yC3+ε7

y8= yA3+ yB2+ yC1+ε8

5
2
6
2
7
3
8
3
9
3
y9= yA3+ yB3+ yC2+ε9

B C D Yi
1
1 1 y1
2
2 2 y2
3
3 3 y3
1
2 3 y4
2
3 1 y5
3
1 2 y6
1
3 2 y7
2
1 3 y8

第七章 正交试验设计

第七章 正交试验设计

表头设计是借助于与正交表匹配的两 列间交互作用表来完成的。 列间交互作用表来完成的。 例如,要安排A 例如,要安排A、B、C三个因素,每 三个因素, 个因素都是两个水平, 个因素都是两个水平,同时要研究交 互作用A 可选用L 互作用A×B和A×C,可选用L8(27)。查 交互作用表(见表7 L8(27) 交互作用表(见表7-5)。
表头设计:
表头是指正交表第一行的“列号” 表头是指正交表第一行的“列号”。正交表选 定后, 定后,要把各因素项及交互作用项分别放在正交 表表头适当的列中去。此过程称表头设计。 表表头适当的列中去。此过程称表头设计。若因 素间的交互作用可以忽略时, 素间的交互作用可以忽略时,可随意地把各因素 安排在所选表的列上;若因素间有交互作用, 安排在所选表的列上;若因素间有交互作用,则 应将交互作用看作是影响因素, 应将交互作用看作是影响因素,并将其安排在相 应的列上(称为交互作用列)。但是, )。但是 应的列上(称为交互作用列)。但是,各个因素 列和交互作用列是不能随意安排的。 列和交互作用列是不能随意安排的。表头设计不 是唯一的,一项试验, 是唯一的,一项试验,可以做出多种不同的表头 设计,一般来说,只要设计得合理, 设计,一般来说,只要设计得合理,试验误差不 结论一般都是一致的。 大,结论一般都是一致的。
(2)综合平衡法 先对每个指标分别进行单指标的直 观分析, 观分析,得到每个指标的影响因素主 次顺序和较优水平组合, 次顺序和较优水平组合,然后根据理 论知识和实践经验, 论知识和实践经验,对各指标的分析 结果进行综合比较和分析, 结果进行综合比较和分析,得出较优 方案。 方案。 例7-7
3.2 方差分析法
3.1.2 混合水平试验 常用的方法有两种: 常用的方法有两种: (1)直接利用混合水平的正交表 例7-4

8.正交试验设计

8.正交试验设计
C 2
K Y3 Y5 Y7
C 3
=>因素C在1,2,3水平上试验值的平均数分别为
1 C k K1 , 3
C 1
1 C k K2 , 3
C 2
1 C k K3 3
C 3
化工产品转化率的试验值
试验号
1 2
A
1 1 1 2 2 2 3
B
1 2
C
1 2
转化率
31
3
4
3
1 2
3
2
54 38 53 49
Y1 a1 b1 c1 1 Y2 a1 b2 c2 2 Y3 a1 b3 c3 3 Y4 a2 b1 c2 4 Y5 a2 b2 c3 5 Y a b c 2 3 1 6 6 Y7 a3 b1 c3 7 Y8 a3 b2 c1 8 Y9 a1 b3 c2 9
C 1 2 C 2 2 C 3 2
可以证明:QT QA QB QC QE
QA ——因素A引起的离差平方和 QB ——因素B引起的离差平方和 QC ——因素C引起的离差平方和 QE ——误差平方和
定理 (1)
2 (2)当 H01 , H02 , H03 成立时,
QE
~ 2 2
试验值
Y1 Y2 Y3 Y4
4
5 6 7 8 9
A2 B2C3 A2 B3C1 A3 B1C3
Y5 Y6
Y7
A3 B2C1 A3 B3C2
Y8 Y9
假定因素A,B,C没有交互作用。 设因素A在水平 A1 , A2 , A3 上的效应分别为 a1 , a2 , a3 因素B在水平 B1 , B2 , B3 上的效应分别为 b1 , b2 , b3 因素C在水平 C1 , C2 , C3 上的效应分别为 c1 , c2 , c3

正交试验设计精品文档66页

正交试验设计精品文档66页

(1) 900 (1) 10 (1) 70
160
(1) 900 (2) 11 (2) 80
215
(1) 900 (3) 12 (3) 90
180
(2)1100 (1) 10 (2) 80
168
(2)1100 (2) 11 (3) 90
236
(2)1100 (3) 12 (1) 70
190
(3)1300 (1) 10 (3) 90
二、无交互作用的正交设计与数据分析
试验设计一般有四个步骤: 1. 试验设计 2. 进行试验获得试验结果 3. 数据分析 4. 验证试验
例1 磁鼓电机是彩色录像机磁鼓组件的关 键部件之一,按质量要求其输出力矩应大于 210g.cm。某生产厂过去这项指标的合格率较 低,从而希望通过试验找出好的条件,以提高 磁鼓电机的输出力矩。
157
(3)1300 (2) 11 (1) 70
பைடு நூலகம்
205
(3)1300 (3) 12 (2) 80
140
9个试验点的分布
3 5
C3
2
C2
4
1
C1 A1
A2
7 9
6
8
B3
B2
A3 B1
(二)做试验,并记录试验结果
在进行试验时,要注意几点: 1. 除了所考察的因子外的其它条件,尽可
能保持相同 2. 试验次序最好要随机化 3. 必要时可以设置区组因子
譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。
B1
B2
B3
A1 50 56 62
A2 56 70 60
A3 54 60 58

正交实验的设计方案

正交实验的设计方案

正交实验的设计方案第1篇正交实验的设计方案一、方案背景正交实验设计(Orthogonal Experimental Design)是一种高效的实验设计方法,通过合理的安排实验条件,以最少的实验次数获取最多的信息,从而为优化产品设计、生产过程以及解决实际问题提供科学依据。

本方案针对某项目需求,结合我国相关法律法规,制定合法合规的正交实验设计方案。

二、实验目标1. 确定影响目标指标的主要因素;2. 优化实验条件,提高目标指标;3. 为实际应用提供科学依据。

三、实验因素及水平根据项目需求,选取以下因素及水平进行正交实验:因素A(温度):水平1、水平2、水平3;因素B(压力):水平1、水平2、水平3;因素C(时间):水平1、水平2、水平3;因素D(原料比例):水平1、水平2、水平3。

四、正交表的选择根据实验因素及水平,选择合适的正交表进行实验设计。

本方案采用L9(3^4)正交表,即4因素3水平正交表。

五、实验设计1. 按照L9(3^4)正交表,安排实验顺序及条件;2. 对每个实验条件进行实验操作,记录实验数据;3. 分析实验数据,得出各因素对目标指标的影响程度;4. 根据实验结果,优化实验条件,提高目标指标。

六、实验数据分析1. 计算各因素各水平下的实验指标平均值;2. 计算各因素各水平下的实验指标极差;3. 判断各因素对目标指标的影响程度,找出主要因素;4. 根据实验结果,提出优化方案。

七、实验结果的可靠性分析1. 检验实验数据的正交性,确保实验结果的可靠性;2. 对实验数据进行方差分析,验证实验结果的显著性;3. 结合实验结果及实际情况,评估实验方案的适用性。

八、实验方案的优化与应用1. 根据实验结果,优化实验条件,提高目标指标;2. 将优化后的实验方案应用于实际生产或研究,验证其效果;3. 不断调整和优化实验方案,以满足实际需求。

九、实验方案的合法合规性1. 本方案遵循我国相关法律法规,确保实验过程合法合规;2. 实验过程中,严格遵守实验操作规程,确保实验安全;3. 实验数据真实可靠,遵循科学实验的道德规范。

第6章 正交试验设计

第6章 正交试验设计

A2B3C1
A2B2C3
A3B3C2
A1B3C3
2 A1B2C2 3
1
5 4 18
6
8 9
7
13
12
17
16 19 20 15
14
10 24 23
11
25 26
立方体上共 有9 个面, 设对应于A1、 A2、A3的是 左、中、右 三个面;对 应于B1、B2、 B3的是下、 中、上三个 面;对应于 C1、C2、C3 的是前、中、 后三个面。
L 正交表的代号
m正交表的列数
Ln r
n 正交表的行数
m

(最多能安排的因素个数, 包括交互作用、误差等)
r 各因素的水平数
(各因素的水平数相等)
(需要做的试验次数)
正交表符号的意义
正交表的纵列数 (最多允许安排因素的个数)
L8(27)
正交表的代 号
字码数(因素的水平数)
正交表的横行数

R越大,因素越重要
若空列R较大,可能原因:
漏掉某重要因素
因素之间可能存在不可忽略的交互作用
(6)优方案的确定


优方案:在所做的试验范围内,各因素较优的水 平组合 若指标越大越好 ,应选取使指标大的水平 若指标越小越好,应选取使指标小的水平 还应考虑:降低消耗、提高效率等 在本例中,试验指标是乳化能力,指标越大越好, 所以应挑选每个因素的K1 ,K2 ,K3(或k1 ,k2 ,k3) 中最大的值对应的那个水平 。
21
A1B1C1
22
A2B1C2
27
A:
考虑兼顾全面试验法和简单比较法的优点, 利用根据数学原理制作好的规格化表—— 正交表来设计试验不失为一种上策。 用正交表来安排试验及分析试验结果,这 种方法叫做正交试验法。 事实上,正交最优化方法的优点不仅表现 在试验的设计上,更表现在对试验结果的 处理上。

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)
C2 (y2+ y4)/2 =(0.448+0.516)/2=0.482
A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
阐明:
表头设计中旳“混杂”现象(一列安排多种原因或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两原因间旳交互作用要占r-1列 ,当r>2时,不宜
(1)选正交表
要求: 原因数≤正交表列数 原因水平数与正交表相应旳水平数一致 选较小旳表
选L9(34)
(2)表头设计
将试验原因安排到所选正交表相应旳列中 因不考虑原因间旳交互作用,一种原因占有一列(能够随
机排列) 空白列(空列):最佳留有至少一种空白列
(3)明确试验方案
(4)按要求旳方案做试验,得出试验成果
(1)等水平正交表: 各原因水平数相等旳正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——原因水平数 m——正交表纵列数(最多能安排旳因数个数)
②等水平正交表特点
表中任一列,不同旳数字出现旳次数相同 表中任意两列,多种同行数字对(或称水平搭配)出现旳
1 n
(
n i 1
yi )2
QP
n
设: Q yi2 i 1
n
T yi i 1
P
1 n
n
(
i 1
yi )2
T2 n
②各原因引起旳离差平方和
第j列所引起旳离差平方和 :
SS j
rr (
n i1
Ki2
)
T2 n
rr (

正交试验设计完整版本

正交试验设计完整版本
5)用这种方法安排试验,如不重复做试验,是给不 出误差估计的,因此,同样的试验次数,提供信息 不多。
2020/3/26
数理统计在化学中的应用
李 振 华 制
10 造
2. 拉丁方试验设计
均衡分布思想,虽然远在古代就有,但只是在近代才与生 产科研实际相结合,产生了拉丁方、正交表,显示出它的 巨大威力。
2020/3/26
数理统计在化学中的应用
李 振 华 制
3造
2020/3/26
数理统计在化学中的应用
李 振 华 制
4造
2020/3/26
数理统计在化学中的应用
李 振 华 制
5造
$8.3 试验设计
试验设计的目的就是为了试验优化. 试验优化由于具有设计灵活、计算简便、试验次数
少、优化成果多、可靠性高以及适用面广等特点, 因而发展迅速,应用广泛,已成为多快好省地获取 试验信息的现代通用技术,成为科学实验、质量管 理的一个科学工具。
反应时间
产量
1小时 平均值
反应温度
50 oC
69.5
70 oC
71.5
2020/3/26
数理统计在化学中的应用
2小时 平均值
72.0
64.5
李 振 华 制
29 造
最佳条件:
显色剂浓度:2% 显色温度:50 oC 显色时间:2小时 操作方法:不搅拌
2020/3/26
数理统计在化学中的应用
李 振 华 制
18世纪的欧洲,普鲁士弗里德里希·威廉二世(1712一1786 )要举行一次与往常不同的6列方队阅兵式。他要求每个方 队的行和列都要由6种部队的6种军官组成,不得有重复和 空缺。这样.在每个6列方队中,部队军官在行和列全部排 列均衡。群臣们冥思苦想,竟无一人能排出这种方队。后 来,向当时著名的数学家欧拉(1707—1783)请教,由此 引起了数学家们的极大兴趣,致使各种拉丁方问世。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏差大小,通常用 V 表示:
V S2 / f
存在期望值时:
V
1 n
n
( xi
i 1
)2
不存在期望值时:
V
1 n1
n
( xi
i 1
x)2
均方差也称为准偏差或标准差,定义为方差的平方根,
通常用 表示,即
存在期望值时:
V
1 n
n i 1
( xi
)2
不存在期望值时:
V
1 n
1
n i 1
正交试验设计
7.1.5 试验的主要步骤(阶段)
● 试验设计阶段——选题、设计试验方案、准备试 验材料及设备、安排试验环境等;
● 试验实施阶段——按计划进行试验(包括试验操 作、收集试验数据等);
● 试验分析阶段——核查试验数据、进行统计分析、 解释试验结果、获取试验结论等。
正交试验设计
7.1.6 试验设计的基本原则(费歇尔三原则)
● 重复原则——利用重复观测减小试验误差,提高试 验精度;
● 随机化原则——目的是为了消除或减小人为因素引 起的系统误差的影响;
● 局部控制原则——该原则也称为区组控制原则,指 的是把比较的水平设置在差异较小的区组内,其目的也是 为了消除或减小试验中系统误差的影响。例如,按机器设 备、班次、原料批号、操作人员划分区组。
其他:
★ 标示因素
★ 区组因素
★ 信号因素
★ 误差因素
正交试验设计
⑷ 因素的水平 试验中因素变化的状态和条件称为因素的水平或位数,
简称水平。水平用数字(1,2,3…)表示。 试验中设计过程中水平的选取原则是:
◆ 宜选用三水平,以有利于实验结果的分析; ◆ 水平通常取等间隔,特殊情况下取对数间隔; ◆ 水平应该具体。水平应该是可控的,其变化对试验指 标有影响。
正交试验设计
● 中期发展阶段(约1950s~1970s,以正交试验设计、回归 试验设计为代表)
◆ 40年代末、50年代初,以田口玄一(Genichi Taguchi) 为代表的日本电讯研究所(EOL)的研究人员在研究电话 通讯设备质量时从英、美引进了试验设计技术,提出了 “正交试验设计法”;
该所的产品——线形弹簧继电器,有几十 个特性值和两千多个试验因素,经7年研制成 功,其性能比美国的同一产品更优。虽然其成 本仅几美元,研究费用却用了几百万美元,创 造的经济效益高达几十亿美元!同时挤垮了美 国的企业。
次设计、回归试验设计、完全随机化试验设计、随机区组试验设计、 拉丁方试验设计、正交拉丁方试验设计、均匀试验设计等。
正交试验设计
7.2 试验设计的统计学基础
7.2.1 常用统计量
■ 极差 极差指的是一组数据中的最大值与最小值之差,也称
为变异幅。
R xmax xmin
极差反映了一组数据的最大离散程度。
水平
因素
1
2
3
A 回火温度(℃)
440
470
500
B 保温时间(min)
3
4
5
C 工件重量(kg)
7.5
9.0
10.5
正交试验设计
■ 几个术语 ⑴ 特性值
事物与现象的各种性质、状态称为事物的特性,表征 特性的数值称为特性值。
前例中,弹簧弹性可用弹性模量E来表征,E的数值就 是弹簧弹性的一种特性值。
水平 1
因素
A 回火温度(℃)
440
B 保温时间(min)
3
C 工件重量(kg)
7.5
2
470
4
9.0
3
500
5
10.5
正交试验设计
7.1.4 试验设计的作用
通过合理、科学的试验设计,可以显著提高产品的设 计、开发质量,找出最佳的工艺条件,从而提高产品最终 的质量。
田口认为,设计质量(包括产品设计和工艺设计)对 整个产品质量的贡献约为60%~70%。
由于期望值通常是未知的,因此试验中常使用后者, 前者只用于理论分析中。
注意:
n
n
vi (xi x) 0
i 1
i 1
正交试验设计
■ 偏差平方和与自由度
偏差平方和用来表示一组数据的离散程度,通常用 表S 2
示。
存在期望值时:
n
S 2 ( xi )2 i 1
不存在期望值时:
n
S 2 ( xi x)2 i 1
输入
过程或系统
输出
z1 z2
zq
不可控因素
输入可理解为试验开始时过程或系统的初始状态、特征。
在一些可控因素和一些不可控因素的影响下,产生一定的输
出(响应),该输出(响应)就是试验结果。
正交试验设计
例:在弹簧生产中,为提高弹性、防止弹簧断裂,要进行 回火工艺试验。试验中选取回火温度(A)、保温时间 (B)、工件重量(C)三个试验因素,每个因素取1、2、 3三个水平进行试验,希望通过试验确定出最佳的生产条件 (工艺条件)。
◆ 确定出各因素对试验指标的影响规律,得知哪些因素的 影响是主要的、哪些因素的影响是次要的、哪些因素之间 存在相互影响; ◆ 选出各因素的一个水平组合来确定最佳生产条件。
正交试验设计的基础是正交表。
7.1.3 基本概念
■ 过程或系统
人、机器、实验条件等资源的组合。
正交试验设计
可控因素
x1 x2
xp
自由度指的是关系式中独立数据的个数,通常用 f 表示。
例如,在计算偏差平方和的过程中,若表达式中使用
的是期望值 ,则 f n;若表达式中使用的是平均值 x ,
n
则因为存在约束条件 ( xi x) 0 而使独立数据的个数少 i 1
了一个,因此f n 1 。
正交试验设计
■ 方差与均方差
方差也称为平均偏差平方和,表示单位自由度所对应的
注意:
◆ 每个指标唯一表示一种特性,某一试验过程中不能用多个指标 重复表示同一种特性。
◆ 试验指标应尽可能采用计量特性值。
正交试验设计
⑶ 试验因素(简称因素)
对试验结果(特性值)可能有影响的原因或要素。
★ 可控因素:人可以控制、调节的因素(如加热温度、切 削速度等)。 ★ 不可控因素:人不可控制、调节的因素(如机床的随机 振动、试验中的随机误差等)。 注意:试验设计中主要考虑可控因素,不可控因素的影响 通过数据处理来处理。
■ 试验 所谓试验,一般指用于发现新的现象、新的事物、新
的规律,以肯定或否定先前的调查研究结论、发现新规律 而进行的有计划活动。
试验的实质:是一种用以测定过程或系统某些特定性 能的有目的的测试。
正交试验设计
■ 试验设计(DOE,Design of Experiment)
试验设计是数理统计学领域的一个分支。它是以概 率论、数理统计、线性代数等为理论基础,科学地设计 试验方案,正确合理地分析试验结果,以较少的试验工 作量和较低的成本获取足够、可靠的有用信息。
正交试验设计
■ 和与平均值
设有n个观测值 x1, x2 ,, xn 构成的一组数据,定义
和 平均值
n
T xi i 1
x
1 n
n i 1
xi
T n
正交试验设计
■ 偏差(离差)
偏差有以下两种表示方法:
◆ 观测值与期望值 之差 di xi (i 1,2,, n)
◆ 观测值与平均值 x 之差 vi xi x(i 1,2,, n)
正交试验设计
⑵ 试验指标(简称指标)
根据试验目的所选定的、用来考察试验结果的特性值。
● 按指标的性质分
★ 数值指标:用数值表示特性值的指标(如重量、强度、精度、 寿命、成本等)。
★ 非数值指标:不能用数值表示特性值的指标(如光泽、颜色、 味道、手感等)。
● 按试验指标的数量分
★ 单指标:试验指标只有一个。 ★ 多指标:试验指标只有多个。
( xi
x)2
正交试验设计
7.2.2 样本及其分布
■ 总体、个体与样本 总体(population):被研究对象的全体。 个体(individual):组成总体的每个单元。
个体有限的总体称为有限总体;个体无限的总体称为无限总体。
例如:
◆ 研究灯泡的寿命(总体),则每只灯泡的寿命就是总体(灯泡寿命) 中的一个个体。 ◆ 研究晶体管的直流放大倍数(总体),则每只晶体管的直流放大倍数 就是总体中的一个个体。
试验设计与分析的发展大致可划分为三个历史阶段。
正交试验设计
● 早期、传统试验设计阶段(约1920s~1950s)
费歇尔在农场进行田间试验的过程中,对高产小麦品种 遗传进行研究。为减少偶然因素对试验的影响,他对各种试 验因素的每一水平组合进行了试验,并通过方差分析评价指 标的优劣(用于排除偶然因素的影响),使小麦大幅度增产。
正交试验设计
正交试验设计(Orthogonal Design)是于二十世纪50年 代初期,由日本质量管理专家田口玄一(Tachugi)博士提 出的在多因素试验设计方法的基础上,进一步研究开发出来 的一种试验设计技术。
正交试验设计法使用一种规范化的表格(正交表)进行 试验设计,可以用较少的试验次数,取得较为准确、可靠的 优选结论。正交试验设计主要可以完成:
试验设计的主要研究内容: ◆ 哪个因素对特性值影响较大?如何影响? ◆ 如何设置各因素的水平,使特性值接近预期的期望值? ◆ 如何设置各因素的水平,使特性值的方差(波动)最小? ◆ 如何设置可控因素的水平,使非可控因素的影响最小? ……
正交试验设计
7.1.2 试验设计的发展历史
试验设计的基本思想和方法是英国统计学家、工程师费 歇尔(R.A.Fisher,1890~1962)于20世纪20年代创立的,他 是试验设计的奠基人并对其后的发展做出了卓越的贡献。
相关文档
最新文档