八年级数学全等三角形练习题含答案
浙教版八年级上1.5《三角形全等的判定》同步练习题含答案

浙教版八年级数学上册第一章三角形初步认识1.5《三角形全等的判定》同步练习题一选择题1.如图,已知∠A=∠D,∠1=∠2,要利用“ASA”得到△ABC≌△DEF,还应给出的条件是(D) A.∠E=∠B B.ED=BCC.AB=EF D.AF=CD(第1题)(第2题)2.如图,一块玻璃碎成三片,现要去玻璃店配一块一模一样的玻璃,最省力的办法是带哪块去(C) A. ① B. ②C. ③D. ①②③3.在△ABC与△A1B1C1中,下列不能判定△ABC≌A1B1C1的是(B)A.AB=A1B1,BC=B1C1,∠B=∠B1B.AB=A1B1,AC=A1C1,∠C=∠C1C.∠B=∠B1,∠C=∠C1,BC=B1C1D.AB=A1B1,BC=B1C1,AC=A1C14.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是(B)(第4题)A.甲和乙B.乙和丙C.只有乙D.只有丙5.如图,已知BD⊥AC于点D,CE⊥A B于点E,BD=EC,则△ABD≌△ACE,其三角形全等的判定方法是(C)A. ASAB. SASC. AASD. 以上都不对(第5题)(第6题)6.如图,已知AC=FC,CE是∠ACF的平分线,则图中全等三角形有(D)A. 1对B. 2对C. 3对D. 4对7.如果两个三角形的两条边和其中一条边上的中线分别对应相等,那么这两个三角形第三边所对的角的关系是(A)A. 相等B. 互余C. 互补D. 以上答案都不正确(第8题)8.如图,点E在BC上,AB⊥BC于点B,DC⊥BC于点C,AB=BC,∠A=∠CBD,AE交BD 于点O,下列结论:①AE=BD;②△AOB的面积=四边形CDOE的面积;③AE⊥BD;④BE=CD.其中正确的结论有(D)A.1个B.2个C.3个D.4个二填空题9.如图,AD平分∠BAC,AB=AC,BF与CE交于点D,则图中有4对全等的三角形.(第9题)(第10题)10.如图,AD是△ABC的高线,∠BAD=∠ABD,DE=DC,∠ABE=15°,则∠C=60°.11.如图,已知AE=CE,∠B=∠D=∠AEC=90°,AB=3 cm,C D=2 cm,则△CDE和△A BE 的面积之和是6cm2.(第11题)12. 在△ABC和△DEF中,已知AB=4,∠A=35°,∠B=70°,DE=4,∠D=__35°__,∠E=70°,可以根据__ASA__判定△ABC≌△DEF.(第12题)13.如图,在△ABC中,AB=AC=10cm,DE是AB的中垂线,△BDC的周长为16 cm,则BC 的长为6 cm.14.如图,点B在AE上,且∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是(写一个即可):AC=AD或∠C=∠D等.15.如图,在△ABC 中,∠C =90°,AD 是△ABC 的角平分线,BC =10,CD ∶BD =2∶3,则点D 到AB 的距离为4.三、解答题16.如图,在△ABC 中,∠B =∠C ,D ,E 分别在BC ,AC 边上,且∠1=∠B ,AD =DE ,求证:△ADB ≌△DEC.(第16题)【解】 ∵∠B +∠BAD =∠1+∠CDE , ∠B =∠1, ∴∠BAD =∠CDE. 在△ADB 和△DEC 中, ∵⎩⎪⎨⎪⎧∠BAD =∠CDE ,∠B =∠C ,AD =DE , ∴△ADB ≌△DEC(AAS).17.如图,在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E .(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ; (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE ,AD ,BE 具有怎样的等量关系?请直接写出这个等量关系.(第17题)【解】 (1)∵∠ACB =90°,∴∠ACD +∠ECB =90°. ∵AD ⊥MN ,BE ⊥MN ,∴∠AD C =∠BEC =90°. ∴∠DAC +∠ACD =90°,∴∠DAC =∠ECB . 在△ADC 和△CEB 中, ∵⎩⎪⎨⎪⎧∠DAC =∠ECB ,∠ADC =∠CEB ,AC =CB ,∴△ADC ≌△CEB (AAS ). ∴AD =CE ,DC =EB .∴DE =AD +B E .(2)同(1)证明,∠DAC =∠ECB . ∴△ADC ≌△CEB (AAS ). ∴AD =CE ,CD =BE .∵DE =CE -CD ,∴DE =AD -BE .(3)DE =BE -AD .(第18题)18.如图,BE ,CF 是△ABC 的两条高线,延长BE 到点P ,使BP =CA ,CF 与BE 交于点Q ,连结AQ ,且QC =AB.(1)猜想AQ 与AP 的大小关系,并说明理由; (2)按三角形内角判断△APQ 的类型,并说明理由. 【解】 (1)AQ =AP.理由如下: ∵BE ,CF 是△ABC 的两条高线, ∴BE ⊥AC ,CF ⊥AB , ∴∠ABP +∠BAC =90°, ∠QCA +∠BAC =90°, ∴∠ABP =∠QCA . 在△ABP 和△QCA 中, ∵⎩⎪⎨⎪⎧BP =CA ,∠ABP =∠QCA ,AB =QC , ∴△ABP ≌△QCA (SAS ), ∴AP =QA ,即AQ =AP . (2)△APQ 是等腰直角三角形.理由:∵△ABP ≌△QCA , ∴∠P =∠QAC .∵BP⊥AC,∴∠P+∠P AE=90°,∴∠QAC+∠P AE=90°.∴∠QAP=90°.又∵AQ=AP,∴△APQ是等腰直角三角形.。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm 6.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 9.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 10.到ABC 的三条边距离相等的点是ABC 的( ) A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点11.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 12.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°13.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52° 14.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 15.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题16.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.17.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).18.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .21.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 22.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.23.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.24.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .25.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.26.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题27.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .28.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.29.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.30.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直CE 于点F ,交CD 于点G (如图1),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M (如图2),找出图中与BE 相等的线段,并说明理由.。
人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
八年级数学上册《全等三角形》练习题及答案

八年级数学上册《全等三角形》练习题及答案学校:___________姓名:___________班级:___________一、填空题1.如图,已知△ABC △△EDF ,点F ,A ,D 在同一条直线上,AD 是△BAC 的平分线,△EDA =20°,△F =60°,则△DAC 的度数是______.2.如图,△ABC △△DBE ,△ABC =80°,△D =65°,则△C 的度数为________.3.如图,在Rt △ABC 中,△C =90°,△CAD =50°,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则△B 的度数为______.4.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.5.如图,数轴上从左到右排列的A 、B 、C 三点的位置如图所示.点B 表示的数是5,13AB =,6BC =,若将数轴折叠,使A ,C 两点重合,则与点B 重合的点表示的数是__________.6.如图,△ABC 是等边三角形,且BD =CE ,△1=15°,则△2的度数为____°.二、单选题7.如图,点B 、D 、E 、C 在同一直线上,△ABD △△ACE ,△AEC =100°,则△DAE =( )A .10°B .20°C .30°D .80°8.下列各组两个图形属于全等图形的是( )A .B .C .D .9.如图,ABC 与AED 关于直线l 对称,若30B ∠=︒,95C ∠=︒,则DAE =∠( )A .30B .95︒C .55︒D .65︒10.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是( )A .a 2+b 2=c 2B .△A =△B +△C C .△A △△B △△C =3△4△5D .a =5,b =12,c =1311.△ABC 中,△B =△C ,若与△ABC 全等的三角形中有一个角是92°,则这个角在△ABC 中的对应角是( )A .△AB .△A 或△BC .△CD .△B 或△C12.如图,在ABC 中,在边BC 上取一点D ,连接AD ,在边AD 上取一点E ,连接CE .若ADB CDE △△≌,BAD ∠=α,则ACE ∠的度数为( )A .αB .45α-︒C .45α︒-D .90α︒-13.如图,已知矩形ABCD ,点E 是AB 边的中点,F 为AD 边上一点,2DFC BCE ∠=∠,若4,5CE CF ==,有如下结论:△CF BC AF =+,△75DF =,△175BC =,△12BCE BCF ∠=∠,其中正确的是( )A .△△B .△△△C .△△D .△△△14.如图,将正方形ABCD 剪去4个全等的直角三角形(图中阴影部分),得到边长为c 的四边形EFGH ,下列等式成立的是( )A .a b c +=B .22()4c a b ab +⋅=C .2()()c a b a b =+-D .222+=a b c三、解答题15.如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)16.补全解题过程(1)已知:如图1,点C是线段AB的中点,CD=2cm,BD=8cm,求AD的长解:△CD=2cm,BD=8cm,△CB=CD+______=______cm△点C是线段AB的中点,△AC=CB=_____cm,△AD=AC+_____=_____cm(2)如图2,两个直角三角形的直角顶点重合,△BOD=40°,求△AOC的度数.解:△△AOC+△COB=__________° ,△COB+△BOD=__________°,…………△△△AOC=__________ ……………………△△△BOC=40°,△△AOC=________°在上面△到△的推导过程中,理由依据是:________________________________17.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成△△△△四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第______部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.<),点E是线段OP的中点.在直径AB上方的18.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.圆上作一点C,使得EC EP19.△MOQ=90°,点A,B分别在射线OM、OQ上运动(不与点O重合).(1)如图1,AI平分△BAO,BI平分△ABO,若△BAO=40°,求△AIB的度数.(2)如图2,AI平分△BAO,BC平分△ABM,BC的反向延长线交AI于点D.△若△BAO=40°,则△ADB=°;△点A、B在运动的过程中,△ADB是否发生变化,若不变,试求△ADB的度数;若变化,请说明变化规律.参考答案:1.50°【分析】首先根据全等三角形的性质,可得△B=△EDF=20°,△C=△F=60°,即可求得△BAC=100°,再根据角平分线的定义即可求得.【详解】解:△△ABC△△EDF,△△B=△EDF,△C=△F,△△EDA=20°,△F=60°,△△B=20°,△C=60°,△△BAC=180°﹣△B﹣△C=100°,△AD是△BAC的平分线,△1502DAC BAC==︒∠∠,故答案为:50°.【点睛】本题考查了全等三角形的性质,三角形内角和定理,角平分线的定义,熟练掌握和运用全等三角形的性质是解决本题的关键.2.35︒##35度【分析】由△ABC△△DBE,根据全等三角形的性质可得△BAC=△D=65°,根据三角形内角和定理即可求解.【详解】解:△△ABC△△DBE,△D=65°,△△BAC=△D=65°,△△ABC=80°,△△C=180°﹣△ABC﹣△BAC=35°,故答案为:35°.【点睛】本题考查了全等三角形的性质,三角形内角和定理,掌握以上知识是解题的关键.3.20°##20度【分析】证明B DAB∠=∠,设B DAB∠=∠=x,利用三角形内角和定理构建方程求解.【详解】由作图可知,MN垂直平分线段AB,△DA=DB,△B DAB∠=∠,设B DAB∠=∠=x,在△ABC中,则有50°+x+x=90°,△x=20°,△20B∠=︒.故答案为:20°.【点睛】本题考查了作图-基本作图,线段的垂直平分线等知识,解决本题的关键是掌握线段的垂直平分线的性质.4.39【分析】根据平移的性质分别求出BE、DE,根据题意求出OE,根据全等三角形的性质、梯形的面积公式计算,得到答案.【详解】解:由平移的性质知,BE =6,DE =AB =8,△PE =DE −DP =8−3=5,根据题意得:△ABC △△DEF ,△S △ABC =S △DEF ,△S 四边形PDFC =S 梯形ABEP =12(AB +PE )•BE =12⨯(8+5)×6=39,故答案为:39.【点睛】本题考查平移及全等三角形的性质,掌握平移的性质是解题的关键.5.2-【分析】根据题意求得,A C 点表示的数,进而根据折叠的性质即可求解.【详解】解:△点B 表示的数是5,13AB =,6BC =,△C 点表示的数是5611+=,点A 表示是数是5138-=-设与点B 重合的点为D ,根据对称性可得AD BC =∴D 点表示的数为862-+=- 故答案为:-2【点睛】本题考查了数轴上点的距离,折叠的性质,数形结合是解题的关键.6.60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =∠∠,证明△ABD △△BCE (SAS ),根据全等三角形的性质可得△1=△CBE ,根据三角形外角的性质可得△2=△1+△ABE ,继而根据等量代换可得△2=△CBE +△ABE =△ABC ,即可求解.【详解】解:△△ABC 是等边三角形,△AB BC =,A ABC CB =∠∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△BCE (SAS ),△△1=△CBE ,△△2=△1+△ABE ,△△2=△CBE +△ABE =△ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.7.B【分析】由全等三角形的性质,得到100ADB AEC ∠=∠=︒,然后得到80ADE AED ∠=∠=︒,利用三角形的内角和定理,即可求出答案.【详解】解:△ABD ACE △≌△,△100ADB AEC ∠=∠=︒,△18010080ADE AED ∠=∠=︒-︒=︒,△180808020DAE ∠=︒-︒-︒=︒;故选:B .【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的进行解题.8.B【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A 、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B .【点睛】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.9.C【分析】根据轴对称的性质以及三角形的内角和定理解决问题即可.【详解】解:ABC 与AED 关于直线l 对称,ABC ∴△AED ,DAE BAC ∴=∠∠,180180309555BAC B C ∠∠∠=︒--=︒-︒-︒=︒,55DAE ∠∴=︒.故选:C .【点睛】本题考查轴对称,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、△222+=a b c ,△此三角形是直角三角形,故本选项不符合题意;B 、△△A +△B +△C =180°,△A =△B +△C ,△△A =90°,△此三角形是直角三角形,故本选项不符合题意;C 、设△A =3x ,则△B =4x ,△C =5x ,△△A +△B +△C =180°,△3x +4x +5x =180°,解得x =15°,△△C =5×15°=75°,△此三角形不是直角三角形,故本选项符合题意;D 、△22251213+=,△此三角形是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查的是勾股定理的逆定理及三角形内角和定理,如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.11.A【分析】根据三角形内角和定理可知,三角形中只能有一个钝角,因为△B =△C ,所以钝角一定是△A .【详解】解:△在△ABC 中,△B =△C ,△A +△B +△C =180°,△△B 和△C 必须都是锐角,△若与△ABC 全等的一个三角形中有一个角为92°,那么92°的角在△ABC 中的对应角一定是△A , 故选:A .【点睛】本题考查三角形的内角和定理,全等三角形的性质,灵活运算三角形内角和等于180°是解题的关键.12.C【分析】根据全等三角形对应角相等、三角形外角性质及内角和定理,将△ABC 各个角相加,可求出△ADC =90°,由于全等三角形对应边相等,所以AD =CD ,所以△ACD =45°,则△ACE =45°-α.【详解】解:△ADB CDE △△≌△△BAD =△ECD =α,△B =△DEC ,△ADB =△CDE ,AD =CD△△DEC =△EAC +△ACE△△BAC +△B +△ACB =△BAD +△EAC +△B +△ECD +△ACE =△BAD +2△B +△ECD =180°△△B =1802902αα︒-=︒- △△ADC =△ADB =90°△AD =CD△△DAC =△DCA =45°△△ACE =△ACD -△ECD =45°-α故选 C【点睛】本题考查了全等三角形的性质、三角形外角性质及内角和定理,根据已知条件熟练运用相关知识是解题的关键.13.B【分析】过E 作EH △CF 于H ,利用矩形的性质和全等三角形的判定和性质判断即可.【详解】解:过E 作EH △CF 于H ,如图,△四边形ABCD 是矩形,△90B BCD D ∠=∠=∠=︒,△9090DFC DCF DCF FCE BCE ,∠+∠=︒∠+∠+∠=︒,△DFC FCE BCE ∠=∠+∠,△2DFC BCE ∠=∠,△FCE BCE ∠=∠,在CHE 和CBE △中,90CHE B FCE BCE CE CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,△CHE CBE AAS △≌△(),△CH CB HE BE CEH CEB BCE ECF ,,,==∠=∠∠=∠,△12BCE BCF ∠=∠, 故△正确;△AE EB =,△AE EH =,在Rt FAE 和Rt FHE 中,AE EH EF EF =⎧⎨=⎩, △Rt FAE Rt FHE HL △≌△△(),△AF FH AEF HEF ,=∠=∠,△45CE CF ,==,△CF CH FH BC AF =+=+,故△正确;△AEF HEF CEH CEB ,∠=∠∠=∠,△90HEF CEH +∠∠=︒,△3EF =, △1341221552EF CE EF CE HE CF CF ⋅⋅⨯====, △125AE =, △2425AB AE ==,△95AF ===, △75DF AD AF CH AF CF FH AF CF AF AF =-=-=--=--=, 故△正确; △916555BC CH CF FH ==-=-=, 故△错误.故选B . 【点睛】本题考查了矩形的性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,证明三角形全等是解题的关键.14.D【分析】利用空白部分的面积等于原正方形面积减4个全等三角形的面积,以及空白部分本身是一个边长为c 的正方形,利用等面积法求解.【详解】解:△四边形ABCD 是正方形,△△A =90°,△△AHE +△AEH =90°,△△AHE △△DGH ,△△DHG =△AEH ,△△AHE +△DHG =90°,△△EHG =90°,又△HE =EF =FG =GH ,△四边形EFGH 是正方形,△由图可得剩下正方形面积为:21()42a b ab +-⨯, 根据正方形面积公式,剩下正方形面积也可以表示为:c 2,221()42a b ab c ∴+-⨯=,化简得a 2+b 2=c 2, 故选:D .【点睛】本题主要考查了勾股定理的证明,正方形的性质与判定,全等三角形的性质,解题的关键在于证明四边形EFGH 是正方形.15.见解析【分析】作ACD ∠的角平分线即可.【详解】解:如图,射线CP 即为所求作.【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.16.(1)BD ,10,10,CD ;(2)90,90,△BOD ,50,同角的余角相等【分析】(1)先推出CB =10cm ,根据中点的定义得AC =CB ,进而即可求解;(2)根据同角的余角相等,即可求解.【详解】(1)解:△CD=2cm,BD=8cm,△CB=CD+BD=10cm△点C是线段AB的中点,△AC=CB=10cm,△AD=AC+CD=12cm故答案是:BD,10,10,CD;(2)解:△△AOC+△COB=90° ,△COB+△BOD=90°,………△△△AOC=△BOD ………△△△BOC=40°,△△AOC=50°在上面△到△的推导过程中,理由依据是:同角的余角相等.故答案是:90,90,△BOD,50,同角的余角相等.【点睛】本题主要考查线段的中点的定义,角的和差运算,掌握同角的余角相等是解题的关键.17.(1)△(2)a的值为﹣3(3)d的值为3或﹣5【分析】(1)由bc<0可知b、c异号,进而问题可求解;(2)根据数轴上两点距离可进行求解;(3)根据数轴上两点距离及线段和差关系可进行求解.(1)解:△bc<0,△b,c异号,△原点在B,C之间,即第△部分,故答案为:△;(2)解:△BC=3,b=﹣1,点C在点B的右边,△C表示的数为:﹣1+3=2,△AC=5,A点在点C的左边,△点A表示的数为:2﹣5=﹣3,△a的值为﹣3;(3)解:△C表示的数为2,△OC =2,△点B 表示的数为﹣1,点D 表示的数为d ,BD =2OC ,△|d ﹣(﹣1)|=4,解得:d =3或﹣5,△d 的值为3或﹣5.【点睛】本题主要考查数轴上两点距离及线段的和差关系,熟练掌握数轴上两点距离及线段的和差关系是解题的关键.18.证明见解析【分析】连接OC ,根据线段中点的定义得到OE =EP ,求得OE =EC =EP ,得到△COE =△ECO ,△ECP =△P ,利用三角形内角和定理求出90ECO ECP ∠+∠=︒,根据切线的判定定理即可得到结论.【详解】证明:连接OC ,△点E 是线段OP 的中点,△OE EP =,△EC EP =,△OE EC EP ==,△COE ECO ∠=∠,ECP P ∠=∠,△180COE ECO ECP P ∠+∠+∠+∠=︒,△90ECO ECP ∠+∠=︒,△OC PC ⊥,△OC 是O 的半径,△PC 是O 的切线.【点睛】本题考查了切线的判定,等边对等角,三角形内角和定理,熟练掌握切线的判定定理是解题的关键.19.(1)135°(2)△45;△不变,理由见解析【分析】(1)根据角平分线的性质和三角形内角和定理即可求解;(2)根据角平分线的性质和三角形内角和定理即可求解.(1)△MN△PQ,△△AOB=90°,△△BAO=40°,△△ABO=90°﹣△OAB=50°,△AI平分△BAO,BI平分△ABO,△△IBA=12△ABO=25°,△IAB=12△OAB=20°,△△AIB=180°﹣(△IBA+△IAB)=135°.(2)△△△MBA=△AOB+△BAO=90°+40°=130°,△AI平分△BAO,BC平分△ABM,△△CBA=12△MBA=65°,△BAI=12△BAO=20°,△△CBA=△D+△BAD,△△D=45°,故答案为:45.△不变,理由:△△D=△CBA﹣△BAD=12△MBA﹣12△BAO,=12(△MBA﹣△BAO),=12△AOB=12×90°,=45°,△点A、B在运动的过程中,△ADB=45°.【点睛】本题考查了角平分线的性质和三角形内角和定理,解决本题的关键是掌握角平分线的性质.。
(必考题)初中八年级数学上册第十二章《全等三角形》基础练习(答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .14.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm5.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c6.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 7.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒8.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°9.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等10.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°11.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .4012.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1213.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 14.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABCC .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.17.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.18.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.19.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.20.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.21.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .22.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.23.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).24.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.三、解答题27.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.28.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =,且点H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.29.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B . 求证:△ABC ≌△CDE .30.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.=求证:(1)AC DF=(2)FB CE。
人教版_部编版八年级数学上册第十二章第一节全等三角形考试复习试题(含答案) (57)

人教版_部编版八年级数学上册第十二章第一节全等三角形考试复习试题(含答案)如图,四边形ABCD是正方形,E是CD垂直平分线上的点,点E关于BD的BE交于点F.对称点是'E,直线DE与直线'∠=︒;(1)若点E是CD边的中点,连接AF,则FAD(2)小明从老师那里了解到,只要点E不在正方形的中心,则直线AF与AD所夹锐角不变.他尝试改变点E的位置,计算相应角度,验证老师的说法.①如图,将点E选在正方形内,且△EAB为等边三角形,求出直线AF与AD 所夹锐角的度数;②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.我选择 小明的想法;(填“用”或“不用”)并简述求直线AF 与AD 所夹锐角度数的思路.【答案】(1)45;(2)①45FAD ∠=︒;②证明见解析.【解析】(1)45.(2)∵EAB 是等边三角形,∴60EBA EAB ∠=∠=︒,BE EA AB ==.∵四边形ABCD 是正方形,∴AB AD =,45ABD ∠=︒,90BAD ∠=︒.∴AE AD =,30EAD BAD BAE ∠=∠-∠=︒.∵点'E 是点E 关于BD 的对称点,∴'15E BD EBD ABE ABD ∠=∠=∠-∠=︒.∴30FBE ∠=︒.∴30ABF ABE FBE ∠=∠-∠=︒.∴ABF EBF ∠=∠.∵BF BF =,∴ABF ∆≌EBF ∆.∴FA FE =.∴75FAE FEA ∠=∠=︒.∴45FAD FAE EAD ∠=∠-∠=︒.(3)如果沿用小明的想法:方法一:如图,我将点E 选在AB 边的中点.∵四边形ABCD 是正方形,∴DA BC ,AD AB =,90ABC BAD ∠=∠=︒,45ABD CBD ∠=∠=︒. ∵点'E 是点E 关于BD 的对称点,∴'45E BD EBD ∠=∠=︒.∴'E 在BC 上.∴F 在直线BC 上.∴BF AD .∴FBE DAE ∠=∠,BFE ADE ∠=∠.∵E 是AB 的中点,∴AE EB =,∴ADE ∆≌BFE ∆.∴AD BF =.∴AB BF =.∵18090FBA ABC ∠=︒-∠=︒,∴ABF ∆是等腰直角三角形.∴45FAB ∠=︒.∴135FAD ∠=︒.∴直线AF 与AD 所夹锐角为45︒.方法二:如图,我将点E 选在正方形外,使45EDC ∠=︒的位置,连接CE .∵四边形ABCD 是正方形,∴DA DC =,45BDA BDC ∠=∠=︒.∵E 在CD 的垂直平分线上,∴ED CE =.∴EDC ECD ∠=∠.∵45EDC ∠=︒,∴45ECD ∠=︒,90BDE BDC CDE ∠=∠+∠=︒.∴ED BD ⊥.∵点'E 是点E 关于BD 的对称点,∴'EE BD ⊥.∴'E ,D ,E 三点共线.∴点'E 与点F 重合.∴FD DE =,45ADF BDF BDA ∠=∠-∠=︒.∴ADF CDE ∠=∠.∴ADF ∆≌CDE ∆.∴45FAD ECD ∠=∠=︒.62.如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA =PC .(1)求证:∠PCB +∠BAP =180º.(温馨提示过P 作PD ⊥BA 交于D 点)(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.【答案】(1)证明见解析(2【解析】(1)过P作PD⊥BA交于D点∵∠1=∠2,P为BN上的一点∵PF⊥BC∴PD= PF∵PA=PC.∴△APD≌△CPF∠PCB=∠DAP∵∠DAP+∠BAP=180º∴∠PCB+∠BAP=180º.(2)∵∠PFB=∠PDB=Rt∠BP=BP PD=PF∴△PBD≌△PBF∴BD=BF设AD=x 则CF=x∵ BC=12cm,AB=6cm∴BD=BF=6+x∵BF+CF=12 ∴6+x+x=12解得x=3在Rt△PBD中由勾股定理得PB=4∴在Rt△PAD63.已知:如图,点B、E、C、F在同一条直线上,且AB=DE,AC=DF,BE=CF.求证:AB∥DE.请将下面的过程和理由补充完整证明:∵BE=CF ( )∴BE+EC=CF+EC即 .在△ABC和△DEF中,AB=DE( 已知)AC=DF( )BC= ( )∴△ABC≌△DEF( )∴∠ABC=∠DEF( )∴AB∥DE ( )【答案】答案见解析【解析】∵BE=CF( 已知)∴BE+EC=CF+EC即BC=EF .在△ABC和△DEF中,AB=DE( 已知)AC=DF( 已知)BC= EF( 已证)∴△ABC≌△DEF( SSS)∴∠ABC=∠DEF( 全等三角形的对应角相等)∴AB∥DE( 同位角相等,两直线平行)64.如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC =90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),那么①∠E′AF度数___________________②线段BE、EF、FD之间的数量关系____________________(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.【答案】(1)(1)∠E′AF=30°,线段BE、EF、FD之间的数量关系为:EF=BE+FD.(2)EF=BE-FD.理由见解析.【解析】试题分析:(1)根据图形旋转前后对应边相等,对应角相等,判定△AEF ≌△AE ′F ,进而根据线段的和差关系得出结论;(2)先在BE 上截取BG=DF ,连接AG ,构造△ABG ≌△ADF ,进而利用全等三角形的对应边相等,对应角相等,判定△GAE ≌△FAE ,最后根据线段的和差关系得出结论.试题解析:(1)①如图2,将△ABE 绕点A 逆时针旋转60°后得到△A ′B ′E ′,则∠1=∠2,BE=DE ′,AE=AE ′,∵∠BAD=60°,∠EAF=30°,∴∠1+∠3=30°,∴∠2+∠3=30°,即∠FAE ′=30°②由①知∠EAF=∠FAE ′,在△AEF 和△AE ′F 中,∵{AE AE EAF FAE AF AF'∠∠'===∴△AEF ≌△AE ′F (SAS ),∴EF=E ′F ,即EF=DF+DE ′,∴EF=DF+BE ,即线段BE 、EF 、FD 之间的数量关系为BE+DF=EF ,(2)如图3,在BE 上截取BG=DF ,连接AG ,在△ABG 和△ADF 中,∵{AB ADABE ADF BG DF∠∠===∴△ABG ≌△ADF (SAS ),∴∠BAG=∠DAF ,且AG=AF ,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°-30°=30°,∴∠GAE=∠FAE ,在△GAE 和△FAE 中,∵{AG AFGAE FAE AE AE∠∠===∴△GAE ≌△FAE (SAS ),∴GE=FE ,又∵BE-BG=GE ,BG=DF ,∴BE-DF=EF ,即线段BE、EF、FD之间的数量关系为BE-DF=EF.65.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图1所示,其中一块三角板的直角边AC⊥数轴,AC的中点过数轴原点O,AC=6,斜边AB交数轴于点G,点G对应数轴上的数是3;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.(1)如果点H对应的数轴上的数是-1,点F对应的数轴上的数是-3,则△AGH的面积是,△AHF的面积是;(2)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,若∠M=26°,求∠HAO的大小;(3)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH 的平分线和∠FOC的平分线交于点N,设∠HAO=x°(0<x<60) ,试探索∠N+∠M的和是否为定值,若不是,请说明理由;若是定值,请直接写出此值.是定值,【答案】(1)6,3;(2)7;(3)97.5【解析】试题分析:(1)根据题意得出△AOG是等腰直角三角形,OG=3,OH=1,OF=3,得出OA=OG=3,GH=4,FH=2,由三角形面积公式即可得出结果;(2)由∠AHF的平分线和∠AGH的平分线交于点M得到∠FHM=1∠FHA,2∠HGM=12∠HGA,根据三角形外角性质得∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,则2∠M+2∠HGM=∠HGA+∠HAG,得出∠M=12∠HAG=12(∠HAO+∠OAG)=12∠HAO+22.5°,即可得出结果;(3)与(2)证明方法一样可得到∠N=90°-12∠FAO=90°-12∠FAH-12∠OAH=90°-15°-12∠OAH=75°-12∠OAH,加上∠M=12∠OAH+22.5°,即可得出结果.试题解析:(1)根据题意得:△AOG是等腰直角三角形,OG=3,OH=1,OF=3,∴OA=OG=3,GH=3+1=4,FH=3-1=2,∴△AGH的面积=12GH×OA=12×4×3=6,△AHF的面积=12FH•OA=12×2×3=3;故答案为:6,3;(2)∵∠AHF的平分线和∠AGH的平分线交于点M,∴∠FHM=12∠FHA,∠HGM=12∠HGA,∵∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,∴2∠M+2∠HGM=∠HGA+∠HAG,∴∠M=12∠HAG=12(∠HAO+∠OAG)=12∠HAO+22.5°,∴∠HAO=2∠M-45°=2×26°-45°=7°;(3)∠N+∠M=97.5°,为定值;理由如下:∵∠EFH的平分线和∠FOC的平分线交于点N,∴∠N=90°-12∠FAO=90°-12∠FAH-12∠OAH=90°-15°-12∠OAH=75°-12∠OAH,∵∠M=12∠OAH+22.5°,∴∠M+∠N=97.5°.【点睛】三角形综合题目,主要考查了等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、角平分线定义、三角形面积的计算等知识;熟练掌握等腰直角三角形的性质和三角形内角和定理是解决问题的关键.66.已知,如图,延长的各边,使得,,顺次连接,得到为等边三角形.求证:(1);(2)为等边三角形.【答案】(1)证明见解析;(2)证明见解析【解析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换)△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).∴△ABC是等边三角形(等边三角形的判定).67.已知:点E为AB边上的一个动点.(1)如图1,若△ABC是等边三角形,以CE为边在BC的同侧作等边△DEC ,连结AD.试比较∠DAC与∠B的大小,并说明理由;(2)如图2,若△ABC中,AB=AC,以CE为底边在BC的同侧作等腰△DEC ,且△DEC∽△ABC,连结AD.试判断AD与BC的位置关系,并说明理由;(3)如图3,若四边形ABCD是边长为2的正方形,以CE为边在BC的同侧作正方形ECGF.①试说明点G一定在AD的延长线上;②当点E在AB边上由点B运动至点A时,点F随之运动,求点F的运动路径长.【答案】(1)∠DAC=∠B 理由见解析;(2)AD∥BC 理由见解析;(3)点F的运动路径长为.【解析】解:(1) ∠DAC=∠B 理由如下:∵△ABC和△DEC都是等边三角形∴∠DCE=∠ACB=60°∴∠BCE=∠ACD∵BC=AC CE=CD ∴△BCE≌△ACD∴∠B=∠DAC(2)AD∥BC 理由如下:∵△ABC和△DEC都是等腰三角形,且△DEC∽△ABC ∴DC AC CE BC∵∠DCE=∠ACB ∴∠DCA=∠ECB ∴△DCA∽△ECB∴∠DAC=∠EBC=∠AC B ∴AD∥BC(3)①连结DG,∵四边形ABCD和FECG都是正方形∴BC=CD CE=CG ∠BCD=∠ECG=90°∴∠BCE=∠DCG∴△BCE≌△DCG …∴∠B=∠CDG=90°∵∠ADC=90°∴∠ADC+∠CDG=180°∴点G一定在AD的延长线上.②作FH⊥AG于点H,易证:△FHG≌△GDC≌△EBC∴FH=BE=DG HG=BC∴AH=AG-GH=AD+DG-GH= BC+DG-BC=DG=FH∴△AFH是等腰直角三角形∴∠FAG=45°∴点F的运动路径长=AC=.68.如图,等腰△ABC和等腰△ACD有一条公共边AC,且顶角∠BAC和顶角∠CAD都是45°.将一块三角板中用含45°角的顶点与A点重合,并将三角板绕A点按逆时针方向旋转.(1)当三角板旋转到如图1的位置时,三角板的两边与等腰三角形的两底边分别相交于M、N两点,求证:AM=AN;(2)当三角板旋转到如图2的位置时,三角板的两边与等腰三角形两底边的延长线分别相交于M、N两点,(1)的结论还成立吗?请说明理由.【答案】(1)证明见解析;(2)成立.理由见解析.【解析】试题分析:(1)由∠BAC=∠CAD=∠MAN=45°得∠BAC-∠MAC=∠MAN-∠MAC 即∠BAM=∠CAN ,证△BAM ≌△CAN 得AM=AN ;(2)与(1)同理可得.试题解析:(1)∵∠BAC=∠CAD=∠MAN=45°,∴∠BAC-∠MAC=∠MAN-∠MAC ,∴∠BAM=∠CAN ,在△BAM 和△CAN 中,∵{67.5AB ACBAM CAN B ACN ∠∠∠∠︒====,∴△BAM ≌△CAN ,∴AM=AN ;(2)成立.∵∠BAC=∠CAD=∠MAN=45°,∴∠BAC+∠MAC=∠MAN+∠MAC ,∴∠BAM=∠CAN ,在△BAM 和△CAN 中,∵{B ACNBAM CAN AB AC∠∠∠∠===,∴△BAM ≌△CAN (AAS ),∴AM=AN.69.(1)等边三角形△ABC中,点D是AB边所在直线上的一动点(D与A、B不重合),连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,①如图1,当D在线段AB上时,∠ABC与∠EAC有怎样的数量关系直接写出结论②如图2,当D在BA延长线上时,求证:∠ABC=∠EAC③如图3,当D在AB延长线上时,探究∠ABC与∠EAC的数量关系,直接写出结论(2)等腰三角形△ABC中,AB=AC,点D是AB边上一动点(D与A、B不重合),如图4,连接DC,以DC为边在BC边上方作等腰三角形△DCE,使顶角∠DEC=∠BAC,连接AE,探究∠ABC与∠EAC的数量关系,给予证明【答案】(1) ①∠ABC=∠EAC;②证明见解析;③∠ABC +∠EAC=180°或∠EAC=2∠ABC;④∠ABC=∠EAC 证明见解析.【解析】试题分析:(1)①根据等边三角形的性质得到AB=AC,CD=CE,∠ACB=∠DCE=60°,利用SAS可证明△BCD≌△ACE,继而得出结论;②同①的方法判断出△BCD≌△ACE即可;③同①的方法判断出△BCD ≌△ACE 即可;(2)首先得出∠ACB=∠ECD ,从而判定△ABC ∽△EDC ,得到AC BC CE CD =,根据∠BCD=∠ACB ﹣∠ACD ,∠ACE=∠DCE ﹣∠ACD ,于是得到∠BCD=∠ACE ,推出△BCD ∽△ACE ,即可得出结论试题解析:(1)①证明:∵△ABC 、△CDE 是等边三角形, ∴AB=AC ,CD=CE ,∠ACB=∠DCE=60°,∴∠BCD=∠ACE ,∵在△BCD 和△ACE 中,AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△ACE ,∴∠ABC=∠EAC ;②结论∠ABC=∠EAC 仍成立;理由如下:∵△ABC 、△CDE 是等边三角形,∴AB=AC ,CD=CE ,∠BCA=∠DCE=60°,∴∠BCD=∠ACE ,在△BCD 和△ACE 中,AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△ACE ,∴∠ABC=∠EAC ;③∵△ABC 、△CDE 是等边三角形,∴∠ACB=∠DCE=∠ABC=60°,∴∠ACE=∠BCD,在△BCD和△ACE中,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC,∵∠ABC+∠DBC=180°,∴∠ABC+∠EAC=180°,∵∠ABC=60°,∴∠EAC=120°=2∠ABC.(2)∠ABC=∠EAC;理由如下:∵AB=AC,ED=EC,∠BAC=∠DEC,∴∠ACB=∠ECD,∴△ABC∽△EDC,∴AC BC CE CD,又∵∠BCD=∠ACB﹣∠ACD,∠ACE=∠DCE﹣∠ACD,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠ABC=∠CAE.70.如图,AB=AC,DB=DC,(1)求证:AD平分∠BAC(2)延长CD与AB的延长线相交于E,延长AD到F,使DF=DC,连接EF ,若∠C=100°,∠BAC=40°,求证AC+EF=AD+DC .【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)易证△ABD ≌△ACD ,由此可得∠1=∠2,即AD 平分∠BAC ;(2)由△ABD ≌△ACD 得∠1=∠2,∠5=∠6,再证明△BDE ≌△FDE ,可得AC+EF=AB+BE=AE ,AD+DC=AD+DF=AF ,所以AC+EF=AD+DC .试题解析:(1)证明:如图,在△ABD 和△ACD 中AB AC DB DC AD AD =⎧⎪=⎨⎪=⎩, ∴△ABD ≌△ACD ,(SAS )∴∠1=∠2,∴AD 平分∠BAC ;(2)由△ABD ≌△ACD 得∠1=∠2,∠5=∠6,∵∠BAC=40°∠C=100°,∴∠1=∠2=20°∠5=∠6=60°,∵∠BDE+∠5+∠6=180°,∴∠BDE=60°,∵∠FDE=∠6=60°,∵DF=DC ,DB=DC ,∴DB=DF ,在△BDE 和△FDE 中DB DF BDE FDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ∴△BDE ≌△FDE ,∴EB=EF ∠3=∠4∠F=∠EBD ,又∵∠3+∠BAC+∠C=180°,∴∠3=∠4=40°,∵∠EBD=∠5+∠1=80°,∴∠F=∠EBD=80°,∵∠AEF=∠3+∠4=80°,∴∠AEF=∠F ,∴AE=AF ,∵AC+EF=AB+BE=AE ,AD+DC=AD+DF=AF , ∴AC+EF=AD+DC .。
八年级数学三角形全等(动点问题)(人教版)(专题)(含答案)
A.6-t B.4-t
C.2t D.t
答案:A
解题思路:
点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:
①研究基本图形,标注:
②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,
如图:
③表达线段长,建等式.
线段BP为已走路程,故BP=t,PC为未走路程,故PC=6-t.
由题意,点P在运动过程中有2个状态转折点,需分成3种情况:
①点P在BC上,对应的时间范围:0≤t≤4;
②点P在CD上,对应的时间范围:4<t≤7;
③点P在DA上,对应的时间范围:7<t≤11.
可知,当点P在CD上运动时,对应的t的取值范围是4≤t≤7.
故选C.
试题难度:三颗星知识点:略
7.(上接第6题)(2)当点P在DA上运动时,线段DP的长可用含t的式子表示为( )cm.
A.1 B.2
C.4 D.5
答案:C
解题思路:
由题意,△DCP≌△DCE,对应关系明确,
要使△DCP≌△DCE,
则需CP=CE,
即 ,
解得 (符合题意)
故选C.
试题难度:三颗星知识点:略
6.已知:如图,在长方形ABCD中,AB=6cm,AD=8cm,点E为BC上一点,且CE=2cm.动点P从点B出发,以每秒2cm的速度沿BC-CD-DA向终点A运动,连接AP,BP,DE.设点P运动时间为t秒.请回答下列问题:
故选A.
试题难度:三颗星知识点:略
4.(上接第3题)(2)若某一时刻,△DCP的面积为10,则此时t的值为( )
A.5 B.
C. D.1
答案:D
杭州第十四中学八年级数学上册第十二章《全等三角形》基础练习(含答案解析)
一、选择题1.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°B解析:B【分析】 由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 2.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm B解析:B【分析】 过点O 作MN ,MN ⊥AB 于M ,证明MN ⊥CD ,则MN 的长度是AB 和CD 之间的距离;然后根据角平分线的性质,分别求出OM 、ON 的长度,再把它们求和即可.【详解】如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE =3cm ,∴OM =OE =3cm ,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON =OE =3cm ,∴MN =OM +ON =6cm ,即AB 与CD 之间的距离是6cm ,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.3.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒A解析:A【分析】 由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∵点O 到ABC 三边的距离相等,∴BO 平分ABC ∠,CO 平分ACB ∠,∴ ()180A ABC ACB ∠=︒-∠+∠()1802OBC OCB =︒-∠+∠()1802180BOC =︒-⨯︒-∠()1802180110︒=︒-⨯-︒40=︒.故选A .【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.4.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE B解析:B【分析】 根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,故选:B .【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 5.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .9D解析:D【分析】 由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.如图,AD 是ABC 的角平分线,:4:3AB AC ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:16A解析:A【分析】 过点D 作DE 垂直于AB ,DF 垂直于AC ,由AD 为角BAC 的平分线,根据角平分线定理得到DE=DF ,再根据三角形的面积公式表示出△ABD 与△ACD 的面积之比,把DE=DF 以及AB :AC 的比值代入即可求出面积之比.【详解】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F .∵AD 为∠BAC 的平分线,∴DE=DF ,又AB :AC=4:3,∴S △ABD :S △ACD =(12AB•DE ):(12AC•DF )=AB :AC=4:3.故选:A .【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题.7.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .12A解析:A【分析】 根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.8.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .4B解析:B【分析】 作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC ,∴DH=DE=2,∵S △ABC =S △ADC +S △ABD ,∴12×2×AC+12×2×4=7, ∴AC=3.故选:B .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .3A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.10.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.二、填空题11.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最 解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.12.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠. 在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△,∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.13.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC 解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.14.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30∠=︒,AOB∠BOC=70°,∴∠AOC=100°,∵OD平分∠AOC∠AOC=50°,∴∠AOD=12∠=20°;∠=∠AOD-AOBBOD②如图,∵30∠=︒,AOB∠BOC=70°,∴∠AOC=40°,∵OD平分∠AOC∴∠AOD=1∠AOC=20°,2∠=50°;BOD∠=∠AOD+AOB故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.15.如图,ABC的面积为215cm,以顶点A为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .【分析】如图延长CD 交AB 于E 由题意得AP平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A 解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴CD=DE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.18.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.22【分析】由三角形全等性质可得mn 中有一边为5pq 中有一边为3mn 与pq 中剩余两边相等再由三角形三边关系可知mn 与pq 中剩余两边最大为7如此即可得到m+n+p+q 的最大值【详解】∵△ABC ≌△DE解析:22由三角形全等性质可得m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,再由三角形三边关系可知m、n与p、q中剩余两边最大为7,如此即可得到m+n+p+q的最大值.【详解】∵△ABC≌△DEF,∴m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键.19.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是_____.9【分析】根据已知条件证得△ABP≌△DBP根据全等三角形的性质得到AP=PD得出S△ABP=S△DBPS△ACP=S△DCP推出S△PBC =S△ABC代入求出即可【详解】解:如图延长AP交BC于点解析:9【分析】根据已知条件证得△ABP≌△DBP,根据全等三角形的性质得到AP=PD,得出S△ABP=S△DBP,S△ACP=S△DCP,推出S△PBC=12S△ABC,代入求出即可.【详解】解:如图,延长AP交BC于点D,∵BP平分∠ABC∴∠ABP=∠DBP,且BP=BP,∠APB=∠DPB ∴△ABP≌△DBP(ASA)∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S △PBC =12S △ABC =9, 故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.20.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.三、解答题21.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.解析:见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.23.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.解析:30【分析】根据条件可证明( SAS )ABD BCE ≅,得到BAD CBE ∠=∠,通过三角形的外角等于不相邻的两个内角和可知AFE ABF BAD ∠=∠+∠,最后推出60AFE ABC ︒∠=∠=,求出结果即可.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABD C ︒∠=∠=在ABD △和BCE 中,,AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴( SAS )ABD BCE ≅.∴BAD CBE ∠=∠.∵AFE ABF BAD ∠=∠+∠.∴60AFE ABF CBE ABC ︒∠=∠+∠=∠=∵AH BE ⊥于点H ,∴90AHF ︒∠=,9030FAH AFH ∴∠=︒-∠=︒.【点睛】本题主要考查全等三角形的判定以及性质,涉及三角形的外角,属于基础题,熟练掌握全等三角形的判定以及性质是解决本题的关键.24.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .解析:(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n 【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒; (3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED nαβ∠=+. 【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC , ∴1402EDC ADC ∠=∠=︒;(2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α, ∴1ABE nβ∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB , ∴1BEF ABE n β∠=∠=, ∴1()BED n αβ∠=+.故答案为:1()αβ+n.【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.25.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)解析:见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''', ∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩' ∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.26.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.解析:添加AB=CD ;证明见解析.【分析】根据线段的和差关系可得BF=CE ,故添加AB=CD 即可利用SAS 证明△ABF ≌△DCE ,根据全等三角形的性质即可得出AF=DE .【详解】可添加AB=CD ,理由如下:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE ,∵AB CB ⊥,DC CB ⊥,∴∠B=∠C=90°,在△ABF 和△DCE 中,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE ,∴AF=DE .【点睛】本题考查全等三角形的判断与性质,全等三角形的判定方法有:SSS 、SAS 、AAS 、ASA 、HL 等;注意:AAA 、SSA 不能判定两个三角形全等,当利用SAS 判定两个三角形全等时,角必须是两边的夹角;熟练掌握并灵活运用适当判定方法是解题关键.27.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.解析:证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.28.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.解析:(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.。
人教新版八年级数学上册 第十二章 全等三角形 单元练习试题 (解析版).doc
第十二章全等三角形一.选择题(共10小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.107.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点9.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二.填空题(共6小题)11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.12.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE ≌△ACD,添加的条件是:.13.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.15.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.16.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三.解答题(共6小题)17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.19.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD 的延长线交BE于点F.说明:AF⊥BE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案一.选择题(共10小题)1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.解:∵两个三角形全等,∴∠1=62°,故选:B.4.解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.5.解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.6.解:∵AB∥FC∴∠ADE=∠EFC∵E是DF的中点∴DE=EF∵∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵AB=20,CF=12∴BD=AB﹣AD=20﹣12=8.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.8.解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.9.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.10.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.二.填空题(共6小题)11.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.12.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.13.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.14.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.15.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.16.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t 分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.三.解答题(共6小题)17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.18.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.19.证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=DC,BC=AC,∠ECD=∠ACB=90°.在△BEC和△ADC中EC=DC,∠ECB=∠DCA,BC=AC,∴△BEC≌△ADC(SAS).∴∠EBC=∠DAC.∵∠DAC+∠CDA=90°,∠FDB=∠CDA,∴∠EBC+∠FDB=90°.∴∠BFD=90°,即AF⊥BE.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。
人教版 初中数学八年级上册 12.2全等三角形的判定 同步练习(含答案)
人教版初中数学八年级上册12.2全等三角形的判定同步练习(含答案)一、选择题(本大题共8道小题)1. 如图,AD=AE,若利用“SAS”证明△ABE△△ACD,则需要添加的条件是()A.AB=ACB.△B=△CC.△AEB=△ADCD.△A=△B2. 下列三角形中全等的是()A.△△ B.△△ C.△△ D.△△3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图所示,△C=△D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.△ABC=△ABD D.△BAC=△BAD5. 如图,点B,F,C,E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DFC.△A=△D D.BF=EC6. 如图所示,P是△BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA△△PF A的依据是()A.HL B.ASA C.SSS D.SAS7. 在Rt△ABC和Rt△DEF中,△C=△F=90°,下列条件不能判定Rt△ABC△Rt△DEF的是()A.AC=DF,△B=△E B.△A=△D,△B=△EC.AB=DE,AC=DF D.AB=DE,△A=△D8. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角△ABC=35°,则右边的滑梯与地面的夹角△DFE等于()A.60° B.55° C.65° D.35°二、填空题(本大题共4道小题)9. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH△△CEB.10. 如图,在△ABC中,AD△BC于点D,要使△ABD△△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,已知AD=BC,AB=CD,若△C=40°,则△A=________°.12. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若△ACD=40°,则△AGD=________°.三、解答题(本大题共2道小题)13. 如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.14. 如图,C是线段BD的中点,AB=EC,△B=△ECD.求证:△ABC△△ECD.人教版初中数学八年级上册12.2全等三角形的判定同步练习-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】A[解析] △△符合证明三角形全等的判定方法“SAS”.△△中相等的角所对的边不相等,所以不可能全等.故选A.3. 【答案】A4. 【答案】A5. 【答案】C[解析] 选项A中添加AB=DE可用“AAS”进行判定,故本选项不符合题意;选项B中添加AC=DF可用“AAS”进行判定,故本选项不符合题意;选项C中添加△A=△D不能判定△ABC△△DEF,故本选项符合题意;选项D中添加BF=EC可得出BC=EF,然后可用“ASA”进行判定,故本选项不符合题意.故选C.6. 【答案】A7. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC△Rt△DEF,选项C 可由“HL”判定Rt△ABC△Rt△DEF,只有选项B不能判定Rt△ABC△Rt△DEF.8. 【答案】B [解析] 在Rt△ABC 和Rt△DEF 中,⎩⎨⎧BC =EF ,AC =DF ,△Rt△ABC△Rt△DEF(HL). △△DEF =△ABC =35°.△△DFE =90°-35°=55°.二、填空题(本大题共4道小题)9. 【答案】AH =CB (符合要求即可)【解析】∵AD ⊥BC ,CE ⊥AB ,垂足分别为点D 、E ,∴∠BEC =∠AEC =90°,在Rt △AEH 中,∠EAH =90°-∠AHE ,在Rt △HDC 中,∠ECB =90°-∠DHC ,∵∠AHE =∠DHC ,∴∠EAH =∠ECB ,∴根据AAS 添加AH =CB 或EH =EB ;根据ASA 添加AE =CE.可证△AEH ≌△CEB.故答案为:AH =CB 或EH =EB 或AE =CE 均可.10. 【答案】AB =AC 11. 【答案】40[解析] 如图,连接DB.在△ADB 和△CBD 中,⎩⎨⎧AD =CB ,AB =CD ,DB =BD ,△△ADB△△CBD(SSS). △△A =△C =40°.12. 【答案】40[解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,△△ABC△△DEC(SSS). △△A =△D.又△△AFG =△DFC ,△△AGD =△ACD =40°.三、解答题(本大题共2道小题)13. 【答案】证明:∵CE ∥DF ,∴∠ACE =∠FDB ,(2分)在△ACE 和△FDB 中,⎩⎨⎧EC =BD∠ACE =∠FDB AC =FD,∴△ACE ≌△FDB(SAS ),(5分) ∴AE =FB.(7分)14. 【答案】证明:△C 是线段BD 的中点,△BC =CD.在△ABC 与△ECD 中,⎩⎨⎧BC =CD ,△B =△ECD ,AB =EC ,△△ABC△△ECD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习练习题
一、选择题
1.如图,给出下列四组条件:
①ABDEBCEFACDF,,;②ABDEBEBCEF,,;
③BEBCEFCF,,;④ABDEACDFBE,,.
其中,能使ABCDEF△≌△的条件共有( )
A.1组 B.2组 C.3组 D.4组
2.如图,DE,分别为ABC△的AC,BC边的中点,将此三
角形沿DE折叠,使点C落在AB 边上的点P处.若48CDE°,
则APD等于( )
A.42° B.48° C .52° D.58°
3.如图(四),点P是AB上任意一点,ABCABD,还应补
充一个条件,才能推出APCAPD△≌△.从下列条件中补充
一个条件,不一定能....推出APCAPD△≌△的是( )
A.BCBD B.ACAD C.ACBADB D.CABDAB
4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两
个条件才能使△ABC≌△DEF,不能添加的一组条件是( )
(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF
(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF
5.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,
DE⊥AB于E,若AC = 10cm,则△DBE的周长约等于( )
A.14cm B.10cm C.6cm D.9cm
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配
一块完全一样的玻璃,那么最省事的方法是( )
A.带①去 B.带②去 C.带③去 D.带①②③去
E
D
C
B
A
④
①
②
③
C
A
D
P
B
图(四)
8.如图,在RtABC△中,90B ,ED是AC的垂直平分线,交AC于
点D,交BC于点E.已知10BAE,则C的度数为( )
A.30 B.40 C.50 D.
60
9.如图,ACBACB△≌△,BCB=30°,则ACA的度数为( )
A.20° B.30° C.35° D.40°
10.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分 D.CD平分∠
ACB
11.如图, ∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )
A. 5cm B. 3cm C. 2cm D. 不能确定
12.如图,OP平分AOB,PAOA,PBOB,垂足分别为A,B.下列结论中不一定成
立的是( )
A.PAPB B.PO平分APB
C.OAOB D.AB垂直平分OP
13.如图,已知ABAD,那么添加下列一个条件后,仍无法判定( )
A.CBCD B.BACDAC∠∠
C.BCADCA∠∠ D.90BD∠∠
14.观察下列图形,则第n个图形中三角形的个数是( )
A.22n B.44n C.44n D.4n
二、填空题
1.如图,已知ADAB,DACBAE,要使 ABC△≌ADE△,可补充的条件是
(写出一个即可).
2.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,且AB=5cm,则△
DEB的周长为 ________
3.如图,BACABD,请你添加一个条件: ,使OCOD(只添一个即可).
……
第1个 第2个 第3个
A
D
C
E
B
A
C
E
B
D
A
B
C
D
A
B
C
D
C
A
B
O
B
A
P
4.如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,
DC=6厘米,则点D到直线AB的距离是__________厘米。
5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形
有 个 .
6.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.
7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正
三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个
结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有_______________________(把你认为正确的序号都填上)。
8.如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添
加的条件是________.
三、解答题
1.如图,已知AB=AC,AD=AE,求证:BD=CE.
2.如图,在ABC△中,40ABACBAC,°,分别以ABAC,为边作两个等腰直角三角
形ABD和ACE,使90BADCAE°.
(1)求DBC的度数;(2)求证:BDCE.
4.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找
出图中的一组全等三角形,并说明理由.
5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,
试判断线段BN与CN的数量关系,并证明你的结论.
9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过
C
点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE.
10.如图,
,ABACADBCDADAEABDAEDEF于点,,平分交于点
,
请你写出图中三对..全等三角形,并选取其中一对加以证明.
11.(7分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,
B
A D
M
N
O
A
B
C
D
E
D
O
C
B A
Q
P
O
B
E
D
CA
E
D
C B
A
A
B D E
B D C
F
A
E
F
E
D
C
B
A
(1)求证:△AED≌△EBC.
(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积
相等的三角形.(直接写出结果,不要求证明):
12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于
F,若AB=CD,AF=CE,BD交AC于点M
.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,
上述结论能否成立?若成立请给予证明;若不成立请说明理
由.
全等三角形复习练习题答案
一、选择题
1—5 C B B D A
6—10 A C B B A
11—14 C D C D
二、填空题
1.略;
;
=BD;
;
;
;
7.①②③⑤;
=AE;
三、证明题
O
E
D
C
B
A