激光雷达和激光扫描仪的区别全面介绍

合集下载

激光测距与激光雷达

激光测距与激光雷达

激光测距与激光雷达
激光测距的原理如同微波雷达测距一样,但激光测距与普通测距相比,具有远、准、快、抗干扰、无盲区等优点。

激光测距在常规兵器中已广泛应用,有取代普通
光学测距的趋势。

第一代红宝石激光测距,隐蔽性差(发红光),对人眼有损伤,且
效率低,已淘汰。

第二代YAG激光测距已广泛使用,但对人眼也有一定损伤。


前正在研发第三代CO2气体或固体激光测距,对人眼无伤害,将逐步取代第二代激光测距。

激光雷达与微波雷达相似,用窄激光束对某一地区进行扫描,并得出雷达图。

随着有关器件和技术的发展,激光雷达在高精度和成像方面占有优势,其测距精度可达厘米甚至毫米级,比微波雷达高近100倍;测角速精度,理论上比微波雷达高一亿倍以上,现在已做到高
1000~10000倍。

激光雷达的工作原理与雷达非常相近,以激光作为信号源,由激光器发射出的脉冲激光,打到地面的树木、道路、桥梁和建筑物上,引起散射,一部分光波会反射到激光雷达的
接收器上,根据激光测距原理计算,就得到从激光雷达到目标点的距离,脉冲激光不断地
扫描目标物,就可以得到目标物上全部目标点的数据,用此数据进行成像处理后,就可得到精确的三维立体图像。

激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系
统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。

至于目标的径向速度,可以由反射光的多普勒频移来确定,
也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。

由此可以看出,直接探测型激光雷达的基本结构与激
光测距机颇为相近,其原理框图如下所示:。

第2讲激光及激光雷达系统-激光雷达系统2

第2讲激光及激光雷达系统-激光雷达系统2
散射型激光雷达 探测大气中气溶胶或污染分 布 吸收型激光雷达 探测大气成分,臭氧或水蒸 探测大气成分 臭氧或水蒸 汽 激光荧光雷达 进行植被研究或污染物测定

5
激光雷达的分类
按照照使用用目的分类
6
激光雷达的分类
相互作用 反射 检测对象 比激光波长尺寸大 很多的物质 举例 地形测绘 气溶胶 空气分子 空气分子,水蒸气, SO2等污染物质 NO2等污染物质
8
激光成像雷达发展
四个阶段: 四个阶段 :
激光测距仪 跟踪测角测距雷达 激光成像雷达
9
激光成像雷达
只要发射激光波形具有足够高的波束质量和重复频率, 发射激 波 有 够高的波束质 复频率 接收信号达到一定的信噪比要求,均能通过波束扫描在探 测器的光敏面上得到目标的图像 测器的光敏面上得到目标的图像。

分为外差探测 分为 外差探测, ,零拍探测 零拍探测和 和多频外差探测 多频外差探测等 等
19
激光雷达外差探测原理
一般外差探测激光雷达系统由一台连续工作的激光 一般外差探测 激光雷达系统由一台连续工作的激光 器作为独立辐射源发出参考波 称为本地振荡器 器作为独立辐射源发出参考波,称为本地振荡器 器作为独立辐射源发出参考波,称为 称为本地振荡器 系统接收到的回波 信号与来自本地振 荡器的参考信号混 合之后,由混频器 输出的光束聚焦到 探测器上然后再进 行信号处理。
29
激光遥感观测系统
飞机 激光扫描仪 航摄相机 CCNS4导航控制系统 AEROControl IId 高 精度位置姿态测量系统 (IMU/DGPS) IMU与相机连接架 机载DGPS天线 地面DGPS基站接收机
激光遥感集成系统

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

激光雷达是一种利用激光技术进行距离测量和目标探测的高精度、高可靠性的雷达系统。

它具有结构简单、测量精度高、抗干扰能力强等优点,被广泛应用于无人驾驶、智能交通、机器人等领域。

本文将从结构、原理、分类及特点四个方面对激光雷达进行简述。

一、激光雷达的结构激光雷达一般由激光器、扫描装置、接收器、信号处理器等组成。

其中,激光器用于发射激光束,扫描装置用于控制激光束的扫描方向,接收器用于接收反射回来的激光信号,信号处理器用于对接收到的信号进行处理和分析。

二、激光雷达的原理激光雷达的原理是利用激光束在空间中的传播和反射来实现距离测量和目标探测。

当激光束照射到目标物体上时,一部分激光能量被物体吸收,另一部分激光能量被反射回来。

接收器接收到反射回来的激光信号后,通过计算激光束的往返时间和光速的值,可以确定目标物体与激光雷达的距离。

同时,通过对激光束的强度、频率等参数的分析,还可以获得目标物体的其他信息,如形状、速度等。

三、激光雷达的分类根据扫描方式的不同,激光雷达可以分为机械式激光雷达和固态激光雷达两种类型。

1.机械式激光雷达机械式激光雷达使用旋转镜片或机械臂等装置来控制激光束的扫描方向。

由于其结构简单、成本低廉等优点,机械式激光雷达在早期的无人驾驶、机器人等领域得到了广泛应用。

但是,机械式激光雷达的扫描速度较慢,对目标物体的探测精度也较低。

2.固态激光雷达固态激光雷达使用电子控制器控制激光束的扫描方向,不需要机械装置。

固态激光雷达具有扫描速度快、精度高、可靠性高等优点,因此在现代无人驾驶、智能交通等领域得到了广泛应用。

四、激光雷达的特点激光雷达具有以下几个特点:1.高精度:激光雷达的测量精度可以达到毫米级别,远高于传统雷达系统。

2.远距离探测:激光雷达可以在百米甚至千米的距离范围内进行目标探测。

3.抗干扰能力强:激光雷达的测量结果不受光照、雨雪等自然环境的影响,抗干扰能力强。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

激光雷达是一种高精度、高分辨率、高可靠性的测量设备,广泛应用于自动驾驶、地形测量、工业检测等领域。

本文将从激光雷达的结构、原理、分类及特点等方面进行简述。

一、激光雷达的结构激光雷达通常由激光器、光学系统、控制系统、接收器、信号处理器等组成。

1. 激光器:激光器是激光雷达的核心部件,通常采用半导体激光器或固体激光器,能够发射高功率、高频率的激光束。

2. 光学系统:光学系统包括发射光学系统和接收光学系统。

发射光学系统负责将激光束聚焦成一束细小的光束,以便将激光束精确地照射到目标物体上。

接收光学系统负责收集目标物体反射回来的激光信号,并将其转化为电信号。

3. 控制系统:控制系统是激光雷达的智能核心,负责控制激光器的发射和接收,以及激光束的聚焦和扫描。

4. 接收器:接收器是激光雷达的另一个核心部件,负责接收目标物体反射回来的激光信号,并将其转化为电信号。

接收器的性能直接影响激光雷达的精度和分辨率。

5. 信号处理器:信号处理器负责对接收到的激光信号进行处理和分析,提取目标物体的位置、距离、速度等信息,并将其传递给控制系统进行下一步处理。

二、激光雷达的原理激光雷达的原理是利用激光束与目标物体之间的相互作用,通过测量激光束的反射或散射来确定目标物体的位置、距离、速度等信息。

当激光束照射到目标物体上时,部分激光束会被目标物体吸收,部分激光束会被目标物体反射或散射。

接收器收集到反射或散射的激光信号后,通过计算激光束的传播时间和速度,可以确定目标物体的距离和速度。

同时,通过对激光束的反射或散射特征进行分析,可以确定目标物体的位置、形状等信息。

三、激光雷达的分类激光雷达可以按照使用的激光类型、扫描方式、工作原理等多种方式进行分类。

以下是常见的分类方式:1. 激光类型:根据激光类型的不同,激光雷达可以分为固体激光雷达和半导体激光雷达。

固体激光雷达通常使用固体材料作为激光介质,具有高功率、高频率等优点;半导体激光雷达通常使用半导体材料作为激光介质,具有体积小、功耗低等优点。

2024年工程测量中测绘新技术应用

2024年工程测量中测绘新技术应用

2024年工程测量中测绘新技术应用随着科技的不断进步和创新,工程测量领域迎来了前所未有的发展机遇。

众多新技术、新方法的涌现,极大地提升了测绘工作的精度和效率。

本文将对工程测量中测绘新技术应用进行详细探讨,主要包含无人机遥感测绘、激光雷达扫描、全球定位系统、移动测量系统、三维激光扫描、数字摄影测量以及地理信息系统等方面。

1. 无人机遥感测绘无人机遥感测绘作为近年来发展迅速的一种非接触性测量技术,已广泛应用于多个领域。

通过搭载高清相机、热红外传感器等设备,无人机能够快速获取地面目标的高分辨率影像数据。

这些数据不仅可以用于地形测绘、城市规划,还能为环境监测、灾害评估等提供有力支持。

同时,无人机遥感测绘具有灵活性高、成本低、周期短等优点,使得其在测绘工作中发挥着越来越重要的作用。

2. 激光雷达扫描激光雷达扫描技术以其高精度、高效率的特点,在工程测量中得到了广泛应用。

激光雷达系统通过发射激光脉冲并接收回波,可以获取目标物体的三维坐标信息。

这种技术不仅适用于地形测绘,还能用于建筑物、桥梁等结构的变形监测和安全评估。

此外,激光雷达扫描技术还能有效穿透植被,获取地面信息,为森林调查、植被覆盖监测等提供了有力工具。

3. 全球定位系统全球定位系统(GPS)是现代工程测量中不可或缺的一项技术。

通过接收卫星信号,GPS能够实时提供测量点的三维坐标信息,具有高精度、全天候、自动化等特点。

在工程测量中,GPS广泛应用于控制测量、施工放样、变形监测等多个环节。

随着技术的不断发展,新一代卫星导航系统如北斗卫星导航系统(BDS)的成熟和应用,进一步提高了我国在全球定位系统领域的自主可控能力。

4. 移动测量系统移动测量系统是一种集成了多种传感器和数据采集设备的测绘技术。

它通过在移动平台上搭载激光扫描仪、相机、惯性测量单元等设备,实现了对地面目标的高精度快速测量。

移动测量系统具有动态性强、作业效率高、适用范围广等优点,特别适用于城市街景、道路工程等场景的测绘工作。

三维激光扫描仪原理

三维激光扫描仪原理

三维激光扫描仪原理
三维激光扫描仪原理
一、三维激光扫描仪的定义
三维激光扫描仪,也称三维激光雷达,是一种以光学技术为主,通过利用激光散射进行测量和图像处理技术,准确测量运动或静态物体的形状、尺寸及其他特性的设备。

二、三维激光扫描仪运行原理
1.激光脉冲发射:通过激光头发射准确、高脉冲能量的激光脉冲,强激光脉冲扩散洒射到目标物体上,对其表面形状反射回激光的多个点进行测量。

2.激光散射测量:激光脉冲扩散到目标物体表面之后,会有一定的反射量传回激光探测器,通过激光探测器和控制系统,可以获得目标物体距离传感器的距离,实现目标物体表面形状的量化测量。

3.数据采集:将激光探测器获取的数据传送到控制电路,经过精确的单元操作,将数据分析成表面形状的某种空间量化模型,实现对目标物体形状形式表示和记录的数据采集处理。

4.三维模型重建:将控制系统接收的数据进行处理,利用重建算法求解出三维模型,实现对目标物体的三维重建,最终得到该物体的中心坐标、尺寸及其他特性。

三、三维激光扫描仪的应用
1. 工业自动化:三维激光扫描仪往往用于检测工件的准确性和合格性,并帮助开发过程中的可视化和实验测试。

2. 无人机导航:由于三维激光扫描仪拥有高精度、宽范围和极低空间要求,因此可以用于无人机技术,帮助无人机在环境比较复杂的情况下以最优路径进行导航。

3. 在医学领域:激光扫描技术可以用来诊断机器中的结构变化,检测微小的细胞变化并执行仪器检测,诊断某些特定疾病以及重建软组织模型。

4. 其他应用:三维激光扫描技术还可以在船舶自动驾驶、飞行飞机的检验维修、地质勘查领域及重建历史文物方面得到广泛应用。

lidar原理与应用

lidar原理与应用

• 测绘学的分支:

大地测量学与测量工程

地图制图学与地理信息工程

摄影测量与遥感
• 大地测量学与测量工程:
大地测量是研究地球形状、大小和重力场及其变化, 通过建立区域和全球三维控制网、重力网及利用卫星测量 、甚长基线干涉测量等方法测定地球各种动态的理论和技 术的学科。
工程测量是研究工程建设和自然资源开发中各个阶段 进行的控制测量、地形测绘、施工放样、变形监测及建立 相应信息系统的理论和技术的学科。
平面坐标(X,Y)及高程(Z)的数据集。DEM的格网间 隔应与其高程精度相适配,并形成有规则的格网系列。根 据不同的高程精度,可分为不同类型。为完整反映地表形 态,还可增加离散高程点数据。
• 数字正射影像图(Digital Orthophoto Map— DOM)是利用数字高程模型(DEM)对经扫描处理的数
图4 Lidar数据地面点断面分布示意图
Lidar数据的处理
LIDAR数据处理包括原始数据预处理和点云数据 后处理两个阶段。
1、原始数据预处理 首先通过地面CPS的基准站和机载GPS的测量数 据的联合差分结算,即可精确确定飞机飞行轨迹。 然后利用仪器厂家提供的随机商用软件,对飞机 GPS 轨迹数据、飞机姿态数据、激光测距数据及激 光扫描镜的摆动角度数据进行联合处理,最后得到 各测点的(X,Y,Z)三维坐标数据。这样得到的是 大量悬浮在空中没有属性的离散的点阵数据,形象 地称之为“点云”。
图5 Lidar点云数据分布示意图
2、点云数据后处理
对Lidar点云数据进行后处理的目的就是将分布 在不同地面目标上的点进行分离。简单地说,就是 将落在地形表面上的点(即所谓的地面点)与那些非 地形表面上的点(譬如上面图中落在汽车上、树木 或植被上、以及落在房屋上的点)进行有效而准确 的分离。

机载激光雷达教学教材

机载激光雷达教学教材
线激光器发出的光平面扫描物体表面,面阵CCD 采集被测物面上激光扫描线的漫反射图像,在计算 机中对激光扫描线图像进行处理,依据空间物点与 CCD面阵像素的对应关系计算物体的景深信息,得到 物体表面的三维坐标数据,快速建立原型样件的三 维模型。采集航空影像数据。利
城市淹没分析
LiDAR在灾害监测与环境监测方面的应用
泥石流监测
地震断裂带监测
LiDAR在数字城市方面的应用
在数字化程度越来越高的今天,基于二维城市形象系统已经 不能满足形象时代的要求,将三维空间形象完整呈现已经成为发 展的必然,也是“数字地球”的要求。因此,对快速获取三维空 间数据,模拟和再现现实生活提出了更高的要求。LIDAR系统在 城市中更能体现其不受航高、阴影遮挡等限制的优势,能够快速 采集三维空间数据和影像,房屋建模速度快,高程精度高,纹理 映射自动化程度高,能够满足分析与测量的需求,广泛用于城市 规划的大比例尺地形图获取。
其应用已超出传统测量、遥感所覆盖的范围,成 为一种独特的数据获取方式。
四、机载激光雷达
激光测距原理 激光雷达最基本的工作原理与无线电雷达没有区
别,即由雷达发射系统发送一个信号,经目标反射后 被接收系统收集,通过测量反射光的运行时间而确定 目标的距离。
激光器到反射物体的距离(d)=光速(c)×时间(t)/2 激光束发射的频率能从每秒几个脉冲到每秒几万 个脉冲,接收器将会在一分钟内记录六十万个点。结 合GPS得到的激光器位置坐标信息,INS得到的激光 方向信息,可以准确地计算出每一个激光点的大地坐 标X、Y、Z,大量的激光点聚集成激光点云,组成点 云图像。
三维 建模
三维 建模
三维 建模
针对困难复杂环境下三维地表数 据的高精度获取和处理环节,以低 空直升机作为载体的激光测量,改 变传统地形图生产的制作流程和方 法,实现1:500大比例尺数字线划 地形图的快速生成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光雷达
工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、
转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再
把从目标反射回来的光脉冲还原成电脉冲,送到显示器。

激光雷达,是激光探测及测距系统的简称。用激光器作为发射光源,采用光电探
测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先
进探测方式。由发射系统、接收系统、信息处理等部分组成。激光雷达是利用激
光进行探测和测量,用途较广泛,多应用在地形图绘制,地形测,无人驾驶等。

三维激光扫描仪
三维扫描仪的一种,目前日益广泛应用的另一种三维扫描仪是拍照式三维扫描。
通过激光测距原理(包括脉冲激光和相位激光),瞬时测得空间三维坐标值的测
量仪器,利用三维激光扫描技术获取的空间点云数据,可快速建立结构复杂、不
规则的场景的三维可视化模型。

三维激光扫描仪主要应用在文物保护、城市建筑测量、地形测绘、采矿业、变形
监测、工厂、大型结构、管道设计、飞机船舶制造等领域,在工业领域里三维激
光扫描仪多用于三维建模,逆向工程,三维检测,产品设计。

相对于激光雷达,三维激光扫描仪多在工业领域。
激光雷达和雷达有什么区别?
他们的区别就和名字一样简单易懂 ,激光雷达就是,发射激光的雷达。在原理
上基本类似,只是激光雷达发射的是一条直线的光束,而雷达发射出去的是一个
锥状的电磁波波束。

按照用途,可以把激光传感器分为两类,即避障级和高精度测绘级,通过对比可
以发现在一些关键参数上,如角分辨率、视场角、测量距离、测量速率、测量精
度、多次回波技术、多周期回波技术等,这两类激光传感器有较大差别。

相关文档
最新文档