对管内湍流边界层结构与流动阻力特性的数值研

对管内湍流边界层结构与流动阻力特性的数值研
对管内湍流边界层结构与流动阻力特性的数值研

收稿日期:1999209224;修改稿收到日期:22001204204.基金项目:上海市青年科技启明星计划(98Q F14040);

曙光计划(2000SG14040)资助1

作者简介:潘卫国(19672),男,教授,博士1文章编号:100724708(2001)0420393204

对管内湍流边界层结构与流动阻力特性的数值研究

潘卫国1, 聂雪军1, 雷俊智1, 岑可法2

(11上海电力学院热能与环保工程研究所,上海200090;21浙江大学,杭州310027)摘 要:在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones2L aunder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散E,管壁切应力S o以及由此可得的管内流动摩擦阻力系数K 进行了数值计算,计算结果与实验值、理论计算值具有较好的一致性。

关键词:湍流;边界层;数值计算

中图分类号:O35 文献标识码:A

1 引 言

空气在管内流动时,管壁附近有一极薄的边界

层,在这一薄层内,气流的速度由固壁处的零逐渐增

加到相应的无摩擦外流原有的值,当雷诺数R e<

2300时,边界层内为层流流动,此时流动阻力压力

降与速度的一次方成正比,摩擦阻力系数为K=

64R e,其边界层厚度D=5M L u;而工程上一般碰

到的管内流动其R e数都很大,流动为湍流流动,管

内流动压力降近似与流速的平方成正比。由于湍流

混合,使得接近管轴的流体和接近壁面的流体层之

间进行着动能和质量交换,边界层内结构就比较复

杂[1],为此,本文试用数值计算的方法探讨管内湍流

边界层结构与流动阻力特性。

2 低Re数的K-E双方程模型的建立

高R e数的K2E双方程模型对旺盛的管内紊流

区作了较好数值模拟,而对研究紊流边界层,必须要

考虑分子粘性对紊流产生的作用、雷诺数以及壁面

附近脉动动能的耗散不是各向同性这些影响。根据

Jones和L aunder的观点,对高R e数K2E双方程中相

应的项乘上f L、f1和f2因子所得的低R e数K-E双

方程模型可以模拟紊流边界层的结构[2,3],其方程如

下:

5(Q uK)

5x+5(Q M K)

5y=

5

5x[

(L+

L t

R E

)

5K

5x]+

5

5y[

(L+

L t

R k

)

5K

5y]+

L t G-Q E+D

-

(1)

5(Q u E)

5x+

5(Q M E)

5y=

5

5x[

(L+

L t

R E

)

5E

5x]+

5

5y[

(L+

L t

R E

)

5E

5y]+

E

K

C1f

-1

L t G-

C2f2

-

Q

E2

K

+E

-

L t=C L f

-L

Q K

2

E

(2)

以上三式中下划线的部分就是低R e数K2E模

型区别于高R e数K2E模型的部分,其中f L、f1、f2、D

和E由不同的研究者得出不同的数学表达式[4~9],

Jones和L aunder认为:f L=exp

-215

1+0102R L,

f1=110,f2=1-013exp(-R2L),D=2L5K

5y

2

,

E=2

LL t

Q

52u

5y2

2

式中R L=K

2

M E;

 R k=K

12y

M;

 y+=u T y M;u T

=S W Q;未注明的其它参数C L=0109,C D=

110,C1=1144,C2=1192, R K=110,R E=113。

低R e数K2E模型是对高R e数K2E方程的修正,

即考虑了高阶张量在低R e数时的影响,引入f L、f1

和f2的目的分别是为了模拟在壁面处分子粘性对

切应力的影响、考虑壁面附近湍流脉动动能耗散率

的变化以及湍流边界层内各向同性特性的减弱。

Patel[10]等曾采用多种低R e数K2E模型计算了

二维边界层流动与换热并作了比较,结果表明,采用

Jones2L aunder模型得出的计算值与实验结果的符

合程度比其它模型要好,因此下面采用

Jones2L aunder模型对管内紊流流动边界层厚度、边

第18卷第4期计算力学学报V o l.18N o14 2001年11月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS N ovem ber2001

界层内的脉动动能K,动能耗散E,管壁切应力S o以及由此可得的管内流动摩擦阻力系数K进行数值模拟。

2 数值研究的方法

应用低雷诺数K2E双方程模型时,根据边界层理论近壁处的切应力S o采用如下式子:

S o=L 5M g

5y w=

y+

u+p

?u p

y p

(3)

式中:y+=Q(k p C12L)12?y p

L,u

+

p=

1

k

ln(E y+)。

y p是p点到壁面的垂直距离,u p为近壁点的速度, k=014为卡门常数,对于30

求得壁面处湍流切应力S o后,由圆管内阻力定律可知,管内摩擦阻力系数K的计算式如下所示:

K=8?

S o

Q?u q2

(4)

式中u q为管内平均流速。

应用低R e数K2E双方程模型的改进型S I M PL E程序求解边界层结构的基本思路如下: 11对N avier2Stokes方程组采用有限差分法进行数值离散,然后采用改进的压力修正法进行求解:通过假定或上次计算所确定的压力场按次序求解速度的代数方程,由此得到的速度场未必能满足质量守恒,因而必须对给定的压力场加以修正,把由动量方程的离散形式所规定的压力和速度关系代入连续性方程的离散形式,从而得到压力修正值方程,由压力修正方程得出压力改进值,进而改进速度,反复计算,直到获得收敛解。为了充分了解边界层内的湍流结构,差分网格在Y方向的边界层厚度内间距为8×10-6米(y+≈1),随后在旺盛的紊流区间距为5×10-4米;X方向的间距为118×10-4米,网格数一共为300×200个。

21边界条件:

(1)进口条件:进口速度采用17次幂速度分布律,进口的湍流脉动动能K

in

=01005U in2;动能耗散率E in=C L Q K2in L t,其中L t按Q L L L t=500来确定。

(2)出口条件:k、E的边界按坐标局部单向化方式处理。

(3)固体壁面:壁面上U w=V w=0,且壁面上与速度V相应的扩散系数为0;引用Jones2L aunder 模型时,E w=0;另外在壁面处的湍流脉动动能K w =0。3 数值模拟结果及分析

在上述的数值研究的方法下,运用数值计算对湍流边界层进行了数值模拟,模拟结果如下:

11在管长为011m处,通过数值模拟发现:湍流边界层厚度(如图1示)随来流速度的增加(即R e数的增加)而减少,并且数值模拟的结果与从理论上

推导出的湍流边界层厚度D=0.

37l

u∞l

M

-15

相接近。

21湍流脉动动能K的变化:由图2可以看出,在y+≈15时,k+变成最大,随后k+随y+的增加而减少,当55

的峰值明显低于实验结果,原因在于低R e数K2E 双方程模型中,未对包括压力扩散的K方程扩散项进行合理修正[12]

31脉动动能耗散率E的变化:由图3可以看出,脉动动能耗散率E在y+≈15附近达到最大值,随后

493 计算力学学报 第18卷

迅速减少,并且发现,在y +>40脉动动能的产生K 基上与耗散E 相等,而在近壁处,E 大于K

41管内摩擦阻力系数K 的变化:通过数值计算,

得出不同R e 数下壁面上的切应力S o 随R e 数的变化的关系,然后,根据式(4)就可以计算出不同R e 下的管内摩擦阻力系数(图4示),用Jones 2L aunder 模型计算得结果与本文作者在试验台上所得的试验结果[13]及用Calebrook 公式计算结果趋势都一致。

在这里需指出,边界层内湍流流动实际上是三维流动,而本文用二维流动进行数值模拟并取得较好的计算结果,原因在于:壁面上的边界层厚度对于计算的管径(D =400mm )来说是微小量,可视其为平壁上的边界层;雷诺应力主要与垂直于壁面的y 方向速度梯度有关;应力和动能耗散也主要发生在垂直于壁面的平面内。

4 结 论

运用数值计算的方法对边界层内流动进行了初步的研究,研究的结果是:边界层厚度随流速的变化

趋势跟理论式相接近;近壁处湍流动能和湍流动能耗散变化趋势跟试验结果较吻合;纯空气流过圆管时摩擦阻力系数跟试验和Caleb rook 经验公式变化相似。这些充分说明了采用合适的数学模型对管内边界层中的流动进行数值计算是研究管内湍流边界层结构与流动阻力特性的一条行之有效的方法。

参考文献(References ):

[1] 史里希廷H 著,边界层理论[M ],北京:科学出

版社,19881(Sch lich ting H .Boundary 2L ager

T heo ry ,Science P ress ,1988.(in Ch inese ))

[2] JonesW P and L aunder B E .T he P redi 2cti on

of L am inarizati on w ith a Tw o 2Equati on M odel of T u rbu lence [J ].In t .

J .

H ea t M ass

T ransf er ,1972,15.

[3] JonesW P and L aunder B E .T he Calcu lati on

of L ow R eyno lds N um ber Phenom ena w ith a Tw o 2Equati on M odel of T u rbu lence [J ].In t .J .H ea t M ass T ransf er ,1973,16.

[4]Hoffm an G H .I mp roved Fo rm of the L ow

R eyno lds N um ber K 2E M odel [J ].P hy sics of F lu id s ,1975,18(3).

[5] Ch ien J C .N um berical A nalysis of T u rbu len t

Separated

Sub son ic D iffu ser

F low [J ].

S ym p osium on T u rbu len t S hea r F lo w s ,U n iv .

Park ,Penn sylvan ia ,1977,1.

[6] H assid S and Po reh M .A T u rbu len t Energy

D issi pati on M odel fo r F low s w ith D rag R educti on [J ].A SM

E .J .

F lu id s .

E ng .,

1978,100.

[7]L am C K G and B rem ho rst K .A M odified

Fo rm of the K 2E M odel fo r P redicting W all T u rbu lence [J ].A SM E ,J .F lu id s .

E ng .

1981,103.

[8]R eyno lds W C .Compu tati on of T u rbu len t

F low s [J ].A nnua l R ev ie w of F lu id M ech 2an ics ,1976,8.

[9]D u toya D and M ichard P .A P rogram fo r

Calcu lating Boundary L ayers along Comp r 2esso r and T u rb ine B lades [A ].N um erical

M ethods in H eat T ran sfer [C ].John W iley &

Son s ,N ew Yo rk ,1981.

[10] C lark J A .A Study of Incomp ressib le T u rb 2

593第4期 潘卫国,等:对管内湍流边界层结构与流动阻力特性的数值研究

u len t Boundary L ayers in Channel F low[J].

A SM E T ransactions,J.B.E ng.,1968.90

(12).

[11]Patel V C,Rodi W and Scheuerer G.

T u rbu lence M odels fo r N ear2W all and L ow2

R eyno lds N um ber F low s:A R eview[J].

A IA A J.,1984,23(9).

[12]Bernard P S.L i m itati on of the N ear2W all K2E

T u rbu lence M odel[J].A IA A.J.,1986,24

(4).

[13] 潘卫国1管内气固多相流动、传热及检测的

试验研究及数值模拟[D].杭州:浙江大学

1997.(Pan w eiguo.Experi m en tal and

num erical study on gas2so lid m u lti phase flow

and heat tran sfer and its param eter

m easu rem en t[D].D issertati on of Zhejiang

U n iversity,1997,(in Ch inese))

A nu m er ica l study on the structure and resistance

character istic of turbulen t boundary layer

PAN W ei2guo1,N IE Xue2jun1,L E I Jun2zh i1,CEN Ke2fa2

(1.Shanghai U niversity of E lectric Pow er,Shanghai,200090,Ch ina;

2.Zhejiang U niversity,H anzhou,310027,Ch ina)

Abstract:T h is article has con sidered the effects on tu rbu lence generati on,including mo lecu le viscou s, R eno lds num ber and the dissi pati on of fluctuati on energy.T he Jones2L aunder model is app lied to calcu late the th ickness of tu rbu len t boundary layer,fluctuati on energy k in boundary layer,energy dissi pati on E,stress on the boundary and flow fricti onal coefficien t K.T he ou tcom e is p referab ly acco rdan t w ith the ones of experi m en t and theo retic calcu lati on.

Key words:tu rbu lence;boundary layer;num erical calcu lati on

693 计算力学学报 第18卷

(完整word版)流体阻力系数

流体阻力系数 一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。 在相对速率v 较小时,阻力f的大小与v 成正比: f = kv 式中比例系数k 决定于物体的大小和形状以及流体的性质. 在相对速率较大以致于在物体的后方出现流体漩涡时,阻力的大小将与v平方成正比。对于物体在空气中运动的情形,阻力 f = CρAv v/2 式中,ρ是空气的密度,A 是物体的有效横截面积,C 为阻力系数。 物体在流体中下落时,受到的阻力随速率增大而增大,当阻力和重力平衡时,物体将以匀速下落。物体在流体中下落的最大速率称为终极速率,又称为收尾速率。对在空气中下落的物体,它的终极速率为: 如图

关键字:2.2.4 流体流动阻力的计算 流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种: 直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。 1. 流体在直管中的流动阻力 如图1-24所示,流体在水平等径直管中作定态流动。 在1-1′和2-2′截面间列柏努利方程, 因是直径相同的水平管, 若管道为倾斜管,则 由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。 把能量损失表示为动能的某一倍数。 令 则(2-19) 式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning)公式。式中为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re及管壁状况有关。 根据柏努利方程的其它形式,也可写出相应的范宁公式表示式: 压头损失(2-20) 压力损失 (2-21) 值得注意的是,压力损失是流体流动能量损失的一种表示形式,与两截面间的压力差意义不同,只有当管路为水平时,二者才相等。 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数不同。以下对层流与湍流时摩擦系数分别讨论。 (1)层流时的摩擦系数 流体在直管中作层流流动时摩擦系数的计算式: (2-22) 即层流时摩擦系数λ是雷诺数Re的函数。 (2)湍流时的摩擦系数

第10章 湍流边界层

第10章 湍流边界层 10.1 壁面湍流特性和速度分布规律 当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。 但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。 10.1.1 壁面湍流分层结构及其特性 在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义 ()ρ τw x v v = =** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。 粘性底层:所在厚度约为* 5 0v y ν ≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽 略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。 过渡层:所在厚度约为* * 30 5 v y v ν ν ≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流 动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。 对数律层:所在厚度约为()δν ν 2.01030 * 3 * ≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘 性切应力,因而流动处于完全湍流状态。 由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν 4.010* 3 ≤≤y v 和δδ≤≤y 4.0。 对于尾迹

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

湍流

力学的世纪难题——湍流 周恒 中国航空报 June12,2014 Abstract 人们关心流体的运动是很自然的,因为地球为大气所包围,而地球表面的2/3为水面覆盖。作为科学问题的湍流,是在1883年Reynolds做 了区分层流和湍流这两种不同形态流动的实验后确立的。而自20世纪初以 来,由于工程技术的发展,对认识湍流的规律提出了迫切的要求,从而大 大地推动了湍流的研究。在这100多年中,对湍流的认识的确取得了很大 进展,否则如航空、航天、船舶、动力、水利、化工、海洋工程等工程技 术,以及气象、海洋科学等自然科学都不可能有很大的进展。但另一方面, 人们对湍流的认识又还很不全面,从而制约了这些工程技术和自然科学的 进一步发展,也可能会对21世纪的某些新兴科学技术的形成起到制约作 用。因而在21世纪之始,再一次将这一世纪难题提到科学工作者面前是很 必要的。 1湍流运动的复杂性 湍流运动复杂性的根源在于它是强非线性系统的运动。控制湍流运动的方程:Navier-Stokes(N-S)方程是非线性的。在多数情况下,它的解是不稳定的,从而导致了流动的多次分叉,形成了复杂流态,而方程的非线性又使各种不同尺度的流动耦合起来,无法将它们分别研究。 一个世纪以来,数学家们曾对N-S方程做过大量研究,但由于其非线性带来的困难,正面的成果远不如对其他数学物理方程的研究所得到的多。看起来,进一步对N-S方程的数学性质做研究尽管重要,但依靠这一途径来解决工程技术和自然数学中提出的湍流问题恐怕是不现实的。 物理学家、力学家以及一部分数学家试图从另一途径来解决湍流,即通过直接建立能反映其某些重要特性的模型来认识湍流。例如,在20世纪 1

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比 从而有 取,可得摩擦系数与阻力损失之间的关系:

从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 4. 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:,、分别为细管和粗管的流通截面积。 三、实验流程: 本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至。各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡

管道阻力计算

管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中

λ――――摩擦阻力系数 ν――――风管内空气的平均流速,m/s; ρ――――空气的密度,Kg/m3; l ――――风管长度,m Rs――――风管的水力半径,m; Rs=f/P f――――管道中充满流体部分的横断面积,m2; P――――湿周,在通风、空调系统中既为风管的周长,m;D――――圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ――――局部阻力系数。局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

湍流降阻应用实例

湍流降阻 湍流减阻技术有泥沙减阻[ 1]、微汽泡及吹气和吸气减阻[ 2,3]、聚合物减阻[ 4]、涂层减阻[ 5]、磁减阻[6]、仿生非光滑减阻[7-12]等, 这些技术主要是控制边界层内的湍流结构, 特别是拟序结构, 从而达到控制湍流动能损耗, 实现减阻目的。 仿生学研究发现鱼类等水生动物和有翼昆虫等飞行动物经历了近亿年进化过程, 形成了一种满足自身生存需要的非光滑减阻表面。如Reif 教授在研究40 多种不同生长阶段的鲨鱼后, 发现当鲨鱼快速游动时, 表皮上有精细间隔的鳞脊, 鳞脊间有圆谷, 鳞脊的排列基本上与流动方向平行, Reif 认为, 鲨鱼皮上的鳞脊可以使边界层稳定, 减小快速游动阻力[9]。受此启发, 用仿生非光滑技术改变近壁区流场, 减小壁面摩擦阻力, 不会给使用体带来附加设备、额外能量消耗和污染物, 仅改变壁面形状就达到减阻效果,在各种减阻技术中被认为是最有前途的方法。

图1 为三角形、扇贝形和刀刃形三种仿生非光滑沟槽形状参数示意图, 其中s = 0. 1mm, h =0. 05mm, 刀刃形沟槽刃宽t = 0. 2 × h 。三种模型在相同的计算域中模拟, 将光滑表面与沟槽表面置于同一流场中, 便于结果对比, 减小计算误差。先在ANSYS 中建立几何模型, 对其进行离散化, 再将离散单元导入GAMBIT 中, 进行网格平滑处理和区域划分, 最后将网格导入FLU ENT 中进行计算及结果显示。为了便于观察流场运动情况, 沿流向布置8 个沟槽。三角形和扇贝形用六面体网格离散, 刀刃形用三角形网格离散。流向均匀划分40 个网格点, 垂向不等间距划分40 个网格点, 中心处网格最稀, 从中心向两边网格间距以0. 25 倍等比速度减小, 沟槽表面划分变尺寸网格, 沟槽网格密度在谷底最稀, 谷顶最密, 网格间距从谷顶到谷底以0. 5 等比速度减小。三种情况下沟槽表面所划分的网格密度相同, 并等于光滑表面。 图2 CFD模型 表1 三种沟槽表面上网格点数列表 网格总数沟槽表面积形状顶角s h 沟槽表面 网格数 三角形90°0.1 5×10-214 181023 4.53×10-6扇贝形- 0.1 5×10-216 197821 4.95×10-6刀刃形- 0.1 5×10-221 240005 6.00×10-6

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

风沙环境下高雷诺数壁湍流结构及其演化机理研究

附件1 “风沙环境下高雷诺数壁湍流结构及其演化机理研究” 风沙运动引发的灾害已经成为影响人类社会的一个重要环境问题。要实现对风沙灾害的有效预报和合理防治,必须深刻认识风沙灾害的成因和规律。从流动的角度来看,风沙运动实质上是颗粒物质与高雷诺数大气边界层湍流相互作用的结果,其特征雷诺数Reτ可达106~107量级。目前有关风沙运动研究的理论基础仅基于定常平均假设,导致理论预测与实际情况存在显著差异。为提高风沙运动的预测精度和防治水平,必须依靠湍流特别是高雷诺数壁湍流的最新研究进展和理论突破。 高雷诺数壁湍流在湍流统计特性、流动结构等方面与低雷诺数情况存在较大差异,而风沙运动作为一种典型的高雷诺数流动,为高雷诺数湍流研究提供了非常有用的基准。本项目拟以高雷诺数风沙运动为主要研究对象,通过理论分析、实验室模拟、数值仿真和野外观测相互结合的方式,研究高雷诺数壁湍流的流动特性和机理,揭示湍流拟序结构对起沙和沙尘输运的作用和影响规律,为风沙灾害的预报和防治提供理论支持、预测方法和工程依据,由此形成风沙运动研究的中国特色。 一、科学目标 以我国风沙灾害防治为背景,针对高雷诺数湍流边界层的一般规律、沙尘起沙机制和输运特性,开展高雷诺数壁湍流的理论分析、实验测量、数值模拟和野外观测,掌握高雷诺数壁湍流流动特性和雷诺数影响规律,认识高雷诺数壁湍流拟序结构及尺度作用机理,揭示沙尘起跳和长距离输运机理,构建适用于高雷诺数风沙预报的数值计算

方法和计算平台。由此促进高雷诺数湍流和风沙运动学科的交叉融合,提升我国在湍流和风沙物理学领域的创新能力。 二、研究内容 (一)壁湍流统计特性的雷诺数效应。 开展高雷诺数壁湍流的大气边界层净风场测量,结合中等雷诺数直接数值模拟和高雷诺数大涡模拟,研究壁湍流统计特性随雷诺数的变化规律和趋势,包括:雷诺数对平均速度型与卡门常数的影响;湍动能第二峰的产生条件及能量输运特性;风沙对湍流统计特性的影响。 (二)高雷诺数壁湍流结构的动力演化特性与尺度作用机理。 结合流动显示、三维流场测量和直接数值模拟等手段,研究高雷诺数壁湍流中大尺度拟序结构的起源、演化和相互作用的特性、规律和机理,包括:边界层内大尺度/超大尺度结构的生成和动力学演化过程;边界层内外区流动结构的相互作用机制;沙尘与湍流拟序结构的相互影响规律。 (三)考虑高雷诺数效应的风沙运动预报方法。 综合考虑在高雷诺数条件下出现的湍流脉动、大尺度结构等复杂因素,建立计及内外区相互作用的湍流模型,发展适用于高雷诺数风沙预报的新型预报方法,完成近地表风沙流形成与发展过程的模拟,较为准确地预测沙粒的扬起过程及输运特性。 三、资助期限5年(2015年1月至2019年12月) 四、资助经费2000万元 五、申请注意事项 (一)申请人应当认真阅读本项目指南和通告,不符合项目指南和通告的申请项目不予受理。 (二)申请书的附注说明选择“风沙环境下高雷诺数壁湍流结构

流动阻力及阻力损失计算方法

29 第五节 阻力损失 1-5-1 两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。 对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体 层与管壁之间并没有相对滑动。 图1-33 阻力损失 阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。截面1、2之间未加入机械能, h e =0。由机械能衡算式(1-42)可知: ρρρ2 12211 P P -=???? ??+-???? ??+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ?。该式同时表明, 只有水平管道, 才能以p ?(即p 1-p 2)代替P ?以表达阻力损失。 层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 2 32d lu μ= ?P (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 2 32d lu h f ρμ= (1-73) 1-5-2 湍流时直管阻力损失的实验研究方法 层流时阻力损失的计算式是由理论推导得到的。湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。这种实验研究方法是化工中常用的方法。因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。实验研究的基本步骤如下: (1) 析因实验──寻找影响过程的主要因素 对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素 对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平); 流动条件:流速u ; 于是待求的关系式应为:

第8章湍流边界层中的动量传递

第八章湍流边界层中的动量传递 首先明确可用雷诺数表述层流与湍流的转折,以及该转折下的雷诺数的具体数值;其次,指出层流与湍流在微分方程的表述上的差异体现在湍流应力项,普朗特混合长度模型和Van Driest 模型均被用来解决湍流应力项;Couette 流动假设对于求解微分方程起了至关重要的作用;还讨论了有散逸和表面粗糙度的处理。 §8.1边界层流动现象的物理分析 流动:是成群的流体微团的运动。边界层内流动过程中的小扰动随机出现,由于小扰动的能量有限,因此仅仅会影响到个别流体微团的初始运动状况,但也因此而引发整体微团的流动状态。 层流:个体流体微团的流动方向,在整体上具有一致性的流动现象。个别流体微团因小扰动而引发的初始流动方向的改变,因为受到与相邻流体微团之间存在着的粘性力作用的影响,使得这种外界扰动的作用随着时间的推移而减小,最终使流动稳定。因此,层流流动的特点,很大程度上归因于流体微团之间存在着的粘性力,当层流受到外界扰动时,粘性力具有使层流恢复到初始未扰动状态的效应。 湍流:个体流体微团的流动方向,在整体上不具有一致性的流动现象。虽然小扰动影响的依然是个别流体微团,但此时微团之间的粘性力的作用,已经不足以消除小扰动造成的影响;反之,个别受扰动流体微团的不稳定流动,又将影响到周围流体微团,进而造成更大范围内的流体微团的不稳定流动。分析这种不稳定流动现象形成的因素,只能是因为流体微团的流动动能而引发,即所谓的流体的惯性力。因此,湍流流动的特点,在于流体微团自身的惯性力,它使得局部扰动扩大,造成整体流动的不稳定。 雷诺数:雷诺数就是惯性力与粘性力之比, μ ρux = = 粘性力惯性力Re 因此人们预料:层流流动的稳定性,在很大程度上和雷诺数的数值有关,稳定层流流动和低雷诺数值相联系。 流动沿程的定性结构: 由雷诺数的定义可知,边界层流动的初始前缘,必然是层流流动;以后,随着流动长度的增加,惯性力渐增,随机随处存在的小扰动而引发的个别微团的不稳定流动,也因此有逐渐扩大的可能性;当惯性力远大于粘性力后,湍流流动最终形成。在由层流最后扩展到完全湍流的过程中,必然存在一个过渡区,在这个区域内,惯性力和粘性力具有相同的数量级。 因此,流动沿程的定性结构为:首先是层流区,其次是过渡区,最后是湍流区。 临界雷诺数:因此,我们可以用雷诺数来描述流体流动的结构。于是必然存在某一临界雷诺数,该值确定了层流流动的上限或湍流流动的下限。现在通常讨论的是层流流动的上限。 临界雷诺数的一般性判据: 实验现象: ① 无压力梯度/光滑表面/简单层流:长度雷诺数=300,000—500,000时,发生过渡; ② 零压力梯度/层流:长度雷诺数<60,000时,仍保持稳定层流结构; ③ 管道中层流:水力直径雷诺数<2300时,层流流动仍然稳定。 上述临界雷诺数是在一定实验条件下获取的。希望建立与实验条件基本无关的关于临界雷诺数的一般性判据,假定过渡现象是局部的(小扰动随处存在,但只有在临界雷诺数出现的地方,才会出现过渡现象),则局部雷诺数判据具有一般性,这时我们已经忽略了平板流

第9章湍流边界层中的传热

第九章 湍流边界层中的传热 在层流边界层的处理中,只要粘性耗散项可以忽略不计,则能量方程就有着与动量方程相同的数学形式。这时,能量方程的解可直接引用动量方程的解。 在湍流边界层的处理中,我们已经有了动量方程的解。仿层流边界层中能量方程的解法,我们似乎也可以走直接引用湍流动量方程的解的解决途径。 与湍流动量方程一样,湍流能量方程中也有着类似的“封闭”问题。我们可以提出一种模型,以解决湍流能量方程存在着的“封闭”问题的过程中;我们也可以直接引用湍流动量方程解决封闭问题的结论,考察湍流能量方程的类似结论与湍流动量结论之间的关系。本章中的雷诺比拟就属于后一种处理方法。 §9.1湍流边界层能量方程的求解 §9.1.1动量-能量方程的比较 在定常、恒定自由流、全部流体物性处理成常数、忽略体积力和粘性耗散项可以忽略的情况下,湍流动量方程可以表为, 0''=???? ??-????-??+??v u y u y y u v x u u ρμ 湍流能量方程可以表为, 0''=??? ? ??-????-??+??v t y t c k y y t v x t u ρ 以上表示湍流边界层中的动量方程和能量方程在数学表述上具有类似的形式。 §9.1.2 雷诺比拟 在求解湍流动量方程“封闭”问题时,引入了普朗克混合长度理论,以计算' 'v u , y u l u ??='最大 和 y u kl v ??=' 最大 2 2' '''22 ??? ? ????=?= y u l k v u v u 最大 最大 混合长度定义式如下, 2 2''??? ? ????-=y u l v u 并且有, y l κ= 在求解湍流能量方程的“封闭”问题时,我们也可以引入一种计算' 'v t 的理论。 鉴于动量方程和能量方程在数学表述上具有相似性,我们还可以探索' 'v t 与' 'v u 之间是否存在着一种简单的关系,如果能够找到两者之间所存在的关系,就可以直接引用动量方程求解的结论。 ①因y 方向上脉动速度' v 的存在而引起的有效剪切应力和有效热通量的计算: 动量:() ()v u G G V G y x ++=?

对管内湍流边界层结构与流动阻力特性的数值研

收稿日期:1999209224;修改稿收到日期:22001204204.基金项目:上海市青年科技启明星计划(98Q F14040); 曙光计划(2000SG14040)资助1 作者简介:潘卫国(19672),男,教授,博士1文章编号:100724708(2001)0420393204 对管内湍流边界层结构与流动阻力特性的数值研究 潘卫国1, 聂雪军1, 雷俊智1, 岑可法2 (11上海电力学院热能与环保工程研究所,上海200090;21浙江大学,杭州310027)摘 要:在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones2L aunder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散E,管壁切应力S o以及由此可得的管内流动摩擦阻力系数K 进行了数值计算,计算结果与实验值、理论计算值具有较好的一致性。 关键词:湍流;边界层;数值计算 中图分类号:O35 文献标识码:A 1 引 言 空气在管内流动时,管壁附近有一极薄的边界 层,在这一薄层内,气流的速度由固壁处的零逐渐增 加到相应的无摩擦外流原有的值,当雷诺数R e< 2300时,边界层内为层流流动,此时流动阻力压力 降与速度的一次方成正比,摩擦阻力系数为K= 64R e,其边界层厚度D=5M L u;而工程上一般碰 到的管内流动其R e数都很大,流动为湍流流动,管 内流动压力降近似与流速的平方成正比。由于湍流 混合,使得接近管轴的流体和接近壁面的流体层之 间进行着动能和质量交换,边界层内结构就比较复 杂[1],为此,本文试用数值计算的方法探讨管内湍流 边界层结构与流动阻力特性。 2 低Re数的K-E双方程模型的建立 高R e数的K2E双方程模型对旺盛的管内紊流 区作了较好数值模拟,而对研究紊流边界层,必须要 考虑分子粘性对紊流产生的作用、雷诺数以及壁面 附近脉动动能的耗散不是各向同性这些影响。根据 Jones和L aunder的观点,对高R e数K2E双方程中相 应的项乘上f L、f1和f2因子所得的低R e数K-E双 方程模型可以模拟紊流边界层的结构[2,3],其方程如 下: 5(Q uK) 5x+5(Q M K) 5y= 5 5x[ (L+ L t R E ) 5K 5x]+ 5 5y[ (L+ L t R k ) 5K 5y]+ L t G-Q E+D - (1) 5(Q u E) 5x+ 5(Q M E) 5y= 5 5x[ (L+ L t R E ) 5E 5x]+ 5 5y[ (L+ L t R E ) 5E 5y]+ E K C1f -1 L t G- C2f2 - Q E2 K +E - L t=C L f -L Q K 2 E (2) 以上三式中下划线的部分就是低R e数K2E模 型区别于高R e数K2E模型的部分,其中f L、f1、f2、D 和E由不同的研究者得出不同的数学表达式[4~9], Jones和L aunder认为:f L=exp -215 1+0102R L, f1=110,f2=1-013exp(-R2L),D=2L5K 5y 2 , E=2 LL t Q 52u 5y2 2 式中R L=K 2 M E;  R k=K 12y M;  y+=u T y M;u T =S W Q;未注明的其它参数C L=0109,C D= 110,C1=1144,C2=1192, R K=110,R E=113。 低R e数K2E模型是对高R e数K2E方程的修正, 即考虑了高阶张量在低R e数时的影响,引入f L、f1 和f2的目的分别是为了模拟在壁面处分子粘性对 切应力的影响、考虑壁面附近湍流脉动动能耗散率 的变化以及湍流边界层内各向同性特性的减弱。 Patel[10]等曾采用多种低R e数K2E模型计算了 二维边界层流动与换热并作了比较,结果表明,采用 Jones2L aunder模型得出的计算值与实验结果的符 合程度比其它模型要好,因此下面采用 Jones2L aunder模型对管内紊流流动边界层厚度、边 第18卷第4期计算力学学报V o l.18N o14 2001年11月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS N ovem ber2001

管道流动阻力的计算

流体在管道中流动,其流动阻力包括有: (1)(1)直管阻力:流体流经直管段时,由于克服流体的粘滞性及与管内壁间的磨擦所产生的阻力。它存在于沿流动方向的整个长度上,故也称沿程直管流动阻力。记为。 (2)(2)局部阻力:流体流经异形管或管件(如阀门、弯头、三通等)时,由于流动发生骤然变化引起涡流所产生的能量损失。它仅存在流体流动的某一局部范围办。记为。 因此,柏努利方程中项应为: 说明:流动阻力可用不同的方法表示, ——1kg质量流体流动时所损失的机械能,单位为J/kg; ——1N重量流体流动时所损失的机械能,单位为m; ——1体积流体流动时所损失的机械能,单位为Pa或。 1. 1.直管段阻力(h fz)的计算 流体流经直管段时,流动阻力可依下述公式计算: [J/kg] 或 [m] [pa] 式中,——磨擦阻力系数; l——直管的长度(m); d——直管内直径(m); ——流体密度;u——流体在直管段内的流速(m/s) 2.局部阻力(h fJ)的计算 局部阻力的计算可采用阻力系数法或当量长度法进行。

1)1)阻力系数法:将液体克服局部阻力所产生的能量损失折合为表示其动能若干倍的方法。其计算表达式可写出为: [J/kg] (a) 或 [m] (b) [pa] [pa] (c 其中,称为局部阻力系数,通常由实验测定。下面列举几种常用的局部阻力系 数的求法。 *突然扩大与突然缩小 管路由于直径改变而突然扩大或缩小,所产生的能量损失按(b)或(c)式计算。式中的流速u均以小管的流速为准,局部阻力系数可根据小管与大管的截面积之比从管件与阀门当量长度共线图曲线上查得。 *进口与出口 流体自容器进入管内,可看作很大的截面A1突然进入很小的截面A2,即A2 /A1约等于0。根据突然扩大与突然缩小的局部阻力系数图的曲线(b),查出局部阻力系数=,这种损失常称为进口损失,相应的系数又称为进口阻力系数。若管口圆滑或喇叭状,则局部阻力系数相应减少,约为~。 流体自管子进入容器或从管子直接排放到管外空间,可看作很小的截面A1突然进入很大的截面A2截面即,A1/A2约等于0 ,从突然扩大与突然缩小的局部阻力系数图中曲线(a)可以查出局部阻力系数=1,这种损失常称为出口损失,相应的阻力系数又称为出口阻力系数。

相关文档
最新文档