煤化工传统技术分析
煤化工环保思路及工艺技术分析

煤化工环保思路及工艺技术分析随着人们环保意识的逐步增强,煤化工行业也在不断改善和创新,积极地探索环保思路及工艺技术,以实现可持续发展。
本文将探讨煤化工行业的环保思路,以及主要的工艺技术分析。
一、环保思路1、节能减排在煤化工行业中,减少能耗和排放是非常重要的环保思路。
为了降低能耗,提高煤的转化率,煤化工企业需要完善自身的节能技术,例如优化热力过程,选择先进的蒸发、蒸汽压缩、分离技术;在选择气化工艺时,应考虑节能及节约化石燃料。
此外,减少排放也是企业需要重视的环保思路。
企业需要对废气、废水、固体废弃物的处理进行规划和实施,提高煤化工行业的环境保护水平。
2、资源循环利用随着环保形势的严峻,资源的浪费越来越不被社会所接受,在这种情况下,煤化工企业需要寻求垃圾的循环利用和资源的多元化利用。
例如,将生物质与煤混合,来生产清洁能源,并减少煤的使用量;将煤从污染源转化为新能源、新材料,从而形成循环的煤化工产业。
3、绿色生产在环保思路中,绿色生产是最为关键的一环。
煤化工企业需要从源头上就控制污染物的排放,通过绿色工艺和绿色产品,使得企业实现绿色的生产,对于环保质量与可持续经济发展有非常大的意义。
二、工艺技术1、煤气化技术煤气化技术主要是通过高温、高压条件下,气化煤转化为可燃气体。
煤气化技术在实现煤化工环保的同时,也有较高的经济效益和社会效益。
以煤制氢为例,它可以通过化学反应,使煤转化为氢和一氧化碳,产出的CO可以作为重要的化学原料。
此外,煤气化技术还可以提高煤的转化率,减少对大气的污染。
2、催化裂化技术催化裂化技术是一种将油品分子切割成较小碳氢化合物的工艺。
它可以降低燃油产生的有害气体和颗粒物的排放,在环境保护方面有着较高的作用。
此外,催化裂化技术还可以使得燃油的利用率更高,为国内立体化石化产业的发展提供了有力支持。
3、生物质能源技术生物质能源技术主要是将生物质转化为燃料或发电,并且具有环保优势。
生物质能源技术不仅可以提高绿化率,降低温室气体排放,还可以减少对化石燃料的使用量,降低对环境的污染。
煤化工环保思路及工艺技术分析

煤化工环保思路及工艺技术分析煤化工是一种利用煤作为原料制造化学品的工艺,但煤的高含碳量和低品质使其处理过程对环境产生负面影响。
为了解决这个问题,煤化工环保思路和工艺技术的发展变得非常重要。
1. 煤的先进清洁利用煤的先进清洁利用是最重要的环保思路。
通过清洁煤技术,煤的质量可以得到显著提高,同时降低了环境负荷。
例如采用水煤浆、气化和液化等技术,可以降低煤的含硫量和含磷量,减少有害气体和颗粒物的排放。
2. 节能减排煤化工的生产过程需要大量能源,因此采用节能技术减少能源消耗是环保思路的另一个重要方面。
例如,采用高效能的热交换器、蒸汽喷射技术以及余热利用技术,可以大幅减少能源消耗,减少对环境的污染。
3. 废弃物回收煤化工工艺生产产生的废弃物,如果不进行处理和回收,将对环境产生很大的污染。
因此,废弃物回收是煤化工环保思路中的另一个重要方面。
废弃物回收不仅减少污染和浪费,还可以提高资源利用效率和经济效益。
1. 生产过程创新在煤化工生产过程中,创新技术对环保产生积极影响。
例如,改进煤的制备工艺,降低热解过程的能耗和排放,研究煤液化与制备工艺,从而减少环境污染和节约能源资源。
2. 污染物处理污染物处理是煤化工环保工艺技术的关键内容。
其中,二氧化硫是煤化工生产过程中的主要有害气体,采用高效脱硫的方法可以将二氧化硫的排放降至最低。
3. 废气处理技术针对煤化工生产中产生的废气,采用废气处理技术可以一定程度上减少对环境的污染。
因此,从透气型活性炭、雾化吸附等实现废气的去除和处理,就是煤化工环保工艺技术的一个重要方面。
总之,煤化工环保思路和工艺技术的创新与提高,不仅可以保护环境,还可以提高资源利用效率和经济效益。
煤化工环保思路及工艺技术分析

煤化工环保思路及工艺技术分析煤化工是一种将煤作为原料,通过化学反应转化为有机物的工艺。
由于煤是一种高含碳杂质的矿石,其加工会产生大量的污染物和废物,对环境造成严重影响。
在煤化工过程中,环保问题是一个重要的考虑因素。
煤化工环保思路主要包括以下几个方面:1. 节约能源和资源:煤化工过程中需要大量的能源和化工原料,如煤炭、水和氢气等。
为了减少能源和资源的消耗,可以采用优化的工艺流程、提高设备的能效和减少废弃物的产生等措施。
2. 处理废气排放:煤化工过程中会产生大量的废气,包括二氧化硫、氮氧化物和有机物等。
这些废气对大气环境具有较大的污染性。
为了降低废气排放对环境的影响,可以采用湿法气体洗涤、吸附剂吸附和催化剂转化等技术进行净化处理。
在煤化工环保技术方面,目前已经有了一些成熟的技术和工艺应用。
湿法煤气化技术可以实现对废气的净化,可以降低二氧化硫和氮氧化物的排放。
煤焦油加工技术可以对煤化工过程中产生的煤焦油进行高效利用,降低废物的产生。
生物处理技术可以有效处理煤化工过程中产生的废水,降低有机物和重金属离子的含量。
煤化工过程中还有一些新兴的环保技术值得关注,如煤矸石和煤灰的资源化利用,可以将这些废弃物转化为建材和化肥等有用的产品。
煤化工过程中的能源利用也可以采用新技术,如煤气化联合循环发电技术,可以提高能源的利用效率,减少二氧化碳的排放。
煤化工环保思路主要包括节约能源和资源、处理废气排放、处理废水排放和固体废物处理等方面。
在煤化工环保技术方面,已经有了一些成熟的技术和工艺应用,同时也需要不断探索和发展新的环保技术。
只有通过环保措施的采取,才能实现煤化工产业的可持续发展。
分析我国煤化工发展中主要存在的主要问题及对策

分析我国煤化工发展中主要存在的主要问题及对策一、环境污染问题。
煤化工生产过程中会产生大量的废水、废气和固体废弃物,其中含有高浓度的有毒有害物质,对环境造成严重污染。
煤化工过程中需要大量的水资源,导致水资源的过度开采和浪费。
二、能源资源消耗问题。
煤化工需要大量的煤炭作为原料,煤炭资源是有限的,过度的开采和消耗会加剧煤炭短缺的问题,同时也会增加对环境的破坏。
煤化工过程中需要耗费大量的能源,造成能源的浪费。
三、技术创新不足问题。
我国煤化工产业在技术创新方面相对滞后,与国际先进水平存在一定的差距。
煤化工生产技术大多还停留在传统工艺水平,存在能耗高、污染大等问题。
针对以上问题,可以采取以下对策:一、环境保护措施。
加强煤化工行业的环境监管,建立完善的排污标准和处罚机制,加强对煤化工企业的监督和管理,确保其废水、废气和固废的处理达到规定的标准。
鼓励煤化工企业采用清洁生产技术和设备,提高资源利用效率,减少环境的污染。
二、节能减排措施。
鼓励煤化工企业采用节能技术和设备,降低能源的消耗。
推广使用高效节能的煤化工生产装置和工艺,减少能源的浪费,降低煤化工对煤炭资源的依赖程度。
加强能源的管理和调度,合理利用各种能源,提高能源的利用效率。
三、加强技术创新。
加大对煤化工技术研发的投入,鼓励企业增加研发经费。
加强科技人才的培养和引进,培养一批高水平的专业人才,提升煤化工行业的技术水平。
促进煤化工与其他领域的跨界合作,加强技术创新的交流和合作。
四、推动产业结构的升级。
优化煤化工的产业结构,加大对高附加值产品的研发和生产力度。
发展新型煤化工产品,提高产品的附加值和竞争力。
加强煤化工与其他相关产业的协同发展,促进资源的综合利用和循环利用。
我国煤化工发展中存在的问题需要采取一系列综合措施来解决。
只有通过加强环境保护、节能减排、技术创新和产业结构升级等方面的努力,才能推动煤化工行业的可持续发展,实现经济效益和环境效益的双赢。
煤化工工艺-------煤制烯烃(MTO)煤制丙烯(MTP)技术的探讨与分析

煤化工工艺-------煤制烯烃(MTO)煤制丙烯(MTP)技术的探讨与分析MTO及MTG的反应历程主反应为:2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。
甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。
Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。
改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。
UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。
其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。
从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。
将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。
金属离子的引入会引起分子筛酸性及孔口大小的变化,孔口变小限制了大分子的扩散,有利于小分子烯烃选择性的提高,形成中等强度的酸中心,也将有利于烯烃的生成。
MTO工艺技术介绍目前国外具有代表性的MTO工艺技术主要是:UOP/Hydro、ExxonMobil的技术,以及鲁奇(Lurgi)的MTP技术。
ExxonMobil和UOP/Hydro的工艺流程区别不大,均采用流化床反应器,甲醇在反应器中反应,生成的产物经分离和提纯后得到乙烯、丙烯和轻质燃料等。
目前UOP/Hydro工艺已在挪威国家石油公司的甲醇装置上进行运行,效果达到甲醇转化率99.8%,丙烯产率45%,乙烯产率34%,丁烯产率13%。
煤化工技术的创新与应用案例分析

煤化工技术的创新与应用案例分析煤化工技术的创新与应用案例分析1. 引言煤炭是世界上最为丰富的化石能源之一,然而煤炭资源的使用也带来了环境问题和能源安全问题。
为了解决这些问题,煤化工技术的发展十分重要。
煤化工技术是将煤炭转化为其他化工产品和清洁能源的技术,通过科学创新和技术应用,可以实现对煤炭资源的高效利用和环境友好的发展。
本文将通过分析煤化工技术的创新与应用案例,探讨其在能源、化工、环保等领域的应用前景和价值。
2. 煤化工技术的创新2.1 液化煤技术的创新液化煤是将固态煤炭转化为液态燃料的一种技术。
过去,液化煤技术主要采用煤泥制备液化煤,这种方法工艺复杂,投资高,能源消耗大。
然而,中国科学家通过创新煤直接液化(CTL)技术,成功实现了煤炭的高效液化转化。
这项技术通过将煤炭与水混合,在高压下进行催化裂化,生成液态燃料。
该技术具有独立知识产权,并已经实现了工业化应用。
与传统的液化煤技术相比,煤直接液化技术具有投资低、能耗低、产品质量好等优势。
2.2 煤制油技术的创新煤制油是将煤炭转化为液体燃料或化工原料的一种技术。
过去,煤制油技术主要采用气化技术将煤炭转化为合成气,再通过合成气转化为液体燃料。
然而,这种方法存在合成气产量低、能源消耗高的问题。
为了解决这些问题,科学家们通过创新热解技术,成功实现了煤直接热解制油技术。
该技术通过将煤炭在高温下进行热解,直接生成液体燃料。
这种方法具有产量高、能源消耗低等优势,并已经在一些地方实现了工业化应用。
3. 煤化工技术的应用案例3.1 清洁煤技术在城市供暖中的应用清洁煤技术是将煤炭低排放燃烧技术与烟气脱硫脱硝技术相结合,实现煤炭燃烧时的低污染排放。
该技术在城市供暖中的应用可以有效降低大气污染物的排放,改善空气质量。
例如,中国的一些城市在供暖季节采用清洁煤技术,通过使用高效燃烧炉具和烟气脱硫脱硝设备,实现了空气污染物的大幅减排。
这种技术的应用为城市供暖提供了一种环保、清洁的选择。
煤化工技术发展现状及其新型技术研究

煤化工技术发展现状及其新型技术研究摘要:煤化工技术是将煤作为原料进行加工转化的技术领域,其在能源利用和化工产品生产方面具有重要意义。
本文通过综述煤化工技术的发展现状及其新型技术研究,分析了其对于减缓气候变化、提升能源安全和促进经济可持续发展的潜力。
同时,文章还讨论了煤化工技术面临的挑战与机遇,并指出了未来煤化工技术研究的方向。
关键词:煤化工技术;发展现状;新型技术;研究引言:煤炭资源是中国重要的能源物质,而煤炭的高碳含量也使得其成为主要的温室气体排放来源之一。
因此,煤化工技术的研究和发展对于实现低碳经济转型、减缓气候变化具有重要意义。
当前,国内外学者和工程技术人员在煤化工技术领域开展了大量的研究工作,取得了一系列重要进展。
然而,仍存在许多关键技术难题尚待解决,需要我们持续努力进行深入研究和探索。
1煤化工技术相关内容1.1煤化工技术及煤化工新技术介绍煤化工是利用煤作为原料进行化学转化和加工的技术领域。
煤化工技术能够将煤转化为燃料、化工产品和材料等,为能源资源的综合利用提供了重要途径。
煤化工新技术是指基于传统煤化工技术的改进和创新,以实现更高效、低污染和可持续发展为目标。
1.2煤化工新技术的研究方向煤化工新技术的研究方向主要包括以下几个方面:(1)煤的气化技术:研究如何更有效地将煤转化为气体燃料或化工原料,提高气化反应的产率和选择性,减少能耗和环境污染。
(2)煤直接液化技术:研究如何通过催化剂的作用,将煤直接转化为液体燃料或化工产品,提高液化反应的效率和产物质量。
(3)煤间接液化技术:研究如何利用煤制备合成气,再通过催化剂的作用将合成气转化为液体燃料或化工原料,提高液化反应的选择性和适应性。
煤炭衍生材料的开发利用技术:研究如何将煤转化为高附加值的材料产品,如纤维素材料、碳材料等,拓宽煤的利用领域和价值。
1.3发展煤化工新技术的必要性发展煤化工新技术具有重要的战略意义和必要性。
首先,我国是世界上煤炭资源最丰富的国家之一,煤炭资源储量大、分布广,具有巨大的经济潜力和战略价值。
煤化工技术发展现状与新型煤化工技术分析

煤化工技术发展现状与新型煤化工技术分析摘要:目前,世界各地能源均呈现出多极化发展趋势,我国煤化工产业生产规模日渐扩大。
为从根本上提升煤化工行业在生产经营建设期间的综合效益,积极优化新型煤化工技术方案,加强煤化工生产过程管控力度,确保煤化工产业能够在推动地区经济发展,缓解城市建设能源紧张问题中发挥出重要作用。
基于此,对煤化工技术发展现状与新型煤化工技术进行研究,以供参考。
关键词:煤化工技术;发展现状;新型煤化工技术引言随着时代的不断进步和发展,人们生活水平的提升,对资源的需求和利用不断提升。
传统煤化工技术在使用中,会存在多种问题,导致实际的生产效率和生产质量存在偏差,能源损耗也相对较大。
因此,在不断研究和发展的过程中,为了能够促进煤炭资源的充分利用,就需要在环保理念下,对新型煤化工技术进行创新和应用,保证产品能够替代紧缺资源,实现市场经济发展的同时,带动行业的进步。
1煤化工技术发展状况我国对工业发展的重视程度是非常高的,而在整个发展的进程中,煤炭资源起到的作用非常明显。
在进入到新世纪后,石油、天然气等资源的需求量持续增加,煤炭资源则大幅减少,这对我国经济造成的影响是较大的,为了缓解油价攀升带来的压力能够减轻,应该要寻找到切实可行的措施来对煤炭资源加以充分利用。
而要保证这个目标能够顺利达成,除了要寻找到更为适合的理论,同时要将煤化工技术、设备加以合理运用,如此方可使得煤炭资源的利用价值真正展现出来,而且其对环境造成的污染也会降低很多。
和域外先进国家进行比较可知,国内的煤化工工艺显得较为陈旧,技术、设备的落后距离是较大的,只能够从西方国家引进。
众所周知,煤气化属于热化学反应,主要原料选用的是煤炭,催化剂为水蒸气、氧气,高温作用会使得支架受到影响,使得煤炭当中的可燃部分能够顺利转变为可燃气体。
从当下的使用的煤化工气化工艺来看,常见的包括GE水煤浆加压气化技术、GSP干煤粉加压气化技术等,在进行生产的过程中,可依据实际需要来进行合理选择,如此可以保证产生的经济效益更为理想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤化工传统技术分析●煤制天然气●煤制烯烃●煤制油●煤制乙二醇●煤制芳烃1.煤制天然气煤制天然气项目以煤炭气化为中心,包括前段备煤、空分装置以及后段煤气变换、∙NHD工艺技术甲烷化甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。
煤制天然气的原理就是合成气的甲烷化反应,甲烷化工艺有两步法和一步法两种类型。
∙鲁奇甲烷化技术∙戴维甲烷化技术∙托普索甲烷化技术硫回收技术克劳斯法是为去除化石燃料燃烧及地热发电时生成的硫化氢所用的方法之一。
原理是使硫化氢不完全燃烧,再使生成的二氧化硫与硫化氢反应而生成硫磺。
∙传统克劳斯∙超级克劳斯∙超优克劳斯废水处理传统的煤化工是以低技术含量和低附加值产品为主导的高能耗、高污染、高排放、低效益、即“三高一低”行业,这种对资源的过度消耗、严重污染环境、粗放的不可持续发展方式已难以为继。
煤化工企业排放废水以高浓度煤气洗涤废水为主,含有大量酚、氰、油、氨氮等有毒、有害物质。
废水所含有机污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解的有机化合物的工业废水。
∙煤气化废水处理整体解决方案2.煤制烯烃气化煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。
空分简单地说,就是用来把空气中的各组份气体分离,生产氧气、氮气和氩气的一套工业设备。
还有稀有气体氦、氖、氩、氪、氙、氡等。
∙杭氧∙普莱克斯∙法液空∙开封压缩机厂净化以煤为原料的化工生产中,粗合成气中含有大量的CO2、少量的H2S、COS等酸性气体,对生产不利,必须将其脱除和回收。
煤化工行业代表性的的酸性气脱除技术有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(NHD)以及变压吸附技术(PSA)甲醇合成煤制甲醇工艺技术主要是水煤浆与氧气在一定的温度和压力下,发生部分氧化和气化反应,产生以(CO+H2)为主的粗煤气,经两级文丘里洗涤器和旋风分离器分离,除去煤气中的飞灰、氨等杂质。
再经部分冷凝器进一步冷凝脱除其中的氨、碳黑等杂质后,送入CO变换装置,通过变换和脱碳将H2、CO、CO2调整到合适的比例。
∙技术发展方向∙鲁奇甲醇合成技术∙戴维甲醇合成技术∙Casale IMC 技术∙Topsoe 技术MTO甲醇制烯烃总体流程与催化裂化装置相似,包括反应再生、急冷分馏、气体压缩、烟气能量利用和回收、反应取热、再生取热等部分。
烯烃的精制分离部分,与管式裂解炉工艺的精制分离部分相似。
美国UOP公司和我国中科院大连化学物理研究所分别在上世纪90年代各自独立完成了小型甲醇制烯烃试验装置。
∙UOP公司MTO技术∙DMTO 技术∙S-MTO 技术MTP与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。
∙鲁奇Lurgi MTP技术∙FMTP 技术PP/PE聚丙烯(PP)是我国第二大消费合成树脂。
目前聚丙烯产业整体呈现“两强争霸”格局,因其上游属于寡头垄断行业,呈现以中石化、中石油为主,中海油、民营、合资企业及煤化工企业为辅的竞争格局。
但近年来由于煤制烯烃装置的不断扩产对当前定价体系造成了一定冲击,虽然短期内石化厂的定价仍然是市场价格的风向标,但从长远看,“两强争霸”的格局将向“三足鼎立”转变。
∙聚丙烯工艺介绍∙聚丙烯工艺综述∙聚乙烯生产技术比较与选型3.煤制油在已经确定的5个新型煤化工路径中,煤制油争议最大。
反对者认为:煤制油能耗高、水耗大、污染重、产品全生命周期能量转化效率低,项目的经济、技术、环保风险都较大。
煤制油(Coal-to-liquids, CTL)是以煤炭为原料,通过化学加工过程生产油品和石油化工产品的一项技术,包含煤直接液化和煤间接液化两种技术路线。
∙煤制油2013年进展∙【全析】神华鄂尔多斯百万吨煤制油项目∙煤制油政策导向、经济性分析及技术进展∙坚守迎来“煤变油”春天a)直接煤制油直接液化指煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程,又称煤的加氢液化法。
直接煤制油项目工艺流程主要包括煤炭洗选单元,制氢工艺单元,催化剂制备单元,煤液化反应单元,加氢改质单元等。
b) 间接煤制油间接液化指以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。
间接煤制油项目工艺流程主要包括煤气化、变换净化、F-T合成、油品合成、精制等单元。
∙项目经济性分析∙间接液化工艺技术介绍(1)Sasol工艺间接液化已有70多年历史,1943年F-T合成技术实现工业化,1956年在南非形成了规模化工业生产,是成熟可靠的煤液化技术。
至今,在南非已建成了3个大厂,年耗原煤4600万吨,生产液体烃类产品760多万吨,其中油品近500万吨。
Sasol已成为世界煤化工装置的典范。
(2)荷兰Shell公司的SMDS工艺SMDS工艺包括造气、F-T合成、中间产品转化和产品分离4部分,主要产品是柴油、航空煤油、石脑油和蜡。
1993年在马来西亚Bintulu 建成50万吨/年的工厂。
(3)Exxon-Mobil的MTG工艺Mobil甲醇-汽油(MTG)间接液化工艺利用两个截然不同的阶段从煤或天然气中生产汽油。
1984年Mobil公司在德国波恩附近的Wesseling建成了一套100桶/d汽油的MTG工艺固定床示范装置,之后又建成一套同样规模的流化床示范装置。
新西兰建造了一座1.25万桶/d的商业化液化厂,处理从Maui 矿区生产的气体。
尽管这座液化厂仍进行着生产,但是只生产甲醇,目前这样的经济性最好。
(4)德国伍德公司的MTG生产工艺晋煤集团与中科院山西煤化所共同组建山西省粉煤气化工程研究中心,联合攻关,在粉煤、特别是劣质粉煤气化的关键技术方面寻求突破。
项目建设过程中,他们与拥有国际先进技术的美国美孚公司和德国伍德公司紧密合作,交流学习,掌握了相关先进技术。
项目的流程工艺是,采用拥有我国自主知识产权的“灰熔聚流化床粉煤气化技术”,将劣质粉煤气化造气,生成甲醇,再通过德国伍德公司的MTG生产工艺,间接生成油品。
晋煤集团10万吨/年甲醇制汽油项目于2009年6月试车成功,该项目配套的30万吨/年煤制甲醇项目所用的“灰熔聚流化床粉煤气化技术”试车成功。
(5)其它国外以天然气为原料的工艺除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费托合成天然气液化工厂。
(6)中国科学院山西煤炭化学研究所自主研发的催化剂和“煤基液体燃料合成浆态床工业化技术”(中科合成油技术F-T)中国科学院山西煤炭化学研究所合成油工程研究中心(现中科合成油技术有限公司) 完成了2000t/a煤炭间接液化工业试验。
2001年ICC-IA低温催化剂的合成技术完成中试验证。
2007年ICC-II高温催化剂的合成技术进行了中试试验,开发了ICC-I低温(230-270℃)和ICC-II高温(250-290℃)两大系列铁基催化剂技术和相应的浆态床反应器技术,并分别形成了两个系列合成工艺,即针对低温合成催化的重质馏分合成工艺ICC-HFPT和针对高温合成催化剂的轻质馏分合成工艺ICC-LFPT。
(7)兖矿技术2002年12月,兖矿集团在上海组建上海兖矿能源科技研发有限公司,开始开展煤间接液化技术的研究和开发工作。
2004年3月5000吨级低温费托合成、100吨/年催化剂中试装置建成,并实现一次投料试车成功。
2006年4月又开始建设万吨级高温费托合成中试装置和100吨/年高温费托合成催化剂中试装置,2007年初高温费托合成催化剂中试装置生产出高温II型催化剂,2007年6月高温费托合成中试装置一次投料开车成功生产出合格产品。
(8)中石化F-T合成RFI-1催化剂中石化石科院于2004年开始进行费托合成的相关研究工作,开展了F-T合成的催化剂、反应工程、系统工程等方面的研究工作,开发出了第一代高性能的固定床F-T合成催化剂RFI-1。
2006年初RFT-1催化剂通过中石化集团公司组织的中试评议。
2006年6月在镇海炼化建设的中石化第一套3000t/a GTL 中试装置中使用∙∙伊泰间接液化示范项目全析∙项目经济性分析∙直接液化工艺技术介绍∙除间接液化工艺外,国外在煤炭的直接液化方面也相当活跃,德国、美国、日本等工业发达国家先后开发了十几种新工艺,其中几种先进技术完成了投煤规模为50-200t/d的大型中试。
比较著名的有溶剂精炼煤法(SRC-l,SRC-2)、供氢溶剂法(EDS)、氢煤法(H-COAL)等。
∙(1)德国IGOR工艺∙20世纪70年代,德国鲁尔煤炭公司与Veba石油公司和DMT矿冶及检测技术公司合作开发出了IGOR工艺,其主要特点是反应条件较苛刻(温度470℃,压力30MPa),催化剂采用炼铝工业的废渣,液化反应和液化油加氢在一个高压系统内进行,可一次得到杂原子含量极低的液化精制油。
循环溶剂是加氢油,供氢性能好,煤液化转化率高。
∙(2)日本NEDOL法烟煤液化工艺∙日本于20世纪80年代初专门成立了日本新能源产业技术综合开发机构(NEDO),负责组织十几家大公司合作开发出了NEDOL法烟煤液化工艺。
该工艺的特点是反应压力低(17-19MPa),反应温度为455-465℃;催化剂采用合成硫化铁或天然硫铁矿;固液分离采用减压蒸馏的方法;配煤浆用的循环溶剂单独加氢;液化油含有较多的杂原子还需加氢提质才能获得合格产品。
∙(3)美国HTI工艺∙美国HTI工艺是在H-COAL工艺基础上发展起来的。
该工艺采用两段催化液化,悬浮床反应器和铁基催化剂。
其主要特点是反应条件较温和(440-450℃,反应压力17MPa);催化剂用量少;在高温分离器后面串联有在线固定床反应器,对液化油进行加氢精制;固液分离采用临界溶剂萃取的方法,从液化残渣中最大限度地回收重质油,从而大幅度提高了液化油收率。
∙(4)神华煤直接液化技术∙我国从20世纪70年代开始开展煤炭直接液化技术研究。
1997-2000年煤炭科学研究总院分别与美国、德国、日本等有关机构合作,完成了神华煤、云南先锋煤和黑龙江依兰煤直接液化示范工厂的初步可行性研究。
神华集团在对国内外煤直接液化技术进行了认真比选的基础上,采用众家之长和成熟的单元工艺技术,开发出神华自己的煤直接液化工艺路线和催化剂合成技术。