基本初等函数:2019年高考真题汇编分类专题

合集下载

2019高考数学总复习第二章基本初等函数(Ⅰ)2.3幂函数(第一课时)同步练习新人教A版必修1

2019高考数学总复习第二章基本初等函数(Ⅰ)2.3幂函数(第一课时)同步练习新人教A版必修1

2.3幂函数(第一课时)一、选择题1.以下函数中是幂函数的是( )A.y=x4+x2 B .y=10x1C.y= x3D.y=x+ 1答案 C1分析依据幂函数的定义知,y=x3是幂函数,y= x4+ x2, y=10x, y= x+1都不是幂函数.2m2.已知y= ( m+m- 5) x是幂函数,且在第一象限内是单一递减的,则m的值为( )A.-3B.2C.-3或 2D.3答案 A3.已知幂函数( n∈ Z) 的图象对于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A.- 3B. 1C. 2D.1或 2答案 B分析因为 f ( x)为幂函数,因此n2+2n-2=1,解得 n=1或 n=-3,经查验只有n=1切合题意,应选 B.1a4.在同一坐标系内,函数y=x ( a≠0)和 y= ax-a的图象可能是( )答案 C1分析 选项 A 中,幂函数的指数a <0,则直线 y =ax - a 应为减函数, A 错误; 1选项 B 中,幂函数的指数 a >1,则直线 y = ax - a 应为增函数, B 错误;选项 D 中,幂函数的指数1 1 D 错误. a <0,则- a >0,直线 y = ax - a 在 y 轴上的截距为正,15.已知 f ( x ) = x 2,若 0<a <b <1,则以下各式中正确的选项是 ( )1 1A . f ( a )< f ( b )< f a <f bB . f 1 1 )< f ( ) a < b< (f f b af a f b f 1 1 C . ( )< ( )<b < a f D . f1 1 a <f ( a )< f b <f ( b )答案 C6.设则 a , b ,c 的大小关系是 ( )A . a >c >bB . a >b >cC . c >a >bD . b >c >a答案 A分析 依据幂函数与指数函数的单一性直接能够判断出来,在 x >0 时是增函数,2因此 a >c ,y = 5x 在 x >0 时是减函数,因此c >b ,因此 a >c >b . 二、填空题7.判断大小: 5.25 - 1________5.26 -2.( 填“ >”或“ <”)答案 >分析 ∵ y =x - 1 在 (0 ,+∞ ) 上是减函数, 5.25<5.26 ,∴5.25 -1>5.26 -1;∵ y = 5.26 x 是增函数,- 1>- 2,∴ 5.26 - 1>5.26 - 2.-1-1 -2综上, 5.25 >5.26>5.26 .8.函数 f ( x ) = ( x +3) - 2 的单一增区间是 ________.答案 ( -∞,- 3)1分析 y= x-2=x2的单一增区间为( -∞, 0) ,单一减区间为 (0 ,+∞ ) ,y=( x+3)-2是由 y= x-2向左平移 3 个单位获得的.∴y=( x+3)-2的单一增区间为 ( -∞,- 3) .9.已知幂函数f ( x) =x( m∈Z) 的图象与x轴、y轴都无交点,且对于原点对称,则函数f ( x)的分析式是________.答案 f ( x)= x-1三、解答题10.已知幂函数 f ( x)= x( m∈Z) 在 (0 ,+∞ ) 上单一递减,且为偶函数.(1)求 f ( x)的分析式;(2)议论 F( x)= af ( x)+( a-2) x5· f ( x)的奇偶性,并说明原因.解 (1)因为幂函数f (x) =x在(0 ,+∞ ) 上单一递减,因此2- 2- 3<0,求得- 1<<3,m m m因为 m∈Z,因此 m=0,1,2.因为 f ( x)是偶函数,因此m=1,故 f ( x)= x-4.(2)F( x)= af ( x)+( a-2) x5· f ( x)=a· x-4+( a-2) x.当 a=0时, F( x)=-2x,对于随意的x∈(-∞,0)∪(0,+∞)都有F( x)=- F(- x),因此 F( x)=-2x 是奇函数;2当 a=2时, F( x)=x4,对于随意的x∈(-∞,0)∪(0,+∞)都有F( x)= F(- x),2因此 F( x)=x4是偶函数;当 a≠0且 a≠2时, F(1)=2a-2, F(-1)=2,因为 F(1)≠ F(-1),F(1)≠- F(-1),a因此 F( x)=x4+( a-2) x 是非奇非偶函数.11.已知幂函数 f ( x)的图象过点(25,5).(1)求 f ( x)的分析式;(2)若函数 g( x)= f (2-lg x),求 g( x)的定义域、值域.。

数学高考复习基本初等函数专题强化练习(附答案)

数学高考复习基本初等函数专题强化练习(附答案)

数学2019届高考复习基本初等函数专题强化练习(附答案)初等函数包括代数函数和超越函数,以下是基本初等函数专题强化练习,希望对考生复习数学有帮助。

1.(文)(2019江西文,4)已知函数f(x)=(aR),若f[f(-1)]=1,则a=()A. -1B.-2C.1D.2[答案] A[解析] f(-1)=2-(-1)=2,f(f(-1))=f(2)=4a=1,a=.(理)(2019新课标理,5)设函数f(x)=则f(-2)+f(log212)=() A.3 B.6C.9D.12[答案] C[解析] 考查分段函数.由已知得f(-2)=1+log24=3,又log2121,所以f(log212)=2log212-1=2log26=6,故f(-2)+f(log212)=9,故选C.2.(2019哈三中二模)幂函数f(x)的图象经过点(-2,-),则满足f(x)=27的x的值是()A. B.C. D.[答案] B[解析] 设f(x)=x,则-=(-2),=-3,f(x)=x-3,由f(x)=27得,x-3=27,x=.3.(文)已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4[答案] C[解析] y=2x在R上是增函数,y=2-x在R上是减函数,y=2x-2-x在R上是增函数,所以p1:函数y=2x-2-x在R上为增函数为真命题,p2:函数y=2x+2-x在R上为减函数为假命题,故q1:p1p2为真命题,q2:p1p2是假命题,q3:(p1)p2为假命题,q4:p1(p2)是真命题.故真命题是q1、q4,故选C.[点拨] 1.由指数函数的性质首先判断命题p1、p2的真假是解题关键,再由真值表可判定命题q1、q2、q3、q4的真假.2.考查指、对函数的单调性是这一部分高考命题的主要考查方式之一.常常是判断单调性;已知单调性讨论参数值或取值范围;依据单调性比较数的大小等.(理)已知实数a、b,则2a2b是log2alog2b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析] 由y=2x为增函数知,2ab;由y=log2x在(0,+)上为增函数知,log2alog2ba0,a/ a0,但a0ab,故选B.4.(文)(2019湖南理,5)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数[答案] A[解析] 考查函数的性质.由得-10,a1,xR)叫指数函数函数y=logax(a0,a1,x0)叫对数函数值域 (0,+) (-,+) 图象性质 (1)y(2)图象恒过点(0,1);(3)a1,当x0时,y当x0时,00时,01;(4)a1,在R上y=ax为增函数;00;(2)图象恒过点(1,0);(3)a1,当x1时,y当01时,y当00;(4)a1,在(0,+)上y=logax为增函数;0f(x)g(x),且f(x)=axg(x)(a0,且a1),+=.若数列{}的前n项和大于62,则n的最小值为()A.6B.7C.8D.9[答案] A[思路分析] 通过审题可以发现,题目中多处涉及的形式,x=1时,即,x=-1时,即,x=n时,即,又=ax,故这是解题的切入点,构造函数F(x)=,则问题迎刃而解.[解析] 令F(x)=,则F(x)=ax,F(x)=0,F(x)单调递增,a1.∵F(1)+F(-1)=+==a+,a=2,F(x)=2x,{F(n)}的前n项和Sn=21+22++2n==2n+1-262,2n+164,n+16,n5,n的最小值为6.7.下列函数图象中不正确的是()[答案] D[解析] 由指数函数、对数函数的图象与性质知A、B正确,又C是B中函数图象位于x轴下方部分沿x轴翻折到x轴上方,故C正确.y=log2|x|=是偶函数,其图象关于y轴对称,故D错误. 8.(文)若存在正数x使2x(x-a)1成立,则a的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)[答案] D[解析] 由题意得,ax-()x (x0),令f(x)=x-()x,则f(x)在(0,+)上为增函数,f(x)f(0)=-1,a-1,故选D.(理)定义在R上的偶函数f(x)在[0,+)上是增函数,且f()=0,则不等式f(logx)0的解集是()A.(0,)B.(2,+)C.(0,)(2,+)D.(,1)(2,+)[答案] C[解析] 解法1:偶函数f(x)在[0,+)上为增函数,f(x)在(-,0)上为减函数,又f()=0,f(-)=0,由f(logx)0得,logx或logx-,02,故选C.解法2:f(x)为偶函数,f(logx)0化为f(|logx|)0,f(x)在[0,+)上为增函数,f()=0,|logx|,|log8x|,log8x 或log8x-,x2或01,则g(x)=x+lnx1,00且a1)的图象恒过点(0,-2);命题q:函数f(x)=lg|x|(x0)有两个零点.则下列说法正确的是()A.p或q是真命题B.p且q是真命题C.p为假命题D.q为真命题[答案] A[解析] f(0)=a0-2=-1,p为假命题;令lg|x|=0得,|x|=1,x=1,故q为真命题,pq为真,pq为假,p为真,q为假,故选A.(理)已知函数f(x)=(其中aR),函数g(x)=f[f(x)]+1.下列关于函数g(x)的零点个数的判断,正确的是()A.当a0时,有4个零点;当a0时,有2个零点,当a=0时,有无数个零点B.当a0时,有4个零点;当a0时,有3个零点,当a=0时,有2个零点C.当a0时,有2个零点;当a0时,有1个零点D.当a0时,有2个零点;当a=0时,有1个零点[答案] A[解析] 取a=1,令x+=-1得x=-,令log2x=-1得,x=.令x+=-得x=-2,令log2x=-得x=2-,令log2x=得x=,令x+=得x=0,由此可排除C、D;令a=0,得f(x)=由log2x=-1得x=,由f(x)=知,对任意x0,有f(x)=,故a=0时,g(x)有无数个零点.11.(文)(2019中原名校第二次联考)函数y=f(x+)为定义在R 上的偶函数,且当x时,f(x)=()x+sinx,则下列选项正确的是()A.f(3)f(f(3),f(2)f(3),故选A.(理)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.x0R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-,x0)单调递减D.若x0是f(x)的极值点,则f (x0)=0[答案] C[解析] 由题意得,f(x)=3x2+2ax+b,该函数图象开口向上,若x0为极小值点,如图,f(x)的图象应为:故f(x)在区间(-,x0)不单调递减,C错,故选C.12.如图,过原点O的直线与函数y=3x的图象交于A,B两点,过B作y轴的垂线交函数y=9x的图象于点C,若AC恰好平行于y轴,则点A的坐标为()A.(log94,4)B.(log92,2)C.(log34,4)D.(log32,2)[答案] D[解析] 本题考查指数函数的图象与性质,难度中等.设A(x1,3x1),B(x2,3x2),则C(x1,3x2)在函数y=9x的图象上,所以3x2=9x1,所以x2=2x1 .又O,A,B共线,所以= ,联立解得x1=log32,故点A的坐标为(log32,2),故选D.[易错分析] 本题易犯两个错误:一是不能将直线与指数函数图象相交于A,B两点转化为OA,OB的斜率相等;二是不能应用指数的运算法则求解.一般地,解指数方程时,将方程两边化为同底,或者利用指数式化为对数式的方法求解.二、填空题13.(文)已知函数f(x)=在区间[-1,m]上的最大值是1,则m 的取值范围是________.[答案] (-1,1][解析] f(x)=2-x-1=()x-1在[-1,0]上为减函数,在[-1,0]上f(x)的最大值为f(-1)=1,又f(x)=x在[0,m]上为增函数,在[0,m]上f(x)的最大值为,f(x)在区间[-1,m]上的最大值为1,或-11,则m的取值范围是________.[答案] (-,0)(2,+)[解析] 当m0时,由f(m)1得,log3(m+1)1,m+13,m当m0时,由f(m)1得,3-m1.-m0,m0.综上知m0或m2.16.(文)已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.[答案] (0,1)[解析] 函数f(x)的图象如图所示:当0a-7对一切正整数n都成立,则正整数a的最大值为________.[分析] 要求正整数a的最大值,应先求a的取值范围,关键是求出代数式+++的最小值,可将其视为关于n的函数,通过单调性求解.[解析] 令f(n)=+++(nN*),对任意的nN*,f(n+1)-f(n)=++-=0,所以f(n)在N*上是增函数.又f(1)=,对一切正整数n,f(n)a-7都成立的充要条件是a-7,所以a,故所求正整数a的最大值是8.[点拨] 本题是构造函数法解题的很好的例证.如果对数列求和,那就会误入歧途.本题构造函数f(n),通过单调性求其最小值解决了不等式恒成立的问题.利用函数思想解题必须从不等式或等式中构造出函数关系并研究其性质,才能使解题思路灵活变通.基本初等函数专题强化练习及答案的全部内容就是这些,更多精彩内容请考生关注查字典数学网。

(通用版)2019版高考数学二轮复习课件+训练:第一部分专题二基本初等函数、函数与方程讲义理(重点生,含解析)

(通用版)2019版高考数学二轮复习课件+训练:第一部分专题二基本初等函数、函数与方程讲义理(重点生,含解析)

yxz D. < <
325
1
[解析] (1)∵a=2 017 2018 >2 0170=1,
0<b=log2 017 2 018<log2 0172 017=1, 1
c=log2 0182 017<log2 0181=0,∴a>b>c.故选 D. (2)∵f (x)=ax-2>0 恒成立,又 f (4)·g(-4)<0,∴g(-4)=loga|-4|=loga4<0= loga1,∴0<a<1.故函数 y=f (x)在 R 上单调递减,且过点(2,1),函数 y=g(x)在(0,+ ∞)上单调递减,在(-∞,0)上单调递增,故 B 正确.
在同一坐标系内的试卷 下载可打印
xy z (3)(2018·信阳二模)设 x,y,z 为正实数,且 log2x=log3y=log5z>0,则2,3,5的大
小关系不可能是( )
xyz A. < <
235
xyz B. = =
235
zyx C. < <
532
利用指数函数与幂函数的 单调性比较大小·T6
纵向把握趋势
卷Ⅰ3 年 3 考,涉及幂函数、 卷Ⅱ3 年 0 考,预
指数函数、对数函数的单调 计 2019 年会以选
性以及分段函数的零点问 择题的形式考查
题,题型为选择题,难度适 幂函数、指数函
中,预计 2019 年会以对数的 数、对数函数的
运算、对数函数的图象与性 有关性质或大小
质为考查重点
比较问题
卷Ⅲ3 年 3 考,涉及由函 数零点个数确定参数问题 以及指数、对数、幂函数 的性质、比较大小问 题.题型为选择题,难度 偏大,预计 2019 年仍会考 查指数函数、对数函数、 幂函数性质的应用

2019版高考数学复习第一部分专题二基本初等函数、函数与方程课件理(重点生)

2019版高考数学复习第一部分专题二基本初等函数、函数与方程课件理(重点生)

90%,即 t=5 时,P=0.9P0,代入,得(e-k)5=0.9,
1
∴e-k=0.9
5
,∴P=P0e-kt=P00.9
1 5
t.当污染物减少
19%
时,污染物剩下
81%,此时
P=0.81P0,代入得
0.81=0.9
1 5
t,
解得 t=10,即需要花费 10 小时. [答案] 10
[类题通法] 1.解决函数实际应用题的 2 个关键点 (1)认真读题,缜密审题,准确理解题意,明确问题的实 际背景,然后进行科学地抽象概括,将实际问题归纳为相应 的数学问题. (2)要合理选取参变量,设定变量之后,就要寻找它们之 间的内在联系,选用恰当的代数式表示问题中的关系,建立 相应的函数模型,最终求解数学模型使实际问题获解.
解析:∵每件产品的售价为 0.05 万元,∴x 千件产品的销售 额为 0.05×1 000x=50x 万元. ①当 0<x<80 时,年利润 L(x)=50x-13x2-10x-250=-13x2 +40x-250=-13(x-60)2+950,∴当 x=60 时,L(x)取得最 大值,且最大值为 L(60)=950 万元;
故选 D.
[答案] D
[类题通法] 1.幂、指数、对数式比较大小的方法 (1)利用幂、指数、对数函数的单调性,这就需要观察要 比较大小的数和式的结构特征,寻找共同点(如指数相同,底 数相同等),构造相应函数; (2)媒介法,即利用中间值(特别是 0 和 1)作媒介传递,达 到比较其大小的目的.
2.基本初等函数的图象与性质的应用技巧 (1)对数函数与指数函数的单调性都取决于其底数的取 值,当底数 a 的值不确定时,要注意分 a>1 和 0<a<1 两种情 况讨论:当 a>1 时,两函数在定义域内都为增函数;当 0<a<1 时,两函数在定义域内都为减函数. (2)由指数函数、对数函数与其他函数复合而成的函数, 其性质的研究往往通过换元法转化为两个基本初等函数的有 关性质,然后根据复合函数的性质与相关函数的性质之间的 关系进行判断. (3)对于幂函数 y=xα 的性质要注意 α>0 和 α<0 两种情况 的不同.

高考专题03 函数的概念与基本初等函数I-2019年高考数学(理)考试大纲解读 Word版含解析

高考专题03 函数的概念与基本初等函数I-2019年高考数学(理)考试大纲解读 Word版含解析

2 3 2019年考试大纲解读
03 函数的概念与基本初等函数I
(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
1.函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用.
【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.。

2019新题分类汇编:函数与导数(高考真题+模拟新题)-45页精选文档

2019新题分类汇编:函数与导数(高考真题+模拟新题)-45页精选文档

二、函数与导数(高考真题+模拟新题)课标文数13.B1[2019·安徽卷] 函数y =16-x -x 2的定义域是________.课标文数13.B1[2019·安徽卷] 【答案】 (-3,2)【解析】 由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 课标理数15.B1,M1[2019·福建卷] 设V 是全体平面向量构成的集合,若映射f :V →R 满足:对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ). 则称映射f 具有性质P . 现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ; ②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号) 课标理数15.B1,M1[2019·福建卷] 【答案】 ①③ 【解析】 设a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,则λa +(1-λ)b =λ(x 1,y 1)+(1-λ)(x 2,y 2)=(λx 1+(1-λ)x 2,λy 1+(1-λ)y 2), ①f 1(λa +(1-λ)b )=λx 1+(1-λ)x 2-[λy 1+(1-λ)y 2] =λ(x 1-y 1)+(1-λ)(x 2-y 2)=λf 1(a )+(1-λ)f 1(b ), ∴映射f 1具有性质P ;②f 2(λa +(1-λ)b )=[λx 1+(1-λ)x 2]2+[λy 1+(1-λ)y 2],λf 2(a )+(1-λ)f 2(b )=λ(x 21 +y 1 ) + (1-λ)(x 22 + y 2 ), ∴f 2(λa +(1-λ)b )≠λf 2(a )+(1-λ)f 2(b ), ∴ 映射f 2不具有性质P ;③f 3(λa +(1-λ)b )=λx 1+(1-λ)x 2+(λy 1+(1-λ)y 2)+1=λ(x 1+y 1+1)+(1-λ)(x 2+y 2+1)=λf 3(a )+(1-λ)f 3(b ), ∴ 映射f 3具有性质P .故具有性质P 的映射的序号为①③.课标文数8.B1[2019·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3 课标文数8.B1[2019·福建卷] A 【解析】 由已知,得f (1)=2; 又当x >0时,f (x )=2x >1,而f (a )+f (1)=0, ∴f (a )=-2,且a <0,∴a +1=-2,解得a =-3,故选A.课标文数4.B1[2019·广东卷] 函数f (x )=11-x+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)课标文数4.B1[2019·广东卷] C 【解析】 要使函数有意义,必须满足⎩⎪⎨⎪⎧1-x ≠0,1+x >0,所以所求定义域为{x |x >-1且x ≠1},故选C.课标文数16.B1[2019·湖南卷] 给定k ∈N *,设函数f :N *→N *满足:对于任意大于k 的正整数n ,f (n )=n -k .(1)设k =1,则其中一个函数f 在n =1处的函数值为________________; (2)设k =4,且当n ≤4时,2≤f (n )≤3,则不同的函数f 的个数为________. 课标文数16.B1[2019·湖南卷] (1)a (a 为正整数) (2)16 【解析】 (1)由法则f 是正整数到正整数的映射,因为k =1,所以从2开始都是一一对应的,而1可以和任何一个正整数对应,故f 在n =1处的函数值为任意的a (a 为正整数);(2)因为2≤f (n )≤3,所以根据映射的概念可得到:1,2,3,4只能是和2或者3对应,1可以和2对应,也可以和3对应,有2种对应方法,同理,2,3,4都有两种对应方法,由乘法原理,得不同函数f 的个数等于16.课标文数11.B1[2019·陕西卷] 设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.课标文数11.B1[2019·陕西卷] -2 【解析】 因为f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,-2<0,f (-2)=10-2,10-2>0,f (10-2)=lg10-2=-2.大纲文数16.B1[2019·四川卷] 函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②指数函数f (x )=2x (x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(写出所有真命题的编号)[来源:Z §xx §k] 大纲文数16.B1[2019·四川卷] ②③④ 【解析】 本题主要考查对函数概念以及新定义概念的理解.对于①,如-2,2∈A ,f (-2)=f (2),则①错误;对于②,当2x 1=2x 2时,总有x 1=x 2,故为单函数;对于③根据单函数的定义,函数即为一一映射确定的函数关系,所以当函数自变量不相等时,则函数值不相等,即③正确;对于④,函数f (x )在定义域上具有单调性,则函数为一一映射确定的函数关系,所以④正确.课标理数1.B1[2019·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α=( )A .-4或-2B .-4或2C .-2或4D .-2或2 课标理数1.B1[2019·浙江卷] B 【解析】 当α≤0时,f (α)=-α=4,α=-4;当α>0,f (α)=α2=4,α=2.课标文数11.B1[2019·浙江卷] 设函数f (x )=41-x,若f (α)=2,则实数α=________.课标文数11.B1[2019·浙江卷] -1 【解析】 ∵f (α)=41-α=2,∴α=-1.大纲理数2.B2[2019·全国卷] 函数y =2x (x ≥0)的反函数为( )A .y =x 24(x ∈R )B .y =x 24(x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)大纲理数2.B2[2019·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y =x 24(x ≥0).故选B.大纲文数2.B2[2019·全国卷] 函数y =2x (x ≥0)的反函数为( )A .y =x 24(x ∈R )B .y =x 24(x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)大纲文数2.B2[2019·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y=x 24(x ≥0).故选B. 大纲理数7.B2[2019·四川卷] 已知f (x )是R 上的奇函数,且当x >0时,f (x )=⎝⎛⎭⎫12x+1,则f (x )的反函数的图象大致是( )图1-2大纲理数7.B2[2019·四川卷] A 【解析】 当x >0时,由y =⎝⎛⎭⎫12x +1可得其反函数为y =log 12(x -1)(1<x <2),根据图象可判断选择答案A ,另外对于本题可采用特殊点排除法.课标理数8.B3[2019·北京卷] 设A (0,0),B (4,0),C (t +4,4),D (t,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}课标理数2.B3,B4[2019·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标理数2.B3,B4[2019·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数3.B3,B4[2019·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标文数3.B3,B4[2019·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标数学2.B3[2019·江苏卷] 函数f (x )=log 5(2x +1)的单调增区间是________.课标数学2.B3[2019·江苏卷] ⎝⎛⎭⎫-12,+∞ 【解析】 因为y =log 5x 为增函数,故结合原函数的定义域可知原函数的单调增区间为⎝⎛⎭⎫-12,+∞. 课标文数12.B3,B7[2019·天津卷] 已知log 2a +log 2b ≥1,则3a +9b 的最小值为________. 课标文数12.B3,B7[2019·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2, ∴3a +9b =3a +32b ≥23a ·32b =23a +2b ≥2322ab =18. 大纲理数5.B3[2019·重庆卷] 下列区间中,函数f (x )=||ln (2-x )在其上为增函数的是( )A .(-∞,1] B.⎣⎡⎦⎤-1,43 C.⎣⎡⎭⎫0,32 D .[1,2) 课标文数11.B4,B5[2019·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2019·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x , ∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3. 课标理数3.B4,B5[2019·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3 课标理数3.B4,B5[2019·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.大纲理数9.B4[2019·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14 C.14 D.12大纲理数9.B4[2019·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫2+12=f ⎝⎛⎭⎫12=12,又函数是奇函数,∴f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-12,故选A.大纲文数10.B4[2019·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14C.14 D.12大纲文数10.B4[2019·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫2+12=f ⎝⎛⎭⎫12=12,又函数是奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-12,故选A. 课标理数9.B4[2019·福建卷] 对于函数f (x )=a sin x +bx +c (其中,a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是......( ) A .4和6 B .3和1C .2和4D .1和2 课标理数9.B4[2019·福建卷] D 【解析】 由已知,有f (1)=a sin1+b +c ,f (-1)=-a sin1-b +c , ∴ f (1)+f (-1)=2c ,∵ c ∈Z ,∴ f (1)+f (-1)为偶数,而D 选项给出的两个数,一个是奇数,一个是偶数,两个数的和为奇数,故选D. 课标理数4.B4[2019·广东卷] 设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数 课标理数4.B4[2019·广东卷] A 【解析】 因为g (x )在R 上为奇函数,所以|g (x )|为偶函数,则f (x )+|g (x )|一定为偶函数.课标文数12.B4[2019·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 课标文数12.B4[2019·广东卷] -9 【解析】 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.课标理数6.B4[2019·湖北卷] 已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)=( )A .2 B.154 C.174D .a 2课标理数6.B4[2019·湖北卷] B 【解析】 因为函数f (x )是奇函数,g (x )是偶函数,所以由f (x )+g (x )=a x -a -x +2①,得-f (x )+g (x )=a -x -a x +2②, ①+②,得g (x )=2,①-②,得f (x )=a x -a -x .又g (2)=a ,所以a =2,所以f (x )=2x -2-x ,所以f (2)=154.课标文数3.B4[2019·湖北卷] 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )课标文数3.B4[2019·湖北卷] D 【解析】 因为函数f (x )是偶函数,g (x )是奇函数,所以f ()-x +g ()-x =f (x )-g ()x =e -x .又因为f (x )+g ()x =e x,所以g ()x =e x -e -x 2.课标文数12.B4[2019·湖南卷] 已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________. 课标文数12.B4[2019·湖南卷] 6 【解析】 由g (x )=f (x )+9,得当x =-2时,有g (-2)=f (-2)+9⇒f (-2)=-6.因为f (x )为奇函数,所以有f (2)=f (-2)=6. 课标理数2.B3,B4[2019·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标理数2.B3,B4[2019·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数6.B4[2019·辽宁卷] 若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1课标文数6.B4[2019·辽宁卷] A 【解析】 法一:由已知得f (x )=x(2x +1)(x -a )定义域关于原点对称,由于该函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-12且x ≠a ,知a =12,故选A. 法二:∵f (x )是奇函数,∴f (-x )=-f (x ),又f (x )=x2x 2+(1-2a )x -a ,则-x 2x 2-(1-2a )x -a =-x 2x 2+(1-2a )x -a在函数的定义域内恒成立,可得a =12.课标文数3.B3,B4[2019·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标文数3.B3,B4[2019·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数12.B4,B7,B8[2019·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2019·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数10.B4[2019·山东卷] 已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 课标理数10.B4[2019·山东卷] B 【解析】 当0≤x <2时,f (x )=x 3-x =x (x 2-1)=0,所以当0≤x <2时,f (x )与x 轴交点的横坐标为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,则f (x -2)=(x -2)3-(x -2),又周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,f (x )与x 轴交点的横坐标为x 3=2,x 4=3;同理当4≤x ≤6时,f (x )与x 轴交点的横坐标分别为x 5=4,x 6=5,x 7=6,所以共有7个交点.课标理数3.B4[2019·陕西卷] 设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )图1-1课标理数3.B4[2019·陕西卷] B 【解析】 由f (-x )=f (x )可知函数为偶函数,其图像关于y 轴对称,可以结合选项排除A 、C ,再利用f (x +2)=f (x ),可知函数为周期函数,且T =2,必满足f (4)=f (2),排除D ,故只能选B.课标理数11.B4[2019·浙江卷] 若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 课标理数11.B4[2019·浙江卷] 0 【解析】 ∵f (x )为偶函数,∴f (-x )=f (x ), 即x 2-|x +a |=(-x )2-|-x +a |⇒||x +a =||x -a ,∴a =0. 课标文数11.B4,B5[2019·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2019·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x , ∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3. 课标理数3.B4,B5[2019·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3 课标理数3.B4,B5[2019·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A. 课标文数8.B5,H2[2019·北京卷] 已知点A (0,2),B (2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1 课标文数8.B5,H2[2019·北京卷] A 【解析】 由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB :x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点;[来源:Zxxk] 当x 2+x -2=-2时,亦有两个不同的C 点. 因此满足条件的C 点有4个,故应选A. 课标理数12.B5[2019·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标理数12.B5[2019·陕西卷] 3或4 【解析】 由x 2-4x +n 得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,故当n =3,4时方程有整数根.课标文数14.B5[2019·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标文数14.B5[2019·陕西卷] 3或4 【解析】 由x 2-4x +n =0得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,当n =3,4时方程有整数根.课标理数8.B5[2019·天津卷] 对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34 C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 课标理数8.B5[2019·天津卷] B 【解析】 f (x )=⎩⎨⎧x 2-2,x 2-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1=⎩⎨⎧x 2-2,-1≤x ≤32,x -x 2,x <-1,或x >32,则f ()x 的图象如图1-4.图1-4∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴y =f (x )与y =c 的图象恰有两个公共点,由图象知c ≤-2,或-1<c <-34.课标文数8.B5[2019·天津卷] 对实数a 和b ,定义运算“⊗”;a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]课标文数8.B5[2019·天津卷] B 【解析】 f (x )=⎩⎪⎨⎪⎧ x 2-2,x 2-2-(x -1)≤1x -1,x 2-2-(x -1)>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2x -1,x <-1,或x >2 则f (x )的图象如图,∵函数y =f (x )-c 的图象与x 轴恰有两个公共点,∴函数y =f (x )与y =c 的图象有两个交点,由图象可得-2<c ≤-1,或1<c ≤2.图1-3课标理数3.B6[2019·山东卷] 若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3课标理数3.B6[2019·山东卷] D 【解析】 因为点(a,9)在函数y =3x 的图象上,所以9=3a ,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标文数3.B6[2019·山东卷] 若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3课标文数3.B6[2019·山东卷] D 【解析】 因为点(a,9)在函数y =3x 的图象上,所以9=3a ,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标数学12.B6[2019·江苏卷] 在平面直角坐标系xOy 中,已知P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是________.课标数学12.B6[2019·江苏卷] 12⎝⎛⎭⎫e +1e 【解析】 设P (x 0,y 0),则直线l :y -e x 0=e x 0(x -x 0).令x =0,则y =-x 0e x 0+e x 0,与l 垂直的直线l ′的方程为y -e x 0=-1e x 0(x -x 0),令x =0得,y =x 0e x 0+e x 0,所以t =-x 0e x 0+2e x 0+x 0e x 02.令y =-x e x +2e x +xe x 2,则y ′=-e x (x -1)+(x -1)ex2,令y ′=0得x =1,当x ∈(0,1)时,y ′>0,当x ∈(1,+∞)时,y ′<0,故当x =1时该函数的最大值为12⎝⎛⎭⎫e +1e . 课标理数7.B6,B7[2019·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b课标理数7.B6,B7[2019·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3又∵y =5x 为单调递增函数, ∴a >c >b .课标文数5.B7[2019·安徽卷] 若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( ) A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 课标文数5.B7[2019·安徽卷] D 【解析】 由点(a ,b )在y =lg x 图像上,得b =lg a .当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图像上.课标文数3.B7[2019·北京卷] 如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x课标文数3.B7[2019·北京卷] D 【解析】 因为log 12x <log 12y <0=log 121,所以x >y >1,故选D.课标文数15.B7[2019·湖北卷] 里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.课标文数15.B7[2019·湖北卷] 6 10000 【解析】 由M =lg A -lg A 0知,M =lg1000-lg0.001=6,所以此次地震的级数为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=()lg A 1-lg A 0-()lg A 2-lg A 0=9-5=4.所以A1A 2=104=10000.所以9级地震的最大振幅是5级地震的最大振幅的10000倍.课标理数3.B7[2019·江西卷] 若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 课标理数3.B7[2019·江西卷] A 【解析】 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得x ∈⎝⎛⎭⎫-12,0.故选A.课标文数3.B7[2019·江西卷] 若f ()x =1log 12()2x +1,则f ()x 的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞C.⎝⎛⎭⎫-12,0∪()0,+∞D.⎝⎛⎭⎫-12,2 课标文数3.B7[2019·江西卷] C 【解析】 方法一:根据题意得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x ∈⎝⎛⎭⎫-12,0∪(0,+∞).故选C. 方法二:取特值法,取x =0,则可排除B 、D ;取x =1,则排除A.故选C. 课标文数12.B4,B7,B8[2019·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2019·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数7.B6,B7[2019·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b课标理数7.B6,B7[2019·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3又∵y =5x为单调递增函数,∴a >c >b . 课标文数5.B7[2019·天津卷] 已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b 课标文数5.B7[2019·天津卷] B 【解析】 ∵a =log 23.6>log 22=1.又∵y =log 4x ,x ∈(0,+∞)为单调递增函数,∴log 43.2<log 43.6<log 44=1,∴b <c <a . 课标文数12.B3,B7[2019·天津卷] 已知log 2a +log 2b ≥1,则3a +9b 的最小值为________. 课标文数12.B3,B7[2019·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2,∴3a +9b =3a +32b ≥23a ·32b =23a+2b≥2322ab =18.大纲文数6.B7[2019·重庆卷] 设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a大纲文数6.B7[2019·重庆卷] B 【解析】 a =log 1312=log 32,b =log 1323=log 332,则由log 343<log 332<log 32,得c <b <a .故选B.课标文数10.B8[2019·安徽卷] 函数f (x )=ax n (1-x )2在区间[0,1]上的图像如图1-2所示,则n 可能是( )图1-2A .1B .2C .3D .4 课标文数10.B8[2019·安徽卷] A 【解析】 由函数图像可知a >0.当n =1时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x -1)(x -1),所以函数的极大值点为x =13<0.5,故A 可能;当n =2时,函数f (x )=ax 2(1-x )2=a (x 2-2x 3+x 4),f ′(x )=a (2x -6x 2+4x 3)= 2ax (2x -1)(x -1),函数的极大值点为x =12,故B 错误;当n =3时,f (x )=ax 3(1-x )2=a (x 5-2x 4+x 3),f ′(x )=ax 2(5x 2-8x +3)=ax 2(5x -3)(x -1),函数的极大值点为x =35>0.5,故C 错误;当n =4时,f (x )=ax 4(1-x )2=a (x 6-2x 5+x 4),f ′(x )=a (6x 5-10x 4+4x 3)=2ax 3(3x -2)(x -1),函数的极大值点为x =23>0.5,故D 错误.课标理数10.B8[2019·安徽卷] 函数f (x )=ax m (1-x )n 在区间[0,1]上的图像如图1-2所示,则m ,n 的值可能是( )图1-2A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1 课标理数10.B8[2019·安徽卷] B 【解析】 由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图像关于直线x =12对称,所以A 不可能;当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<0.5,由图可知B 可能.当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3),f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>0.5,所以C 不可能;当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4),f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>0.5,所以D 不可能,故选B.课标理数13.B8[2019·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 课标理数13.B8[2019·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-5所示:图1-5由上图可知0<k <1.课标文数13.B8[2019·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 课标文数13.B8[2019·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-3所示:图1-3由上图可知0<k <1.课标文数12.B4,B7,B8[2019·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2019·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C.课标文数10.B8[2019·山东卷] 函数y =x2-2sin x 的图象大致是( )图1-2课标文数10.B8[2019·山东卷] C 【解析】 由f (-x )=-f (x )知函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在x 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C.课标文数4.B8[2019·陕西卷] 函数y =x 13的图象是( )图1-1课标文数4.B8[2019·陕西卷] B 【解析】 因为y =x 13,由幂函数的性质,过点(0,0),(1,1),则只剩B ,C.因为y =x α中α=13,图象靠近x 轴,故答案为B.课标数学8.B8[2019·江苏卷] 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P 、Q 两点,则线段PQ 长的最小值是________.课标数学8.B8[2019·江苏卷] 4 【解析】 设直线为y =kx (k >0),⎩⎪⎨⎪⎧y =kx ,y =2x ⇒x 2=2k ,y 2=k 2x 2=2k ,所以PQ =2OP =x 2+y 2=22k+2k ≥224=4. 大纲文数4.B8[2019·四川卷] 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )图1-1 大纲文数4.B8[2019·四川卷] A 【解析】 由y =⎝⎛⎭⎫12x +1可得其反函数为y =log 12(x -1)(x >1),根据图象可判断选择答案A.另外对于本题可采用特殊点排除法.课标理数21.B9,H8[2019·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2; (2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝⎛⎭⎫p 1,14p 21,E ′⎝⎛⎭⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y ≤x -1,y ≥14(x +1)2-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2019·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+(p -p 0)22.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02;当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22. 求得l 1,l 2交点M (a ,b )的坐标⎝⎛⎭⎫p 1+p 22,p 1p 24. 由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2. 当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p 2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p=0得p =32,由于h (0)=h (2)=1,h ⎝⎛⎭⎫32=54, ∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q 2≤p +p 2-4⎣⎡⎦⎤14(p +1)2-542=p +4-2p 2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4(p -1)2=p +(p -2)22=p +2-p 2=1,故φmin =1,φmax =54.课标理数21.B9,H8[2019·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2; (2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝⎛⎭⎫p 1,14p 21,E ′⎝⎛⎭⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y ≤x -1,y ≥14(x +1)2-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2019·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+(p -p 0)22.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02;当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22. 求得l 1,l 2交点M (a ,b )的坐标⎝⎛⎭⎫p 1+p 22,p 1p 24. 由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2. 当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p 2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p =0得p =32,由于h (0)=h (2)=1,h ⎝⎛⎭⎫32=54,∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q 2≤p +p 2-4⎣⎡⎦⎤14(p +1)2-542=p +4-2p 2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4(p -1)2=p +(p -2)22=p +2-p2=1,故φmin =1,φmax =54.课标文数21.H10,B9[2019·广东卷]在平面直角坐标系xOy 中,直线l :x =-2交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO =∠AOP .(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知T (1,-1).设H 是E 上动点,求|HO |+|HT |的最小值,并给出此时点H 的坐标;(3)过点T (1,-1)且不平行于y 轴的直线l 1与轨迹E 有且只有两个不同的交点.求直线l 1的斜率k 的取值范围.课标文数21.H10,B9[2019·广东卷] 【解答】 (1)如图1-2(1).设MQ 为线段OP 的垂直平分线,交OP 于点Q .∵∠MPQ =∠AOP ,∴MP ⊥l ,且|MO |=|MP |. 因此,x 2+y 2=|x +2|,即 y 2=4(x +1)(x ≥-1). ①图1-3E 1:y 2=4(x +1)(x ≥-1); E 2:y =0,x <-1.当H ∈E 1时,过T 作垂直于l 的直线,垂足为T ′,交E 1于D ⎝⎛⎭⎫-34,-1.再过H 作垂直于l 的直线,交l 于H ′.因此,|HO |=|HH ′|(抛物线的性质).∴|HO |+|HT |=|HH ′|+|HT |≥|TT ′|=3(该等号仅当H ′与T ′重合(或H 与D 重合)时取得). 当H ∈E 2时,则|HO |+|HT |>|BO |+|BT |=1+5>3.综合可得,|HO |+|HT |的最小值为3,且此时点H 的坐标为⎝⎛⎭⎫-34,-1. (3)由图1-3知,直线l 1的斜率k 不可能为零. 设l 1:y +1=k (x -1)(k ≠0).故x =1k (y +1)+1,代入E 1的方程得:y 2-4k y -⎝⎛⎭⎫4k+8=0. 因判别式Δ=16k2+4⎝⎛⎭⎫4k +8=⎝⎛⎭⎫4k +22+28>0, 所以l 1与E 中的E 1有且仅有两个不同的交点. 又由E 2和l 1的方程可知,若l 1与E 2有交点,则此交点的坐标为⎝⎛⎭⎫k +1k ,0,且k +1k <-1.即当-12<k <0时,l 1与E 2有唯一交点⎝⎛⎭⎫k +1k ,0,从而l 1与E 有三个不同的交点.因此,直线l 1斜率k 的取值范围是⎝⎛⎦⎤-∞,-12∪(0,+∞). 课标理数22.B9,M3[2019·湖南卷] 已知函数f (x )=x 3,g (x )=x +x . (1)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(2)设数列{a n }(n ∈N *)满足a 1=a (a >0),f (a n +1)=g (a n ),证明:存在常数M ,使得对于任意的n ∈N *,都有a n ≤M .课标理数22.B9,M3[2019·湖南卷] 【解答】 (1)由h (x )=x 3-x -x 知,x ∈[0,+∞),而h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此,h (x )至少有两个零点.解法一:h ′(x )=3x 2-1-12x -12,记φ(x )=3x 2-1-12x -12,则φ′(x )=6x +14x -32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ⎝⎛⎭⎫33<0,则φ(x )在⎝⎛⎭⎫33,1内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以,当x ∈(0,x 1)时,h (x )单调递减.而h (0)=0,则h (x )在(0,x 1]内无零点;当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.解法二:由h (x )=x ⎝⎛⎭⎫x 2-1-x -12,记φ(x )=x 2-1-x -12,则φ′(x )=2x +12x -32. 当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点.综上所述,h (x )有且只有两个零点.(2)记h (x )的正零点为x 0,即x 30=x 0+x 0. (i)当a <x 0时,由a 1=a ,即a 1<x 0.而a 32=a 1+a 1<x 0+x 0=x 30,因此a 2<x 0.由此猜测:a n <x 0.下面用数学归纳法证明. ①当n =1时,a 1<x 0显然成立.②假设当n =k (k ≥1)时,a k <x 0成立,则当n =k +1时,由a 3k +1=a k +a k <x 0+x 0=x 30知,a k +1<x 0.因此,当n =k +1时,a k +1<x 0成立.故对任意的n ∈N *,a n <x 0成立.(ii)当a ≥x 0时,由(1)知,h (x )在(x 0,+∞)上单调递增,则h (a )≥h (x 0)=0,即a 3≥a +a .从而a 32=a 1+a 1=a +a ≤a 3,即a 2≤a .由此猜测:a n ≤a .下面用数学归纳法证明. ①当n =1时,a 1≤a 显然成立.②假设当n =k (k ≥1)时,a k ≤a 成立,则当n =k +1时,由a 3k +1=a k +a k ≤a +a ≤a 3知,a k +1≤a . 因此,当n =k +1时,a k +1≤a 成立. 故对任意的n ∈N *,a n ≤a 成立.综上所述,存在常数M =max{x 0,a },使得对于任意的n ∈N *,都有a n ≤M .课标理数12.B 9[2019·课标全国卷] 函数y =11-x的图像与函数y =2sinπx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8课标理数12.B9[2019·课标全国卷] D 【解析】 当x =12时,y =11-12=2;当x =32时,y =11-32=-2.所以函数图象如图所示,所以有8个根,且关于点(1,0)对称,所以所有根的总和为8.图1-5课标文数10.B9[2019·课标全国卷] 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )A.⎝⎛⎭⎫-14,0B.⎝⎛⎭⎫0,14C.⎝⎛⎭⎫14,12D.⎝⎛⎭⎫12,34 课标文数10.B9[2019·课标全国卷] C 【解析】 因为f ⎝⎛⎭⎫14=e 14-2<0,f ⎝⎛⎭⎫12=e 12-1>0, 所以f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, 又因为函数y =e x 是单调增函数,y =4x -3也是单调增函数, 所以函数f (x )=e x +4x -3是单调增函数,所以函数f (x )=e x +4x -3的零点在⎝⎛⎭⎫14,12内. 课标理数16.B9[2019·山东卷] 已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.课标理数16.B9[2019·山东卷] 2 【解析】 本题考查对数函数的单调性与函数零点定理的应用.因为2<a <3,所以log a 2<1=log a a <log a 3,因为3<b <4,所以b -2>1>log a 2,b -3<1<log a 3,所以f (2)·f (3)=(log a 2+2-b )(log a 3+3-b )<0,所以函数的零点在(2,3)上,所以n =2.。

专题02 函数的概念与基本初等函数(原卷版)

专题02 函数的概念与基本初等函数(原卷版)

专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+15.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.508.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x) C.y=ln(1+x)D.y=ln(2+x)10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.109314.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A .[﹣2,2]B .C .D .16.【2018年新课标1文科13】已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a = . 17.【2018年新课标3文科16】已知函数f (x )=ln (x )+1,f (a )=4,则f (﹣a )= .18.【2018年天津文科14】已知a ∈R ,函数f (x ).若对任意x ∈[﹣3,+∞),f (x )≤|x |恒成立,则a 的取值范围是 .19.【2017年新课标2文科14】已知函数f (x )是定义在R 上的奇函数,当x ∈(﹣∞,0)时,f (x )=2x 3+x 2,则f (2)= .20.【2017年新课标3文科16】设函数f (x ),则满足f (x )+f (x )>1的x 的取值范围是 .21.【2017年北京文科11】已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是 .1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .4C .2±D .4±2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln3c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-18.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞-B .()1,0-C .()0,4D .()()0,11,49.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

2019年高考数学基本初等函数、导数及其应用复习指导(最适用、最详细)

2019年高考数学基本初等函数、导数及其应用复习指导(最适用、最详细)

2019年高考数学基本初等函数、导数及其应用复习指导第一节函数及其表示教材细梳理1.函数与映射函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:自变量x的取值范围.(2)值域:函数值的集合{f(x)|x∈A}.[易错易混]函数的定义域必须写成集合或区间的形式,不能直接用不等式表示.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[易错易混]1.分段函数是一个函数,切不可把它看作几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式.2.分段函数是为了研究问题的需要而进行的分类讨论,相当于求“并集”,不可与方程组或不等式组的求“交集”相混淆.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数是建立在其定义域到值域的映射.( )(2)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (6)分段函数是由两个或几个函数组成的.( )(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)√ (4)× (5)× (6)× (7)√ 2.函数定义中的集合B 与函数的值域有什么关系?提示:函数的值域C :{y |y =f (x ),x ∈A }是集合B 的子集.即C ⊆B .四基精演练1.(必修1·1.2例(1)改编)函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C.由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.2.(必修1·习题1.2B 组改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B.选项A ,定义域为{x |-2≤x ≤0},不正确.选项C ,当x 在(-2,2]取值时,y 有两个值和x 对应,不符合函数的概念.选项D ,值域为[0,1],不正确,选项B 正确.3.(必修1·1.2例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.答案:⎝⎛⎭⎫-14,+∞ 5.(实践题)(教材习题改编)一个圆柱形容器的底面半径是Rcm ,高是h cm ,现在以v cm 2/s 的速度向容器内注入某溶液,则容器内溶液的高度x (cm)和注入溶液的时间t (s)的函数解析式为________,其定义域为________.答案:x =v πR 2t ,⎣⎡⎦⎤0,πR 2h v考点一 求函数的定义域[简单型]——提升数学运算能力函数定义域的求解策略1.已知函数解析式:构造使解析式有意义的不等式(组)求解. 2.实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. 3.抽象函数:(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [易错提醒]1.不要对解析式进行化简变形,以免定义域发生变化.2.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.1.(2018·山东临沂模拟)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:选C.由题意知,x 2-x >0,即x <0或x >1.则函数的定义域为(-∞,0)∪(1,+∞),故选C.2.(2017·贵州贵阳监测)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选 D.由函数y =1-x 22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1,故选D.3.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 018]B .[0,1)∪(1,2 018]C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B.令t =x +1,则由已知函数的定义域为[1,2 019],可知1≤t ≤2 019.要使函数f (x +1)有意义,则有1≤x +1≤2 019,解得0≤x ≤2 018,故函数f (x +1)的定义域为[0,2018].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 018,x -1≠0,解得0≤x <1或1<x ≤2 018.故函数g (x )的定义域为[0,1)∪(1,2 018].考点二 求函数的解析式[探究型]——提升数学运算能力[例1] (1)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:法一(换元法): 令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6×t -12+5=t 2-5t +9(t ∈R ), 所以f (x )=x 2-5x +9(x ∈R ). 法二(配凑法):因为f (2x +1)=4x 2-6x +5 =(2x +1)2-10x +4 =(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9. 法三(待定系数法): 因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0), 则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c . 因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9. 答案:x 2-5x +9(2)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:因为2f (x )+f ⎝⎛⎭⎫1x =3x ,① 所以将x 用1x 替换,得2f ⎝⎛⎭⎫1x +f (x )=3x ,② 由①②解得f (x )=2x -1x (x ≠0),即f (x )的解析式是f (x )=2x -1x (x ≠0).答案:2x -1x(x ≠0)(3)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:∵-1≤x ≤0,∴0≤x +1≤1, ∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).答案:-12x (x +1)[母题变式]1.若本例(1)中条件变为f (x +1)=x +2x ,则f (x )=________.解析:设t =x +1,则x =(t -1)2(t ≥1),代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1). 答案:x 2-1(x ≥1)2.若本例(2)中条件变为2f (x )+f (-x )=3x ,则f (x )=________. 解析:因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x , 即f (x )的解析式是f (x )=3x . 答案:3x求函数解析式的常见方法1.待定系数法:若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,由题设条件,列出方程组,解出待定系数即可.2.换元法:已知f (h (x ))=g (x )求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可.3.转化法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足的等量关系间接获得其解析式.4.消去法:已知关于f (x )与f ⎝⎛⎭⎫1x (或f (-x ))的方程式,可根据已知条件再构造出另一个方程式构成方程组求出f (x ).考点三 分段函数[高频型]——提升数学运算、发展逻辑推理[例2] (2018·陕西师大附中模拟)若函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为( )A .-1B .-2C .1D .2解析:依题意,f (3)=f (3-1)-f (3-2)=f (2)-f (1),又2>0,所以f (2)=f (2-1)-f (2-2)=f (1)-f (0),所以f (3)=f (1)-f (0)-f (1)=-f (0),又f (0)=log 2(4-0)=2,所以f (3)=-f (0)=-2. 答案:B[例3] (2016·高考江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:由题意可得f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a , f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110, 则-12+a =110,解得a =35,于是f (5a )=f (3)=f (-1)=-1+35=-25.答案:-251.求分段函数的函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.求某条件下自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量是否满足相应段自变量的取值范围.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D.当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2018·山东烟台二模)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D .32或-34解析:选B.当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.发展数学建模、数学运算(应用型)模型 求解与分段函数有关的不等式分段函数与函数性质,不等式的交汇是高考的热点.求分段函数自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.[例4] (1)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧ f (a )≥0,-f 2(a )≤2,解得f (a )≥-2.由⎩⎪⎨⎪⎧a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2. 答案:(-∞,2](2)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1,+∞)解析:当a =2时,f (2)=4,f (f (2))=f (4)=24, 显然f (f (2))=2f (2),故排除A ,B.当a =23时,f ⎝⎛⎭⎫23=3×23-1=1,f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (1)=21=2.显然f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=2f ⎝⎛⎭⎫23.故排除D.选C.答案:C课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河南濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 2.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2解析:选B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1. 3.(2018·山西太原二模)若函数f (x )满足f (1-ln x )=1x ,则f (2)等于( )A.12 B .e C.1eD .-1解析:选B.法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t,即f (x )=1e 1-x ,故f (2)=e.法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.4.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2解析:选B.根据题意知x >0,所以f ⎝⎛⎭⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 5.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C.显然选项A ,D 满足,对于选项B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ),也满足;对于选项C ,令x =3,则f (2x )=f (6)=7,2f (x )=2f (3)=2(3+1)=8,故函数f (x )=x +1不满足f (2x )=2f (x ).6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34D .12解析:选D.根据分段函数的定义域赋值得到关于b 的方程,求解可得.f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.7.(2018·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3D .-2解析:选C.f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43= f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52. 故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.8.函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为________.解析:因为f (1)=e 1-1=1且f (1)+f (a )=2, 所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1,∵0<a 2<1,∴0<πa 2<π,∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1. 答案:1或-229.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.解析:因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =13的图象与x 轴无交点;当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上,实数a 的取值范围是[0,3). 答案:[0,3)10.函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是______________.解析:由图象知,函数y =f (x )的图象包括两部分,一部分是以点(-3,2)和(0,4)为两个端点的一条曲线段,一部分是以(2,1)为起点,到(3,5)结束的曲线段,故其定义域是[-3,0]∪[2,3],值域为[1,5],只与x 的一个值对应的y 值的取值范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]B 级 能力升级练(20分钟,30分)1.(2018·山东潍坊调研)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D.∵c A=15,故A >4,则有c2=30,解得c =60,A =16,故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧-⎝⎛⎭⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}解析:选B.当0≤x ≤4时,f (x )∈[-8,1];当a ≤x <0时,f (x )∈⎣⎡⎭⎫-⎝⎛⎭⎫12a ,-1, 所以⎣⎡⎭⎫-12a ,-1⊆[-8,1],-8≤-12a <-1. 即-3≤a <0.3.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,(-1≤x <0),-x +1,(0<x ≤1),则f (x )-f (-x )>-1的解集为( )A .(-∞,-1)∪(1,+∞) B.⎣⎡⎭⎫-1,-12∪(0,1] C .(-∞,0)∪(1,+∞) D.⎣⎡⎦⎤-1,-12∪(0,1) 解析:选B.①当-1≤x <0时,0<-x ≤1, 此时f (x )=-x -1,f (-x )=-(-x )+1=x +1, ∴f (x )-f (-x )>-1化为-2x -2>-1, 解得x <-12,则-1≤x <-12.②当0<x ≤1时,-1≤-x <0,此时,f (x )=-x +1,f (-x )=-(-x )-1=x -1, ∴f (x )-f (-x )>-1化为-2x +2>-1, 解得x <32,则0<x ≤1.故所求不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1]. 4.(2018·陕西西安模拟)设函数y =f (x )在R 上有定义,对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2D .- 2解析:选B.由题意,令f (x )=2-x 2=1,得x =±1,因此当x ≤-1或x ≥1时,f M (x )=2-x 2;当-1<x <1时,f M (x )=1,所以f M (0)=1,选B.5.(2018·福州模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.答案:56.(2018·吉林四地联考)设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是________.解析:∵0≤x 0<12,∴f (x 0)=x 0+12∈⎣⎡⎭⎫12,1B ,∴f [f (x 0)]=2(1-f (x 0))=2⎣⎡⎦⎤1-⎝⎛⎭⎫x 0+12 =2⎝⎛⎭⎫12-x 0.∵f [f (x 0)]∈A ,∴0≤2⎝⎛⎭⎫12-x 0<12. ∴14<x 0≤12, 又∵0≤x 0<12,故14<x 0<12.答案:14<x 0<12第二节 函数的单调性与最值教材细梳理1.函数的单调性 (1)单调函数的定义[易错易混] 从单调函数的定义可以看出,函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在其定义域的一个区间上是增函数,而在另一个区间上不是增函数.例如,函数y =x 2,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0]时是减函数.(2)函数单调性的常用结论①若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数; ②若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; ③函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; ④函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同. 2.函数的最值1.下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(3)函数y =|x |是R 上的增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( ) (6)函数y =1-x 21+x 2的最大值为1.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√2.“函数f (x )的单调区间”与“函数f (x )在某区间上单调”的区别是什么?提示:前者是指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集. 3.在最大值、最小值的定义中,条件(2)能否去掉?为什么?提示:不能,因为去掉后不能保证M 是一个函数值,即存在一个x 0∈I ,使M =f (x 0),最大值、最小值必须是函数值中的最大值、最小值.四基精演练1.(必修1·习题1.3A 组改编)一次函数y =kx +b 在R 上是增函数,则k 的范围为( ) A .k >0 B .k ≥0 C .k <0 D .k ≤0答案:A2.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞) 解析:选D.由x 2-2x -8>0可得x >4或x <-2, 所以x ∈(-∞,-2)∪(4,+∞),令u =x 2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增, 所以y =ln(x 2-2x -8)在x ∈(4,+∞)上单调递增.3.(2016·高考北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:选D.选项A 中,y =11-x =1-(x -1)的图象是将y =-1x 的图象向右平移1个单位得到的,故y =11-x 在(-1,1)上为增函数,不符合题意;选项B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C 中,y =ln(x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln(x +1)在(-1,1)上为增函数,不符合题意;选项D 符合题意.4.(必修1·习题1.3探究改编)若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:45.(实践题)(教材例题改编)“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,如果烟花距地面的高度h m 与时间t s 之间的关系式为h (t )=-t 2+4t +7,那么烟花冲出后________s 是它爆裂的最值时刻.答案:2考点一 利用单调性求最值[简单型]——发展数学运算求函数最值的常用方法1.单调性法:先确定函数的单调性,再由单调性求最值;2.图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;3.换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:22.已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 解析:由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.答案:25考点二 确定函数的单调性(区间)[探究型]——直观想象、逻辑推理[例1] (1)函数f (x )=-x 2+2|x |+1的递减区间为________.解析:f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,可知单调递减区间为[-1,0]和[1,+∞).答案:[-1,0]和[1,+∞)(2)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单|调递增. [母题变式]1.将本例(1)中函数变为f (x )=|-x 2+2x +1|,如何求解?解析:作出函数y =|-x 2+2x +1|的图象如图所示.由图象可知,单调递减区间为(-∞,1-2)和(1,1+2).答案:(-∞,1-2)和(1,1+2)2.若本例(2)中函数变为f (x )=axx -1(a ≠0),试判断f (x )在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增. 法二(导数法):f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2, 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.1.判断函数的单调性应先求定义域.2.定义法判断(或证明)函数单调性的一般步骤为:取值—作差—变形—判号—定论,其中变形为关键,而变形的方法有因式分解、配方法等.3.用导数判断函数的单调性简单快捷,应引起足够的重视.4.图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.1.函数f (x )=lg x 2的单调递减区间是________.解析:函数f (x )是定义域为{x |x ≠0}的偶函数,且f (x )=lg x 2=⎩⎪⎨⎪⎧2lg x ,x >0,2lg (-x ),x <0.函数大致图象如图所示,所以函数的单调递减区间是(-∞,0).答案:(-∞,0)2.(2018·湖南长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C.由f (x )>12,得-1<x <1,由f (x )≤12,得x ≤-1或x ≥1.所以f 12(x )=⎩⎪⎨⎪⎧2-x ,x ≥1,12,-1<x <1,2x,x ≤-1,故f 12(x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用[高频型]——发展逻辑推理、提升数学运算[例2] (2018·江西三校联考)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 解析:∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0, ∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 答案:B[例3] (2018·青海西宁高三期末)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3]1.利用函数的单调性比较函数值大小的求解思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用函数的性质转化到同一个单调区间内,只需比较自变量的大小,根据单调性比较函数值大小.2.求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).提醒:应注意g (x ),h (x )应在函数y =f (x )的定义域内. 3.根据函数的单调性求参数的取值范围的常用方法(1)数形结合法:将函数的单调性转化为函数图象的升(降),再转化为其参数满足的不等式(组)进而求解.(2)导数法:将函数的单调性转化为导函数在某单调区间上恒正(负)问题求解.3.已知偶函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选A.因为f (x )为偶函数,且在[0,+∞)上单调递增,f (2x -1)<f ⎝⎛⎭⎫13,故|2x -1|<13,解得13<x <23. 4.(2018·山东日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .( 0,1]解析:选D.由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.故选D.发展数学建模、数学运算(创新型)模型 单调性与抽象函数的创新交汇研究抽象函数的单调性主要利用定义来完成,但变形有一定的技巧性,在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.[例4] 函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.解:(1)证明:设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1. f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1, ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数. (2)∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1), ∵f (x )在R 上为增函数, ∴a 2+a -5<1⇒-3<a <2, 即a ∈(-3,2).课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河北唐山模拟)下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2x B .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x解析:选 D.y =log 2x在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x在(0,1)上是减函数.故选D.2.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0) C .[0,2]D .[2,+∞)解析:选A.由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调递减区间是[1,2].3.(2018·湖南长沙模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.4.函数y =⎝⎛⎭⎫12的值域为( )A .(-∞,1)B .⎝⎛⎭⎫12,1 C.⎣⎡⎭⎫12,1D .⎣⎡⎭⎫12,+∞ 解析:选C.因为x 2≥0,所以x 2+1≥1,即1x 2+1∈(0,1],故y =⎝⎛⎭⎫12∈⎣⎡⎭⎫12,1.5.(2018·山东青岛二模)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7解析:选C.如图所示,在同一直角坐标系中分别作出y =x +2,y =2x ,y =10-x 的图象.根据f (x )的定义知,f (x )=min{2x ,x +2,10-x }(x ≥0)的图象(如图实线部分).∴f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤2,x +2,2<x <4,10-x ,x ≥4.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值f (4)=6.6.(2018·广东深圳质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (2-a 2)<f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C.作出f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象,如图,由f (x )的图象可知f (x )在(-∞,+∞)上是单调增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.7.(2018·曲师附中月考)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c解析:选B.∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .8.(2018·厦门质检)函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴y =⎝⎛⎭⎫13x-log 2(x +2)是区间[-1,1]上的减函数,∴最大值为f (-1)=3.答案:39.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2·f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.设函数f (x )=⎩⎪⎨⎪⎧-x +a ,x <1,2x ,x ≥1的最小值为2,则实数a 的取值范围是________.解析:当x ≥1时,f (x )≥2,当x <1时,f (x )>a -1, 由题意知,a -1≥2,∴a ≥3. 答案:[3,+∞)B 级 能力升级练(25分钟,30分)1.(2018·山师附中质检)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是( )A .(-∞,0]B .⎝⎛⎦⎤-∞,12C .(0,+∞)D .(-∞,0)解析:选A.画出y =|2x -1|图象如图,易知y =|2x -1|的递减区间是(-∞,0],依题意有m ≤0,故选A.2.(2018·株洲二模)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由已知得当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.3.(2018·长春二模)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B.因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f (x (x -8))≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.4.(2018·潍坊二模)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .(-∞,0)C .(0,2)D .(-2,0)解析:选A.作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.故选A.5.(2018·威海模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =e x+x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 解析:因为对任意两个不相等的实数x 1,x 2, 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)恒成立, 所以不等式等价为(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立, 即函数f (x )是定义在R 上的增函数.①函数y =e x +x 在定义域上为增函数,满足条件. ②函数y =x 2在定义域上不单调,不满足条件.③y =3x -sin x ,y ′=3-cos x >0,函数单调递增,满足条件.④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0,当x >0时,函数单调递增,当x <0时,函数单调递减,不满足条件.综上,满足“H 函数”的函数为①③.答案:①③6.已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,(x ≤0)2ax -1,(x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________.解析:根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误; 若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 答案:①③④第三节 函数的奇偶性与周期性教材细梳理1.函数的奇偶性(1)实质是函数在关于原点对称的两个自变量处函数值的关系,具体为:间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.利用这些性质可以简化或判断一些函数图象的画法.(2)掌握常见函数的奇偶性.如一次函数、二次函数、指数函数、对称函数、正弦函数、余弦函数等.[易错易混] f (0)=0既不是f (x )为奇函数的充分条件,也不是必要条件. 2.函数的周期性(1)周期函数:对于定义域中任意的x 和一个非零常数T ,f (x +T )=f (x )恒成立⇔f (x )是以T 为周期的周期函数.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期(若不特别说明,T 一般都是最小正周期).3.函数图象的对称性(1)函数y =f (x )满足f (x )=2b -f (2a -x )⇔y =f (x )的图象关于点(a ,b )成中心对称. (2)函数y =f (x )满足f (x )=f (2a -x )⇔y =f (x )的图象关于直线x =a 成轴对称.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(3)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( ) (4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( ) (5)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (6)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ (6)√2.函数f (x )满足f (a +x )=f (b -x )与函数f (x )满足f (a +x )=f (b +x )(a ≠b )含义相同吗?为什么?提示:f (a +x )=f (b -x )⇔f (a +b -x )=f (x )表明f (x )的图象关于x =a +b 2对称,而f (a +x )=f (b +x )⇔f (a -b +x )=f (x ).表明f (x )具有周期性,它的一个周期为a -b .四基精演练1.(必修1·习题1.3A 组改编)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.解析:如图所示,由f (x )为奇函数知:f (x )>0的x 的取值范围为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)2.(必修1·习题1.3A 组改编)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:依题意,得f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 答案:-123.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:函数的周期是2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2= f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:14.(2017·高考全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D.已知函数f (x )在(-∞,+∞)上为单调递减函数,且为奇函数,则f (-1)=-f (1)=1,所以原不等式可化为f (1)≤f (x -2)≤f (-1),则-1≤x -2≤1,即1≤x ≤3,故选D.5.(实践题)(必修1·习题1.3B 组T 3改编)已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则f (x )在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B.根据题意作出y =f (x )的简图,由图知,选B.考点一 函数的奇偶性及应用[简单型]——发展逻辑推理判断函数奇偶性的方法1.定义法:首先确定函数的定义域,若定义域关于原点对称,则确定f (x )与f (-x )的关系,进而得出函数的奇偶性;否则该函数既不是奇函数也不是偶函数.2.图象法:观察f (x )的图象,若关于原点对称,则f (x )为奇函数,若关于y 轴对称,则f (x )为偶函数.1.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12xD .y =x +e x解析:选D.根据函数奇偶性的定义,易知函数y =1+x 2,y =2x +12x 为偶函数,y =x+1x为奇函数,所以排除选项A ,B ,C.故选D. 2.(2018·河北衡水中学二调)已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .-1 B .1 C .-5D .5解析:选D.设F (x )=f (x )+x ,由已知函数y =f (x )+x 是偶函数,得F (x )=F (-x ),即f (x )+x =f (-x )-x ,∴f (-x )=f (x )+2x ,∴f (-2)=f (2)+2×2=5.3.(2018·山东聊城二模)与函数y =x ⎝⎛⎭⎫12-12x +1的奇偶性相同的函数为( )A .y =lg(x +x 2+1)B .y =lg 1-x1+xC .y =⎩⎪⎨⎪⎧x (1-x ),x >0,-x (1+x ),x <0D .y =cos x解析:选D.设f (x )=x ⎝ ⎛⎭⎪⎫12-12x +1=x 2·2x-12x +1,则f (-x )=-x 2·2-x-12-x +1=-x 2·1-2x1+2x =x 2·2x-12x +1=f (x ),则y =x ⎝ ⎛⎭⎪⎫12-12x +1是偶函数,易知选项A ,B ,C 中的函数都是奇函数,而y =cos x是偶函数,故选D.考点二 函数的周期性及应用[探究型]——发展数学运算[例1] (1)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +4)=f (x ).当x ∈[0,2]时,f (x )=2x -x 2,则f (2 019)=________.解析:因为f(x+4)=f(x),所以周期T=4.又f(1)=1,所以f(2 019)=f(-1+4×505)=f(-1)=-f(1)=-1. 答案:-1(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[母题变式]1.若本例(1)中的条件不变,则f(x)(x∈[2,4])的解析式是________.解析:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2.所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.答案:f(x)=x2-6x+82.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4,∴f(-2 017)=1,f(2 019)=-1,∴f (-2 017)+f (2 019)=0. 答案:01.利用周期f (x +T )=f (x )将不在解析式范围之内的x 通过周期变换转化到解析式范围之内,以方便代入解析式求值.2.判断函数周期性的几个常用结论.(1)f (x +a )=-f (x ),则f (x )为周期函数,周期T =2|a |.(2)f (x +a )=1f (x )(a ≠0),则函数f (x )必为周期函数,2|a |是它的一个周期;(3)f (x +a )=-1f (x ),则函数f (x )必为周期函数,2|a |是它的一个周期.考点三 函数性质的综合应用[高频型]——发展数学运算、逻辑推理[例2] 已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1m,b =(ln m )2,c =ln m ,其中m >e ,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:根据已知条件知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),|a |=ln m >1,b =(ln m )2>|a |,0<c =12ln m <|a |,∴f (c )>f (a )>f (b ).答案:C[例3] (2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0D .2解析:当x >12时,由f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12可得f (x )=f (x +1),所以f (6)=f (1)=-f (-1)= -[(-1)3-1]=2,故选D. 答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学真题分类汇编专题07:基本初等函数(基础题)
一、单选题(共19题;共38分)
1.(2019•天津)已知 a ∈R ,设函数 f(x)={x 2−2ax +2a,x ⩽1,x −alnx,x >1,
若关于 x 的不等式 f(x)⩾0 在 R 上恒成立,则 a 的取值范围为( )
A. [0,1]
B. [0,2]
C. [0,e]
D. [1,e]
2.(2019•卷Ⅱ)若a>b ,则( )
A. ln(a−b)>0
B. 3a <3b
C. a 3−b 3>0
D. │a│>│b│
3.(2019•浙江)设a ,b ∈R , 函数f (x )= {x,x <013x 3−12
(a +1)x 2+ax,x ≥0 ,若函数y=f (x )-ax-b 恰有3个零点,则( )
A. a <-1,b <0
B. a <-1,b>0
C. a >-1,b >0
D. a>-1,b>0
4.(2019•浙江)在同一直角坐标系中,函数y= 1a x ,y=log a (x+ 12 ),(a>0且a≠0)的图像可能是( ) A. B.
C. D.
5.(2019•天津)已知函数 f(x)={2√x,0≤x ≤11x ,x >1 若关于 x 的方程 f(x)=−14x +a(a ∈R) 恰有两个互异的实数解,则
的取值范围为( ) A. [54,9
4] B. (54,94] C. (54,94]∪{1} D. [54,94]∪{1}
6.(2019•全国Ⅲ)函数 f(x)=2sin x −sin 2x 在[0,2π]的零点个数为( )
A. 2
B. 3
C. 4
D. 5
7.(2019•全国Ⅲ)函数 y =2x 3
2x +2−x ,在[-6,6]的图像大致为( )
A. B.
C. D.
8.(2019•卷Ⅱ)设f(x)为奇函数,且当x≥0时,f(x)= e x-1,则当x<0时,f(x)=()
A. e−x-1
B. e−x+1
C. - e−x-1
D. - e−x+1
9.(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是()
A. y=x12
B. y=2-x
C. y=log1
2x D. y=1
x
10.(2019•卷Ⅰ)己知a=log20.2,b= 20.2,c= 0.20.3,则()
A. a<b<c
B. a<c<b
C. c<a<b
D. b<c<a
11.(2019•卷Ⅰ)关于函数f(x)=sin|x|+|sinx|有下述四个结论:
①f(x)是偶函数②f(x)在区间(π
2
,π)单调递增
③f(x)在[-π,π]有4个零点④f(x)的最大值为2
其中所有正确结论的编号是()
A. ①②④
B. ②④
C. ①④
D. ①③
12.(2019•卷Ⅰ)函数f(x)= sinx+x
cosx+x2
在[- π,π]。

的图像大致为()
A. B.
C. D.
13.(2019•卷Ⅱ)设函数 f(x) 的定义域为R , 满足 f (x +1)=2f (x ) ,且当 x ∈(0,1] 时, f (x )=x (x −1) .若对任意 x ∈(−∞,m] ,都有 f(x)≥−89 ,则m 的取值范围是( )
A. (−∞,94]
B. (−∞,73]
C. (−∞,52]
D. (−∞,83] 14.(2018•天津)已知 a =log 2e , b =ln2 , c =log 121
3 ,则a , b , c 的大小关系为( )
A. a >b >c
B. b >a >c
C. c >b >a
D. c >a >b
15.(2019•天津)已知 a =log 52 , b =log 0.50.2 , c =0.50.2 ,则 a,b,c 的大小关系为( )
A. a <c <b
B. a <b <c
C. b <c <a
D. c <a <b
16.(2019•天津)已知 a =log 27,b =log 38,c =0.30.2 ,则 a,b,c 的大小关系为( )
A. c <b <a
B. a <b <c
C. b <c <a
D. c <a <b 17.(2019•全国Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )
A. f (log 3 14 )> f ( 2−32 )> f ( 2−23 )
B. f (log 3 14 )> f ( 2−23 )> f ( 2−32 )
C. f ( 2−32 )> f ( 2−23 )> f (log 3 14 )
D. f ( 2−23 )> f ( 2−3
2 )> f (log
3 1
4 ) 18.(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足m 1-m 2= 52lg E
1E 2 ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )
A. 1010.1
B. 10.1
C. lg10.1
D. 10-10.1
19.(2019•卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,位于地月连线的延长线上.设地球质量为M 1 , 月球质量为M 2 , 地月距离为R , L 2 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:
M 1(R+r)2+M 2r 2=(R +r)M 1R 3 .设 α=r R ,由于 α 的值很小,因此在近似计算中 3α3+3α4+α5
(1+α)2≈3α3 ,则r 的近
似值为( )
A. √M 2
M 1R B. √M 22M 1R C. √3M 2M 13R D. √M
23M 13R 二、填空题(共6题;共8分)
20.(2019•浙江)已知a ∈R , 函数f (x )=ax 3-x ,若存在t ∈R , 使得|f(t+2)-f (t )|≤ 2
3 ,则实数a 的最大值是________
21.(2019•江苏)设 f(x),g(x) 是定义在R 上的两个周期函数, f(x) 的周期为4, g(x) 的周期为2,
且 f(x) 是奇函数.当 x ∈(0,2] 时, f(x)=√1−(x −1)2 , g(x)={k(x +2),0<x ≤1−12,1<x ≤2
,其中k >0.若在区间(0,9]上,关于x 的方程 f(x)=g(x) 有8个不同的实数根,则k 的取值范围是________. 22.(2019•江苏)函数 y =√7+6x −x 2 的定义域是________.
23.(2019•卷Ⅱ)已知 f(x) 是奇函数,且当 x <0 时, f(x)=−e ax .若 f(ln2)=8 ,则 a = ________. 24.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒。

为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元。

每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________。

25.(2019•北京)设函数f (x )=e x +ae -x (a 为常数)。

若f (x )为奇函数,则a=________:若f (x )是R 上的增函数,则a 的取值范围是________.
答案解析部分
一、单选题
1.【答案】C
2.【答案】C
3.【答案】C
4.【答案】D
5.【答案】D
6.【答案】B
7.【答案】B
8.【答案】D
9.【答案】A
10.【答案】B
11.【答案】C
12.【答案】D
13.【答案】B
14.【答案】D
15.【答案】A
16.【答案】A
17.【答案】C
18.【答案】A
19.【答案】D
二、填空题
20.【答案】4
3
21.【答案】[1
3,√2 4
)
22.【答案】[−1,7]
23.【答案】–3
24.【答案】130
;15
25.【答案】-1
;a≤0。

相关文档
最新文档