岩土类材料弹塑性力学模型及本构方程
3-3 岩石力学与工程 岩石本构关系与强度理论 矿大岩石力学

所以
k1
2 k2
2 1
k1
k1 k1 k2
化简上式可得广义开尔文体本构方程:
k2 1 k2 k1 k1
图3-4 牛顿流体力学模型及其动态
2013-7-22
17
3.本构方程
d 或 dt
1
将(5-13)式积分,得:
t C
式中:C——积分常数,当时,C=0,则:
t
1
4.牛顿体的性质 (1)从上式可以看出,当t=0时,ε=0。当应力为 0 时,完成其相应的应变需要时间 t1 ,说明应变与时 间有关,牛顿体无瞬时变形。
2013-7-22
12
3.4.3 基本元件
一、弹性元件(虎克体H) 1.定义 如果材料在载荷作用下,其变形性质完全符合虎克 定律,即是一种理想的弹性体,则称此种材料为虎 克体,用符号H代表。 2.力学模型
图3-2 虎克体力学模型及其动态
2013-7-22
13
3.本构方程
K
4.虎克体的性能 (1)具有瞬时弹性变形性质,无论载荷大小,只要 不为零,就有相应的应变,当为零时,也为零,说 明虎克体没有弹性后效,即与时间无关; (2)应变恒定时,应力也保持恒定不变,应力不会 因时间增长而减小,故无应力松弛性质; (3)应力保持恒定时,应变也保持不变,即无蠕变 性质。
6.弹性后效:是加载或卸载时,弹性应变滞后 于应力的现象。 7.粘性流动:即蠕变一段时间后卸载,部分应 变永久不恢复的现象。
2013-7-22
弹塑性本构模型理论课件

。
材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模
3第二章岩石力学弹塑性分析

f f ( ij ) ( ) 0
(2) 随动强化模型: 随动强化模型是指屈服面的大小和形状不变, 它只是产生移动. 后继屈服面的一般方程为
p f f ( ij ij ) 0
α是材料参数,
(3) 混合强化模型: 其强化规律介于等向强化模型和随动强化模型 之间, 即既有扩大又有移动,后继屈服条件可写为
2 本构关系的复杂性: 在弹性阶段,弹性本构关系只用一组物理方程就可以描述,但在 塑性阶段,塑性本构关系通常要包含四组方程: (1) 屈服条件(初始屈服条件): 是用来判断是否从弹性状态到塑性 状态的条件或准则. 对于单向应力状态, 要判断它是否屈服, 只需判 断它的正应力是否达到屈服应力, 而对于复杂应力状态, 相应的应力 张量由六个应力分量决定,必须依据一定的准则判断, 这个准则就叫 做屈服条件或屈服准则. (2) 加(卸)载条件: 材料进入塑性状态以后继续塑性变形的过程, 叫做加载过程; 反之,推回到弹性状态的过程, 叫做卸载过程. 这两个 过程的本构关系是不一样的, 所以要进行判断. 判断加载的条件叫做 加载条件;判断卸载的条件叫做卸载条件; (3) 强化条件(后继屈服条件): 判断再次屈服的准则.材料屈服以后, 如果卸载后再加载,使其再次进入塑性状态, 这时候的屈服条件一般 不同与初始屈服条件, 称为强化条件(后继屈服条件).所以有些书把 (1)与(3)统称为屈服条件, 但分别称为初始屈服条件和后继屈服条件:
( 1 3 , 1 3 , 1 3 )
等倾线的方
1 2 3
(2) π平面 在应力空间中, 过坐标原点 并且以等倾线为法线的平面, 称 为π平面 . π平面 的方程为
σ2 L
1 2 3 0
4 屈服轨迹 π o σ1 屈服曲面与π平面的 交线称为屈服轨迹. 根据 研究,屈服轨迹具有如下 性质 σ3 (1) 对称性 (2) 外凸性:这是由Drucer公设得出的结论. Drucer公设:在加载和卸载的整个循环过程中,附加应力做功非 负.即
岩石力学第5章 岩体的本构关系与强度理论

= + + + +
λ
σ
所以有
λ =
ε σ
伊柳辛理论可以写成(弹ຫໍສະໝຸດ 性共有) 伊柳辛理论可以写成= = =
ε σ ε σ ε σ
γ γ γ
=
ε τ σ
ε = τ σ
=
ε τ σ
弹性部分
= = =
塑性部分(总应变偏量与弹性
应变偏量之差)
γ γ γ
= = =
τ τ τ
= = =
ε σ ε σ ε σ
γ γ γ
=
ε σ
τ τ τ
ε = σ ε = σ
式中关键是等效应变与等效应力的比值 式中关键是等效应变与等效应力的比值
⑷ 形变理论应满足的条件 加载应为单调增加,尽量不中断,更不能卸载 材料是不可压缩的 应力应变曲线具有幂化形式 小变形(弹性与塑性变形为同一量级) ⑸ Davis-儒柯夫试验 儒柯夫试验 试验材料—铜材 拉力与内压比值k不同(同一试件k为常数) 做出σi~εi曲线 结论:类似单轴简单加载
ε ε ,有 σ σ
=
φ
所以:
=
+φ
= =
+
这就是Hencky 本构方程,它 本构方程, 这就是 包括了弹性变形 弹性变形与 包括了弹性变形与塑性变形
ε σ
=
+
=
+φ
=
+
ε σ
⑶ 应变偏量与应力偏量成比例
= =
γ = τ
= λ
γ = τ
γ = τ
= λ
主应力、 主应力、主应变偏量关系
= =
应变强度(参见公式(1-29)page 20) 应变强度
岩土本构模型原理及应用简述

岩土本构模型原理及应用简述摘要:简述了岩土本构模型中弹性本构模型、弹塑性本构模型及粘弹塑性模型的建立、应用范围和局限性。
认为当前的岩土本构模型,简单便于计算的模型不能反映岩土真实的力学性状,而精细复杂的模型参数难以确定,难以推广应用。
直至现阶段还没有一种能适应任何条件的普遍本构模型,目前岩土本构模型研究有必要向这方面发展。
关键词:岩土弹性本构模型弹塑性本构模型粘弹塑本构模型在实际工程中岩土体常常有很复杂的应力-应变特性,如非线性、弹性、塑性、粘性以及剪胀性、应变硬化(软化)、各向异性等,同时受到应力路径、应力历史以及岩土的状态、组成、结构和温度不同程度的影响。
因此为了反映岩土真实的力学性状,必须建立较为复杂的本构模型。
而实际工程应用中,在满足一定的精度条件下,又要求简单实用。
虽然至今的岩土本构模型达数百种,但大体上分为下述几类:弹性模型、弹塑性模型、粘弹塑性模型等。
1 弹性本构模型弹性模型是建立在弹性理论基础上的本构模型。
最简单的是线弹性模型,即广义胡克定律。
非线性弹性模型一般可分为三类:Cauchy弹性模型、超弹模型和次弹性模型。
非线性弹性模型是线弹性模型的推广,按照拟合应力-应变曲线的形状分为:折线型、双曲线型、对数曲线型等。
按照采用的弹性系数又可分为E-μ(弹性模量-泊松比)非线性弹性模型,K-G(体积变形模量-切变模量)非线性弹性模型,以及用其他形式表示的弹性模型。
1.1 线弹性本构模型弹性是一种理想的固体特性。
实际土体在外载荷作用下,只有在应变很小时才发生弹性变形。
模拟土体应力应变性质的最古老、最简单的方法是采用线弹性模型,即假设土体应力一应变之间存在一一对应的线形关系:σij=F(εij),反映在土体应力一应变关系矩阵式{σ}=[D]{ε}中,弹性模量矩阵[D]是常量。
由于土体弹性性质的方向性决定了各线弹性模型独立弹性常数个数。
对一般的均质连续各向异性弹性体,有21个独立弹性常数,正交各向异性线弹性模型具有9个独立弹性常数,横观各向同性线弹性模型具有5个独立弹性常数,最简单的各向同性线弹性模型(虎克定律)具有2个独立弹性常数。
第3章 岩土类介质本构模型-

τ xy σy − σm
τ zy
τ xz τ yz
⎤ ⎥ ⎥
σ z − σm ⎥⎦
(3.1.2)
J1 = S x + S y + S z = S1 + S2 + S3
(3.1.3)
J2
=
1 2
(S
2 x
+
S
2 y
+
S
2 z
)
+
S
2 xy
+
S
2 yz
+
S
2 zx
= −S1S2 − S2S3 − S3S1
3.3.1 适用范围
Mohr-Coulomb 塑性模型主要适用于在单调荷载下以颗粒结构为特征的材料,如土壤, 它与率变化无关。
3.3.2 特点
在 ABAQUS 中,Mohr-Coulomb 塑性模型有如下特点: ① 在应力空间中存在弹性区与塑性区以及它们的分界面。
-8-
② 材料是初始各向同性的。 ③ 屈服行为取决于静水压力的大小,当静力压力越大,材料的强度越高。
,
φ)
偏心率 e 描述了介于拉力子午线(Θ=0)和压力子午线(Θ= π )之间的情况。 3
(3.3.4)
- 10 -
其默认值由下式计算:
e = 3 − sin φ 3 + sin φ
(3.3.5)
ABAQUS 允许在三向受拉或受压状态下匹配经典的 Mohr-Coulomb 模型。允许 e 在以下 的范围内变化:
F = Rmcq − p tan φ − C = 0
(3.3.1)
其中 Rmc ( Θ , φ) 为 π 平面上屈服面形状的一个度量。
第4章 弹塑性本构方程

典型的本构关系模型
4-3-1 双曲线(邓肯-张)模型
它属于数学模型的范畴。即它以数学 上的双曲线来模拟土等材料的应力应 变关系曲线并以此进行应力和应变分 析的。由于这种模型是由邓肯和张两 人所提出,所以也叫邓肯-张模型,有 时简称D C模型。
a b
4-3-2 Drucker-Prager模型(D-P模型)
在F点之前,试件处于均匀应变 状态,到达F点后,试件开始出现 颈缩现象。如果再继续加载则变形 将主要集中于颈缩区进行,F点对应 的应力是材料强化阶段的最大应力, 称为强度极限,用 b 表示。
判定物体中某一点是否由弹性状态 转变到塑性状态,必然要满足一定 的条件(或判据),这一条件就称 为屈服条件。在分析物体的塑性变 形时,材料的屈服条件是非常重要 的关系式。
第4章 弹塑性本构方程
§4-1 典型金属材料
曲线分析
大量实验证明,应力和应变之间的 关系是相辅相成的,有应力就会有 应变,而有应变就会有应力。
对于每一种具体的固体材料,在一 定的条件下,应力和应变之间有着 确定的关系,这种关系反映了材料 客观固有的特性。下面以典型的金 属材料低碳钢轴向拉伸试验所得的 应力应变曲线为例来说明。
§4-5 世界上最常用岩土本构模型及土 本构模型剖析
◆
世界上最常用的土本构模型
1.概述 土作为天然地质材料在组成及构 造上呈现出高度的各向异性、非 均质性、非连续性和随机性,在 力学性能上表现出强烈的非线性、 非弹性和粘滞性,土的本构模型 就是反映这些力学性态的数学表 达式。
一般认为,一个合理的土的本构 模型应该具备理论上的严格性、 参数上的易确定性和计算机实现 的可能性。自Roscoe等创建剑桥 模型至今,各国学者已发展数百 个土的本构模型。
15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
dσ ij
= Dijkl dε kl − Dijkl
∂g ∂σ kl
∂f ∂σ ij
Dijkl
A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
d ε kl
=
( Dijkl
−
Dijkl A+
∂g ∂σ kl ∂f ∂σ ij
∂f ∂σ ij
Dijkl
Dijkl
¾塑性应变εijp硬化定律: ¾塑性功Wp硬化定律: ¾ 塑性体应变εvp 硬化定律
2
¾塑性应变εijp硬化定律:
ξβ
=
ξβ
(ε
p ij
)
由
dΦ
= ∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
d ξβ
=
∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
∂ξβ
∂ε
p ij
dε
p ij
=0
得:
∂Φ ∂σ ij
=
dsij
/
2G,
dε
p ij
= deipj ,
dεm
=
1 3K
dσ
m
∂f / ∂sij = sij ,
dε
p ij
=
dλsij
展开为
dε
p x
=
dε
p y
=
dε
p z
=
dγ
p xy
=
dγ
p yz
=
dγ
p zx
=
dλ
sx
sy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。
因此,应力与应变是一一对应的关系。
固体材料的塑性变形具有以下特点: (l)塑性变形不可恢复,所以外力功不可逆。
塑性变形的产生过程,必定要消耗能量(称耗散能或形变功); (2)在塑性变形阶段,应力和应变关系是非线性的。
因此,不能应用叠加原理。
又因为加载与卸载的规律不同,应力与应变也不再存在一一对应的关系,也即应力与相应的应变不能唯一地确定,而应当考虑到加载的路径(即加载历史); (3)当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生塑性变形的塑性区域。
并且随着载荷的变化,两区域的分界面也会产生变化。
第二章 弹塑性力学中常用的简化力学模型对于不同的材料,不同的应用领域,可以采用不同的变形体模型。
在确定力学模型时,要特别注意使所选取的力学模型必须符合材料的实际情况,这是非常重要的,因为只有这样才能使计算结果反映结构或构件中的真实应力及应力状态。
另一方面要注意所选取的力学模型的数学表达式应足够简单,以便在求解具体问题时,不出现过大的数学上的困难。
岩上材料的力学特性不外乎由室内试验、现场试验取得。
一般说来,室内试验所得到的力学特性不能完全反映现场实际情况,要得到真实的本构关系必须根据现场试验直接量测荷载—变形—时间之关系。
但该方法不仅花费大而且难以实现,目前大量的还是根据室内试验来决定。
岩土材料的力学性质颇为复杂,这是因为它们是由固相(土粒子)、液相(空隙中的水)、气相(空隙中的空气)组成,易受密度、空隙率、温度、时间、水等因素影响。
岩土材料从微观上应视为非连续体,但从工程角度,宏观上可视为连续体。
2.1 理想弹塑性力学模型当材料进行塑性状态后,具有明显的屈服流动阶段,而强化程度较小。
若不考虑材料的强化性质,则可得到如图2-1所示理想弹塑性模型,又称为弹性完全塑性模型。
在图2-1中,线段OA 表示材料处于弹性阶段,线段AB 表示材料处于塑性阶段,应力可用如下公式求出:sE σσεσ== (当时;s s εεεε≥≤) (2-1) 由公式(2-1)中只包括了材料常数E 和εs ,故不能描述应力应变曲线的全部特征,又由于在ε=εs 处解析式有变化,故给具体计算带来一定困难。
这一力学模型抓住了韧性材料的主要特征,因而与实际情况符合得较好。
2.2 理想线性强化弹塑性力学模型当材料有显著强化率,而屈服流动不明显时,可不考虑材料的塑性流动,而采用如图4-4所示线性强化弹塑性力学模型。
图中有两条直线,其解析表达式为)-(1ss E E εεσσεσ+== (当时;s s εεεε≥≤) (2-2) 式中E 及E1分别表示线段OA 及AB 的斜率。
具有这种应力应变关系的材料,称为弹塑性线性强化材料。
由于OA 和AB 是两条直线,故有时也称之为双线性强化模型。
显然,这种模型和理想弹塑性力学模型虽然相差不大,但具体计算却要复杂得多。
在许多实际工程问题中,弹性应变比塑性应变小得多,因而可以忽略弹性应变。
于是上述两种力学模型又可简化为理想刚塑性力学模型。
2.3 理想刚塑性力学模型如图2-1所示,应力应变关系的数学表达式为:εσE = (当时0≥ε) (2-3)上式表明在应力到达屈服极限之前,应变为零,这种模型又称为刚性完全塑性力学模型,它特别适宜于塑性极限载荷的分析。
2.4 理想线性强化刚塑性力学模型如图2-1所示,其应力应变关系的数学表达式为:εσσ1E s += (当时0≥ε) (2-4)2.5 幂强化力学模型为了避免在ε=εs 处的变化,有时可以采用幂强化力学模型,即取:n A εσ= (2-5)式中n 为幕强化系数,介于0与1之间。
式(2-5)所代表的曲线(如图2-1所示)在ε=0处与ζ轴相切,而且有:AA ==σεσ (当时0;1==n n ) (2-6) 式(2-6)的第一式代表理想弹性模型,若将式中 的A 用弹性模量E 代替,则为虎克定律式; 第二式若将A 用ζs 代替,则为理想塑性(或称理想 刚塑性)力学模型。
通过求解式(2-6)则可得ε=1,即 两条直线在ε=1处相交。
由于幂强化模型也只有两 个参数A 和n ,因而也不可能第三章 岩土类介质本构模型岩土塑性与本构模型的发展,主要是围绕着两个方面:一是对经典塑性理论的修正与静力本构模型的完善;二是针对不同岩土不同工况发展了许多新型的本构模型。
国内学者作了大量的工作,新发展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。
新型模型中动力模型、复杂路径模型等正在逐渐走向实用。
本章主要探究岩土体材料的Mohr-Coulomb(M-C)理想弹塑性模型 、Drucker-Prager(D-P)模型、Cam-clay (Cam )模型、Duncan-Chang (D-C )模型、Lade-Duncan (L-D )模型、修正的帽子模型、与蠕变耦合的帽子塑性模型、节理材料模型等。
3.1 Mohr-Coulomb(M-C)理想弹塑性模型Coulomb 在土的摩擦试验、压剪试验和三轴试验的基础上,于1773年提出了库仑破坏准则,即剪应力屈服准则,它认为当土体某平面上剪应力达到某一特定值时,就进入屈服。
Mohr-Coulomb 塑性模型主要适用于在单调荷载下以颗粒结构为特征的材料,如土壤,它与率变化无关。
其准则方程形式一般为:),,(n n c f σϑτ=。
其中,c 为土的粘聚力;ϑ为土的内摩擦角;n σ为屈服面上的正应力。
这个函数关系式通过试验确定。
M-C 条件为:ϑστtan n n c +=。
在π平面上的屈服曲线为一封闭的非正六边形。
现在,M-C 准则仍被广泛应用,该准则在π平面上的拉、压轴相等时即为广义Tresca 准则。
M-C 准则比较符合试验,但是它的缺点在于三维应力空间中的屈服面存在角点奇异性,且没有考虑中间主应力2σ的影响。
3.2 Drucker-Prager(D-P)模型1952年Drucker 和Prager 首先把不考虑中间主应力2σ影响的Coulomb 屈服准则与不考虑净水压力P 影响的Mises 准则联系在一起,提出广义Mises 理想塑性模型,即D-P 模型。
D-P 模型的屈服面方程为:0-12=-=K I J F α。
D-P 屈服函数所表示的屈服面在π平面上是一个圆,更适合数值计算。
但是作为近似计算,D-P 模型仍被广泛应用,它的主要缺点也是没有考虑中间主应力2σ的影响。
该系列的模型适用于实质上是单调加载的场合,如土基的极限荷载分析。
它最适合用于仿真有内摩擦力的材料。
该模型具备如下几个特点:1. 应力空间中存在弹性区域与塑性区以及它们的分界面2. 材料是初始各向同性的。
3. 屈服行为取决于静水压力的大小。
静水压力越大,材料的强度越高,而且材料在软化或硬化时是各向同性的,因此可以用引入与静水压力的相关关系的方式来体现模型在各种情况下的变化。
4. 非弹性变形与体积变形同时发生,流动法则中可考虑剪胀行为,所以提供了两种不同的流动准则。
5. 屈服行为受第二主应力2 σ大小的影响。
6. 材料可以与应变率有关。
7. 材料参数可以与温度有关。
8. 模型的弹性部分可以是线弹性或非线性的孔隙材料弹性。
9. 提供了三种不同的屈服准则供选择。
其区别基于三种不同的屈服面子午线:线性、双曲线或一般的指数函数。
10. 模型选择的合理性在很大程度上取决于材料的类型和标定模型参数时试验数据的有效性,还取决于压应力值序列是否与材料性质合拍。
3.3 Cam-clay (Cam )模型Cam 模型由英国剑桥大学Roscoe 等人于1963年提出,适用范围为粘土或者正常固结土,模型可应用于土石坝、地基和桩基础等,其屈服面方程为:0ln ''0'=-p p M p q (3-1)1965年,Roscoe ,Burland 分别研究了Cam 模型屈服面与临界状态线及正常固结线的关系,根据能量方程对Cam 模型屈服面的形状进行了修正,提出了修正Cam 模型。
在qp -'平面上修正Cam 模型的屈服面是通过原点的椭圆形曲线。
屈服面函数为: 0222'''P M M p q p =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛ (3-2)Cam 模型只有3个参数,且易于测定,因此是当前应用最广的模型之一。
模型的主要缺点是受到传统塑性理论的限制,且没有充分考虑剪切变形。
3.4 Duncan-Chang (D-C )模型1970年Duncan 和Chang 根据Kondner(1963年)的研究成果,将三轴试验得到的土体131)(εσσ--(轴向应变)曲线用下述双曲线方程来表示:1131)(εεσσb a +=-。