4.5t轮式装载机驱动桥设计

合集下载

轮式装载机驱动桥差速器壳体的结构优化设计

轮式装载机驱动桥差速器壳体的结构优化设计

轮式装载机驱动桥差速器壳体的结构优化设计摘要:利用ANSYS软件中的优化设计模块.建立轮式装载机驱动桥差速器壳体的结构优化计算模型,并实现优化迭代计算。

经过优化迭代计算并作局部结构调整后的差速器壳体。

一方面加强了原设计方案的薄弱部位。

另一方面也使得整个结构布局更合理。

优化设计后的差速器壳体重量减轻了13.7%.降低了材料的成本。

关键词:轮式装载机;差速器壳体;有限元分析;优化设计差速器是轮式装载机驱动桥的重要组成部分。

发动机输出扭矩经过变速箱后传递至主传动,然后由差速器与左右半轴进行分开传动.保证装载机驱动桥(见图1)两侧车轮在行程不等时,能以不同速度旋转.从而满足行驶运动学的要求。

差速器壳与半轴通过法兰固定联接.把扭矩传递至两侧的轮边减速机构。

在国内某型号大型轮式装载机驱动桥开发设计中,利用有限元优化分析技术,对驱动桥的差速器壳体(见图2)进行了校核计算与结构优化设计。

1工况与载荷分析轮式装载机采用的是防滑式差速器.根据两侧轮胎处的地面行驶条件.差速器自动调整分配给左右半轴的扭矩比例.从而能保证装载机在不良路面条件下的通过性。

也就是说。

在装载机作业行驶过程中.差速器壳体承受的扭矩是变化的。

取极限作业工况作为差速器壳体的设计校核工况。

即装载机发动机的最大输出扭矩.经过各级传动后.作用在差速器的单侧.也就是说此工况下两侧的轮胎,一边达到最大输出扭矩.另一边输出扭矩为0。

可求出作用在差速器壳体上的最大扭矩式中τmax——发动机输出的最大扭矩;i——从发动机输端至差速器输入端之间的总传动比。

2建立有限元模型与分析在HyperMesh软件中完成差速器壳体网格的划分.通过软件接口将网格模型导入ANSYS中。

与半轴花键联接处施加固定约束。

在法兰安装孔处施加周向集中载荷式中N——法兰螺栓的数量:R——法兰螺栓周向布置半径。

差速器壳体有限元模型参数:单元类型Solid45.单元数量:259403,节点数量:74805。

轮式装载机驱动桥的部件设计(1)

轮式装载机驱动桥的部件设计(1)

轮式装载机归运土运输机械类,普遍用来矿山、修筑、铁道、海港、水电和公路等建筑工事的一种工程机器;轮式装载机是当代机器化工程运输中不可或缺的车辆之一,该设备的优点是效率高、作业速度快、机动性强、操作简便等优点,能够加速工程建设的进度,削弱工作的强度,提升施工质量,减低低施工的成本都施展着十分重要的作用;因此,最近几年来,无论是境内或者海外,装载机质量得到了迅速地提升,已为施工车辆的核心产物;随着重型工业发展的需求,海外已经不停出现创新大输出、载重大的轮式装载机发展趋向。

轮式装载机的传动系统是将发动机的动能和转速传递给装载机的的驱动轴和驱动轮。

发动机输出的牵引力经过车辆的离合器、变速器、传动轴等部件输出给装载机的车轴,再通过车辆的驱动桥来带动正常行驶。

因此,一般情况下轮式装载机传动系统的好坏往往决定了它的性能。

实验证明当输入到驱动轴车轮上的牵引力能够克服装载机外部阻力的时候,轮式装载机才能正常地启动、驾驶和作业,通过查询资料可知,就算装载机以均匀地低速行驶在平直的路面上时,也要克服大约相当于装载机自身总重量百分之一点五的滚动阻力。

当我们假设将驱动车轮与自身的发动机直接相连接时,此时装载机的速度将达到每小时数百公里,但是这么高的速度既不实际也很不安全,所以这是不可能真正实现的,反之若果装载机受到的牵引力无法克服外部作用于其上的阻力时候,装载机根本无法正常启动。

所以我们为了解决上述问题,须使装载机车辆具备增加扭矩并降低其运行的速度功能,即将车辆的驱动轮得到的转速减低为发动机转速的好多分之一,而相应地装载机车轮将得到的扭矩会增加到发动机扭矩的若干倍。

这就是驱动桥所需要来实现的作用。

由以上所述我们知道装载机驱动桥既要有一定的传动比,又要能够承受车轮和车身所传递的各种作用力,同时因为车桥位于两个轮胎之间,离地间隙有一定的限制,所以为了保证装载机能够适应恶劣的工作环境,具有较好得地面通过性能,车桥的结构不能过大。

4吨轻型载货汽车驱动桥设计-任务书

4吨轻型载货汽车驱动桥设计-任务书

毕业设计(论文)任务书学生姓名系部汽车与交通工程学院专业、班级指导教师姓名职称教授从事专业车辆工程是否外聘□是√否题目名称4吨轻型载货汽车驱动桥设计一、设计(论文)目的、意义汽车驱动桥是汽车的主要部件之一,其基本功用是增大由传动轴或变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能;同时驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力、横向力及其力矩。

驱动桥质量、性能的好坏直接影响整车的安全性、经济性、舒适性、可靠性。

要求所设计的驱动桥结构合理,绘制的图纸格式规范,图面质量好,撰写的设计说明书内容完整,格式规范。

设计能使学生综合运用所学专业知识,熟练CAD绘图技能。

二、设计(论文)内容、技术要求(研究方法)设计内容:1.选题的背景、目的及意义;2.4吨轻型载货汽车后驱动桥的总体结构设计;3.主减速器总成的设计;4.差速器的设计;5.半轴的设计;6.桥壳的设计。

技术要求:驱动形式:4×2;总质量:4195kg;装载质量:2500kg;发动机最大功率:74kw;发动机最大转矩:184N*m;最高车速:115km//h;变速器传动比:6;最小转弯半径:12.5;要求:单级主减速器;生产纲领:成批生产。

三、设计(论文)完成后应提交的成果CAD绘制驱动桥装配图、零件图折合0号图纸3张以上,设计说明书15000字以上。

四、设计(论文)进度安排(1)知识准备、调研、收集资料、完成开题报告第1~2周(2.28~3.11)(2)整理资料、提出问题、撰写设计说明书草稿、绘制装配草图第3~5周(3.14~4.1)(3)理论联系实际分析问题、解决问题,进行驱动桥的总体结构设计,主减速器总成的设计,差速器的设计,半轴的设计,桥壳的设计,CAD绘制部分图纸等内容,中期检查第6~8周(4.4~4.22)(4)改进完成设计,改进完成设计说明书,指导教师审核,学生修改第9~12周(4.25~5.20) (5)评阅教师评阅、学生修改第13周(5.23~5.27)(6)毕业设计预答辩第14周(5.30~6.3)(7)毕业设计修改第15~16周(6.6~6.17)(8)毕业设计答辩第17周(6.20~6.24)五、主要参考资料1.徐灏主编.《新编机械设计师手册》.机械工业出版社2.陈立德主编.《机械设计基础》.高等教育出版社3.王宝玺主编.《汽车制造工艺学》(3).机械工业出版社,2007.54.陈秀宁,施高义编.《机械设计课程设计》.浙江大学出版社5.刘惟信主编.《汽车设计》.清华大学出版社,6.李硕根,杨兴骏编.《互换性与技术测量》.中国计量出版社7.汽车构造、汽车理论、汽车设计书籍8.轻型载货汽车驱动桥资料9.网络资源,超星数字图书馆10.近几年相关专业CNKI网络期刊等六、备注指导教师签字:年月日教研室主任签字:年月日。

某型号装载机驱动桥的设计

某型号装载机驱动桥的设计
c a n g e t t h e d i r v i n g f o r c e t o c o mp l e t e t h e wo r k . Dr i v i n g a x l e i s t h e i mp o r t a n t p a r t o f p o we r t r a n s mi s s i o n s y s t e m, d i f f e r e n t s t r u c t u r e S h a v e d i f f e r e n t i n l f u e n c e o n e ic f i e n c y o f p o w e r t r a n s mi s s i o n, S O i t i s i mp o r t a n t t o d e s i g n d r i v i n g a x l e . I n t h i s p a p e r , I d e s i g n a k i n d o f d iv r i n g a x l e o f l o a d e r ,t h e d e s i g n i n c l u d e s t h e ma i n d i r v e r , d i f f e r e n t i a l ,h a l f s h a f t a n d e n d t r a n s mi s s i o n, n o t o n l y t h e r e q u i r e me n t s o f t h e d i r v i n g a x l e t o me e t t h e r e q u i r e me n t s ,b u t a l s o t o ma k e l i g h t q u a l i t y, h i g h e f i c i e n c y, l o n g l i f e .

重型自卸汽车设计(驱动桥总成设计)(有cad原图)

重型自卸汽车设计(驱动桥总成设计)(有cad原图)

重型自卸汽车设计(驱动桥总成设计)摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,对于重型自卸汽车也很重要。

驱动桥位于传动系的末端,它的基本功用是将传动轴或变速器传来的转矩增大并适当减低转速后分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力,纵向力和横向力。

通过提高驱动桥的设计质量和设计水平,以保证汽车良好的动力性、安全性和通过性。

此次重型自卸汽车驱动桥设计主要包括:主减速器、差速器、轮边减速器、车轮传动装置和驱动桥壳进行设计。

主减速器采用中央减速器附轮边减速器的形式,且中后桥采用双级贯通式布置形式,国内外多桥驱动的重型自卸汽车大多数采用这种布置形式;本设计主减速器采用了日益广泛应用的双曲面齿轮;差速器设计采用普通对称圆锥行星差速器;车轮传动装置采用全浮式半轴;驱动桥壳采用整体型式;并对驱动桥的相关零件进行了校核。

本文驱动桥设计中,利用了CAD绘图软件表达整体装配关系和部分零件图。

关键词:驱动桥、主减速器、差速器、半轴、双曲面齿轮THE DESIGN OF HEAVY SELF UNLOADINGTRUCK(THE DESIGN OF TRANSAXLE ASSEMBLY)ABSTRACTDrive axle is the one of automobile four important assemblies. It’s performance directly influences on the entire automobile,especially for the heavy self unloading truck . Driving axle set at the end of the transmission system. The basic function of driving axle is to increase the torque transported from the transmission shaft or transmission and decrease the speed ,then distribute it to the right、left driving wheel, another function is to bear the vertical force、lengthways force and transversals force between the road surface and the body or the frame. In order to obtain a good power performance, safety and trafficability characteristic, engineers must promote quality and level of designDriving axle design of the heavy self unloading truck mainly contains: main reduction, differential, wheel border reduction, transmitted apparatus of wheel and the housing of driving axle. The main reducer adopts central reduction along with wheel border reduction. And also the design have the same run-through structure between middle transaxle and the rear one with heavy trucks home and abroad that have several transaxles. Hypoid gear, a new type gear is a good choice for the main reducer of heavy self unloading truck. The differential adopted a common, symmetry, taper, planet gear. Transmission apparatus of wheel adopted full floating axle shaft, and the housing of driving axle adopted the whole pattern,and proofread interrelated parts.During the design process, CAD drafting software is used to expresses the wholes to assemble relationship and part drawing by drafting.Key words:driving axle, the main reducer,differential, wheel border reduction, half shaft, hypoid gear目录第一章绪论 (1)§ 1.1 驱动桥简介 (1)§ 1.2 驱动桥设计的要求 (1)第二章驱动桥的结构方案分析 (3)第三章驱动桥主减速器设计 (6)§ 3.1 主减速器简介 (6)§ 3.2 主减速器的结构形式 (6)§ 3.3 主减速器的齿轮类型 (6)§ 3.4 主减速器主动齿轮的支承型式 (7)§ 3.5 主减速器的减速型式 (8)§ 3.6 主减速器的基本参数选择与设计计算 (8)§ 3.6.1 主减速比的确定 (8)§ 3.6.2 主减速器齿轮计算载荷的确定 (9)§ 3.6.3 主减速器齿轮基本参数选择 (10)§ 3.6.4 主减速器双曲面锥齿轮设计计算 (12)§ 3.6.5 主减速器双曲面齿轮的强度计算 (21)§ 3.7 主减速器齿轮的材料及热处理 (25)§ 3.8主减速器第一级圆柱齿轮副设计 (26)§ 3.8.1基本参数设计计算 (26)§ 3.8.2圆柱齿轮几何参数计算 (27)§ 3.9轮边减速器设计及计算 (28)§ 3.9.1轮边减速器方案的确定 (28)§ 3.9.2轮边减速器各齿轮基本参数的确定 (28)§ 3.9.3各齿轮几何尺寸计算 (29)第四章差速器设计 (31)§ 4.1差速器简介 (31)§ 4.2 差速器的结构形式的选择 (31)§ 4.2.1 对称式圆锥行星齿轮差速器的差速原理 (32)§ 4.2.2 对称式圆锥行星齿轮差速器的结构 (33)§ 4.3差速器齿轮主要参数的选择 (33)§ 4.4差速器齿轮的几何尺寸计算与强度校核 (36)第五章驱动车轮的传动装置 (39)§ 5.1车轮传动装置简介 (39)§ 5.2半轴的型式和选择 (39)§ 5.3半轴的设计计算与校核 (39)§ 5.4半轴的结构设计及材料与热处理 (41)第六章驱动桥壳设计 (42)§ 6.1 驱动桥壳简介 (42)§ 6.2 驱动桥壳的结构型式及选择 (42)§ 6.3 驱动桥壳强度分析计算 (43)§ 6.3.1当牵引力或制动力最大时 (43)§ 6.3.2通过不平路面垂直力最大时 (44)第七章结论 (46)参考文献 (47)致谢 (48)附录A (49)第一章绪论§ 1.1 驱动桥简介在科学技术快速发展的今天,随着汽车工业的不断进步,汽车的各项性能指标也在不断提高,作为传动系末端的驱动桥的设计,更要有进一步的改进,以适应市场的需要,促进汽车行业的发展。

轮胎式工程机械驱动桥

轮胎式工程机械驱动桥

离合器
推压盘
差速器壳体
大锥齿轮
牙嵌式差速器
3.牙嵌式差速器: ⑴ 工作原理 ①直线行驶时;弹簧7、10使从动环6、11端面平齿与十自轴17传力齿啮合,分离环8、9内侧梯形齿与中心轮15梯形齿啮合,花键毂5、12内外花键分别与左右半轴、从动环6、11啮合。 动力传递路线:小锥齿轮轴1——大锥齿轮4——十字轴17传力齿——从动环6、11端面平齿——花键毂5、12——左右半轴。(等速差矩) ②转弯时:由于外侧5(左侧)车轮阻力小,转速快,分离环8梯形齿沿中心轮15梯形齿滑动,推动从动轮6左移,克服弹簧7压力,从动轮6与十字轴17传力齿分离,切断外侧(左侧)动力;同时分
制动器总成
轮毂
桥壳
轮胎
行星架
行星轮
太阳轮
半轴
轮辋
小螺旋 锥齿轮
大螺旋 锥齿轮
差速器壳体
齿痕对中 调整垫片
小锥齿轮轴 承间隙调整
止推螺栓
跨置式支承
锥齿啮合副 间隙调整螺栓
十字轴
半轴齿轮
行星轮
拧进或拧出左右调整螺母13,调整从动伞齿轮22轴承间隙,使轴承间隙为0.05~0.1mm; ②主传动啮合齿痕是否对中靠垫片4调整; ③对称等量调整螺母13,使主传动轮齿啮合间隙为0.2~0.35mm; ④ 调整止推螺柱8使大锥齿轮背部间隙为0.25~0.4mm。试转是否灵活无卡滞。 轮边减速器——传动系中最后一级减速增扭机构。 铲土运输机械多采用行星齿轮减速。 特点: ①尺寸小、减速比大; ②可方便地布置在轮毂内;
要求:①在传动比足够时,径向尺寸量小——提高离地间隙,提高通过性能。②结构紧凑,工作平稳,噪声小。
螺旋锥齿轮,准双曲面齿轮,直齿锥齿轮,加 双曲线抗磨齿轮油。

轮式装载机驱动桥

轮式装载机驱动桥

工程机械课程设计指导书轮式装载机驱动桥设计长沙学院1.绪论1.1装载机概述装载机(Loader)是一种往车辆或其他设备装载散状物料的自行式装卸机械。

装载机也可进行轻度的铲掘工作,通过换装相应的工作装置,还可进行推土、起重、装卸木料及钢管等作业。

广泛应用于建筑、铁路、公路、水电、港口、矿山、农田基本建设及国防等工程中。

它具有作业速度快、效率高、操作轻便等优点,故其对加快工程建设速度、减轻劳动强度、提高工程质量、降低工程成本有着重要的作用。

装载机种类很多,根据发动机功率可分为小型(功率小于 74千瓦)、中型(功率在74〜147千瓦间)、大型(功率在147〜515千瓦间)和特大型(功率大于 515千瓦)装载机4种。

根据行走系结构可分为轮胎式和履带式两种。

其中轮胎式装载机按其车架结构型式和转向方式又可分为铰接车架折腰转向、整体车架偏转车轮和差速转向装载机3种。

根据卸载方式可分为前卸式(前端式)装载机和回转式装载机两种。

根据作业过程的特点可分为间歇作业式(如单斗装载机)和连续动作式(如螺旋式、圆盘式、转筒式等)装载机。

装载机装载物料时,其技术经济指标在很大程度上取决于作业方式。

常见的作业方式有I形作业法、V形作业法和L形作业法等⑴。

1.1.1轮式装载机的总体构造轮胎式装载机是由动力装置、车架、行走装置、传动系统、转向系统、制动系统、液压系统和工作装置等组成。

轮胎式装载机的动力是柴油发动机,大多采用液力变矩器动力、换挡变速箱的液力机械传动形式(小型转载机有的采用液压传动或机械传动),液压操纵、铰接式车体转向、双桥驱动、宽基低压轮胎,工作装置多采用反转连杆机构等。

1.1.2传动系统装载机的传动有机械传动与液力机械传动两种方式。

机械传动结构简单,但传动系统扭振和冲击载荷较大,影响使用寿命。

液力机械传动,能吸收冲击载荷,提高使用寿命,自动适应外界阻力的变化,改善装载机的使用性能。

因此,大中型轮胎式装载机多采用液力机械传动。

ZL50装载机驱动桥设计说明书(现搞)

ZL50装载机驱动桥设计说明书(现搞)

课程设计任务书组号:第七组组长:曹勤怀组员:周恭剑韩焕炎白绚任务分配表组别姓名任务组长曹勤怀组员1周恭剑组员2韩焕炎组员3白绚驱动桥总成装配图,协调组员设计及绘图主传动器设计及最终传动设计差速器设计半轴设计课程设计题目三驱动桥设计参数:1. 车辆自重KN G 100=,满载重KN 50,全桥驱动,03.0,8.0==f ϕ,动力半径m r k 69.0=2. 变矩器系数75.3=k i ;变速箱最大传动比696.2=∑i ;主传动传动比625.4=主i ;终传动传动比875.4=终i 。

3. 齿轮材料:主动齿轮CrMnTi 20,从动齿轮MnVB 20。

渗碳淬火处理,工作寿命8年,每天10小时工作,载荷循环次数大于710,轻度冲击。

4. 最大输出功率180KW ,额定转速2200r/min ,主传动齿轮螺旋角为35度。

5. 具体设计任务●查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥主减速器的形式,对驱动桥总体进行方案设计和结构设计。

●校核满载时的驱动力,对汽车的动力性进行验算。

●根据设计参数对主要零件部件进行设计与强度计算。

●主要针对具体任务,完成6千字的设计说明书。

●小组长职责(1)分配任务;(2)协调设计进度;(3)对没有按时完成设计任务的组员加以警告;(4)与指导教师及时沟通设计进度。

● 完成整装配图和零件图的绘制。

每位同学的具体任务由组长进行分配,然后经指导教师认可(每个人根据零件复杂程度分配2-3个主要零件),零件图由具体负责设计的同学绘制。

●在每个人的说明书中标明本小组所有人员设计的具体任务。

● 每个小组成员均要交一份机构装配图(手工绘制),一份设计说明书(每个人根据自己设计内容,因此每个人的设计说明书是不同的),两份零件图(要求1:1绘制)● 每个小组组长的说明书是可以综合组员的设计内容,还需绘制草稿一份(1:1)。

目 录1 主传动器设计 ---------------------------------- 11.1 螺旋锥齿轮的设计计算 ------------------------------- 11.1.1 齿数的选择 ----------------------------------- 11.1.2 从动锥齿轮节圆直径d 2的选择 ------------------ 11.2 螺旋锥齿轮的强度校核 ------------------------------- 81.2.1 齿轮材料的选择 ------------------------------- 81.2.2 锥齿轮的强度校核 ----------------------------- 9 2 差速器设计 ----------------------------------- 162.1 圆锥直齿轮差速器基本参数的选择 -------------------- 172.1.1 差速器球面直径的确定 ------------------------ 172.1.2 差速器齿轮系数的选择 ------------------------ 172.2 差速器直齿锥齿轮强度计算 -------------------------- 202.2.1 齿轮材料的选取 ------------------------------ 202.2.2 齿轮强度校核计算 ---------------------------- 202.3 行星齿轮轴直径z d 的确定 --------------------------- 21 3 半轴设计 ------------------------------------- 213.1 半轴计算扭矩j M 的确定----------------------------- 223.2 半轴杆部直径的选择 -------------------------------- 223.3 半轴强度验算 -------------------------------------- 22 4 最终传动设计 --------------------------------- 234.1 行星排行星轮数目和齿轮齿数的确定 ------------------ 234.1.1 行星轮数目的选择 ---------------------------- 234.1.2 行星排各齿轮齿数的确定 ---------------------- 234.1.3 同心条件校核 -------------------------------- 244.1.4 装配条件的校核 ------------------------------ 244.1.5 相邻条件的校核 ------------------------------ 244.2 齿轮变位 ------------------------------------------ 254.2.1 太阳轮行星轮传动变位系数计算(t-x ) --------- 254.2.2 行星轮与齿圈传动变位系数计算(x-q ) --------- 274.3 齿轮的几何尺寸 ------------------------------------ 274.4 齿轮的校核---------------------------------------- 304.4.1 齿轮材料的选择------------------------------ 304.4.2 接触疲劳强度计算---------------------------- 314.4.3 弯曲疲劳强度校核---------------------------- 324.5 行星传动的结构设计-------------------------------- 324.5.1 太阳轮的结构设计---------------------------- 324.5.2 行星轮结构设计------------------------------ 324.5.3 行星轮轴的结构设计-------------------------- 324.5.4 轴承的选择---------------------------------- 335 各主要花键螺栓轴承的选择与校核---------------- 345.1 花键的选择及其强度校核--------------------------- 345.1.1 主传动中差速器半轴齿轮花键的选择------------ 345.1.2 轮边减速器半轴与太阳轮处花键的选择---------- 365.1.3 主传动输入法兰处花键的选择与校核------------ 365.2 螺栓的选择及强度校核----------------------------- 385.2.1 验算轮边减速器行星架、轮辋、轮毂联接所用螺栓的强度----------------------------------------------- 385.2.2 从动锥齿轮与差速器壳联接螺栓校核------------ 385.3 轴承的校核--------------------------------------- 395.3.1 作用在主传动锥齿轮上的力-------------------- 395.3.2 轴承的初选及支承反力的确定------------------ 415.3.3 轴承寿命的计算------------------------------ 42 心得体会---------------------------------------- 44参考文献---------------------------------------- 451 主传动器设计主传动器的功用是改变传力方向,并将变速箱输出轴的转矩降低,扭矩增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主减速器的设计和校核
根据发动机的的参数,计算主传动轴上的扭 矩大小转换成力的大小,来选择锥齿轮齿数, 模数,压力角,齿顶高,齿根高,分度圆等
然后再反过来

校核看是否满足

要求,重复以上

步骤。
差速器的设计
• 包括差速器齿轮的选择、校核,还有十字 轴的选择、校核
半轴的设计
• 驱动桥内两个半轴的设计和校核
轮边减速器的设计
太阳轮,行星齿轮,大齿圈的齿数,分度圆 直径,模数等并校核强度
主要轴承螺栓花键的选择校核
• 主传动中差速器里半轴齿轮内花键的选取 • 从动锥齿轮与差速器壳连接螺栓的选区校核 • 选取轮边减速器,行星架,轮辋,轮毂连接
处所用螺栓的强度 • 传动器轴承的计算
பைடு நூலகம்
装载机驱动桥的总体结构
1、轮式装载机的驱动桥作为地盘传动的主要组成部分,其功用是 将发动机的扭矩进一步增大,以适应车轮为克服阻力所需要的 扭矩,同时改变扭矩的方向以便传递给车轮。
2、装载机驱动桥主要由主减速器,差速器,半轴,轮边减速组成, 同时还有一些连接件,比如:花键,螺栓,轴承,十字轴
3、在一般轮式装载机结构中,驱动桥包括主传动器、差速器、 半轴、轮边减速器、桥壳等部件。主传动的作用是增大扭矩和 改变扭矩的传递方向,差速器是使左、右驱动车轮在转弯或不 平路面上行驶时能以不同的角速度旋转,半轴的功用在于将扭 矩从差速器传递到轮边减装装置,载机的重量通过桥壳传到车 轮上并将作用在车轮上的各种力(如牵引力、制动力、横向力 等)传到车架。
4.5t轮式装载机驱动桥设计
设计者:张加新 班级:机自101204 学号:201012030425
轮式装载机的动力是如何从发动机传递到驱动桥和车轮的?
图1 装载机动力与传动系统组成 动力传递路线: 发动机→变矩器→变速箱→万向传动轴→前后驱动桥(主被动 螺旋伞齿轮→差速器→半轴→太阳轮→行星减速器)→轮胎轮 辋总成
相关文档
最新文档