多元函数的极值和最值

合集下载

多元函数的极值与最值总结

多元函数的极值与最值总结

微积分八⑥
2018/12/10
12/33
求最值的一般方法:要求最大值和最小值,必须考 虑函数f(x,y)的所有驻点、偏导不存在的点以及区 域的边界点上的函数值,比较这些值,其中最大者 (或最小者)即为函数在D上的最大值(或最小值)
微积分八⑥
2018/12/10
13/33
例5 求二元函数z=f(x,y)=x2y(4-x-y)在x轴、y轴和直线 x+y=6所围成的闭区域D上的最大值与最小值. 解方程组, 解 如图,先求z在D内的驻点, 2 f x ( x , y ) 2 xy(4 x y ) x y 0 2 2 f ( x , y ) x ( 4 x y ) x y0 y D 得区域D内的唯一驻点(2,1), 且f(2,1)=4. 再求f(x,y)在D边界上的最值, y 在边界x=0和y=0上f(x,y)=0, 在边界x+y=6上,即y=6-x上, x y6 于是f(x,y)=x2(6-x)(-2),由fx=4x(x-6)+2x2=0, D 得x1=0, x2=4 y=6-x|x=4=2 f (4,2) 64, o 比较后可知f(2,1)=4为最大值, f(4,2)=-64为最小值.
微积分八⑥
2018/12/10
10/33
求函数z=f(x,y)极值的一般步骤: 第一步 解方程组 f x( x, y) 0, 求出实数解 , f y( x, y) 0 得驻点; 第二步 对每个驻点(x0,y0), 求出各二阶偏导数的值 A、B、C; 第三步 定出B2 -AC的符号,再判定是否是极值.
微积分八⑥
2018/12/10
9/33
如何判定一个驻点是否为极值点? 定理2(充分条件)设z=f(x,y)在其驻点(x0,y0)的某邻域内连 续且有二阶连续偏导数, 又 f x( x0 , y0 ) 0, f y( x0 , y0 ) 0.

多元函数的极值与最值例题极其解析

多元函数的极值与最值例题极其解析

多元函数的极值与最值1.求函数z=x3+y3−3xy的极值。

步骤:1)先求驻点(另偏导数等于0,联立)2)再求ABCA=f xx(x0, y0)B=f xy(x0, y0)C=f yy(x0, y0)3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值,且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o);(2)当B2-AC>0时,f(x o, y o )不是极值;(3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论.=3x2−3y=0解:∂z∂x∂z=3y2−3x=0∂y联立得驻点为(0,0),(1,1)A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导)B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导)C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导)在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处无极值。

在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为A>0,故在此处为极小值点,极小值为F (1, 1) =x3+y3−3xy=−12.求函数f(x, y)=x2+(y−1)2的极值。

解:f x’=2x=0F y’=2y-2=0联立得驻点为(0,1)A=f xx(x0, y0) =2B=f xy(x0, y0) =0C=f yy(x0, y0) =2在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为F (0, 1) = 03.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少?解:另长宽高分别为x, y, z故xyz=a, z=axyS=xy+2(x axy +y axy)=xy+2(ay+ax)S x’=y+2(−ax2)=0S y ’= x+2(−ay2)=0解得当X=Y=Z=3√2a的时候用料最少。

多元函数极值

多元函数极值

提示: 当(x, y)=(0, 0)时, z=0, 而当(x, y)≠(0, 0) 时, z>0. 因此z=0是函数的极小值.
首页 上页 返回 下页 结束 铃
一,多元函数的极值及最大值,最小值
极值的定义 设函数z=f(x, y)在点(x0, y0)的某个邻域内有定义, 如果对 于该邻域内任何异于(x0, y0)的点(x, y), 都有 f(x, y)<f(x0, y0)(或f(x, y)>f(x0, y0)), 则称函数在点(x0, y0)有极大值(或极小值)f(x0, y0). 例2 函数z = x2 + y2 在 (0, 0)处有极大值 点 .
首页
上页
返回
下页
结束

二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 有时可以把条件极值问题化为无条件极值问题. 例如, 求V=xyz在条件2(xy+yz+xz)=a2下的最大值.
a2 2xy 由条件2(xy+ yz + xz)=a2 , 解得z = 得 , 于是 2(x+ y) xy a2 2xy V= ( ). 2 (x+ y) 这就把求条件极值问题转化成了求无条件极值问题.
首页 上页 返回 下页 结束 铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 (2)用拉格朗日乘数法 在多数情况下较难把条件极值转化为无条件极值, 需要 用一种求条件极值的专用方法, 这就是拉格朗日乘数法. 下面导出函数z=f(x, y)在条件(x, y)=0下取得的极值的必 要条件. 假定f(x, y)及(x, y)有各种所需要的条件.

多元函数极值与最值课件

多元函数极值与最值课件
x4 y6x2
z ( 4, 2) 64
y
x y6
D

o
x
所以在 D 的边界上 , max z 0 , min z z ( 4, 2) 64 .
与 z (P) z ( 2, 1) 4 相比较 , 得 : z ( 4, 2) 64 为最小值 , z ( 2, 1) 4 为最大值 .
三、条件极值
A<0 时取极大值;
则: 1) 当AC B2 0时, 具有极值 A>0 时取极小值. 2) 当AC B2 0时, 没有极值. 3) 当AC B2 0时, 不能确定 , 需另行讨论.
机动 目录 上页 下页 返回 结束
例1. 求函数 解: 第一步 求驻点.
的极值.
解方程组
得驻点: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) .
第二步 判别. 求二阶偏导数
B
C
fxx ( x, y) 6x 6, fxy ( x, y) 0, f yy ( x, y) 6 y 6
A
在点(1,0) 处
AC B2 12 6 0, A 0,
为极小值;
机动 目录 上页 下页 返回 结束
在点(1,2) 处
AC B2 12 (6) 0,
y
在点 (0,0) 无极值.
y xx y
机动 目录 上页 下页 返回 结束
2、驻点
使一阶偏导数同时为零的点称为函数的驻点
f x ( x0 , y0 ) 0
fy(
x0 ,
y0 )
0
( x0 , y0 ) 为驻点
注 驻点 意
极值点
如 z x y 点 (0 , 0) 是驻点但不是极值点

多元函数的极值与最值

多元函数的极值与最值
高等数学(下)主讲杨益民
第八节 多元函数的极值及其求法
一、多元函数极值及最大、最小值
1.定义:若函数z=f (x, y)在(x0, y0)的某邻域内有 f (x, y)≤f(x0, y0)(或f (x, y)≥f(x0, y0))
则称函数z=f (x, y)在(x0, y0)有极大值f(x0, y0) (极小值f(x0, y0)), (x0, y0)称为函数z=f (x, y) 的极大值点(极小值点)。
)?
0
sin? ? 0 , x ? 0
?12 ? 2x ? x cos? ? 0
?
? ?
24cos
?
?
2x cos?
?
x(2cos 2 ?
? 1) ?
0
(1) (2)
(2)-(1)2cos? ,得: 2xcos? -x = 0
? ? ? ? 60 , x ? 8 (cm)
3
解得:
2019年3月9日星期六
A ? 1 (24 ? 2x ? 2x cos? ? 24 ? 2x ) ?x sin ?
2
? 24x sin? ? 2x 2 sin? ? x2 cos? sin? ( D : 0 ? x ? 12, 0 ? ? ? π )
2
?x
x?Байду номын сангаас
24 ? 2x
2019年3月9日星期六
8
高等数学(下)主讲杨益民
xy z ? ? ex2? y2
极大值与极小值统称为极值;极大值点 与极小值点统称为极值点;
注意:极大值(或极 小值)是局部的最大 值(或最小值)。
2019年3月9日星期六
1
高等数学(下)主讲杨益民

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算多元函数的极值和最值计算是高等数学中的重要部分,它涉及到多元函数的极大值和极小值的求解以及在给定区域内的最大值和最小值的确定。

在这篇文章中,我们将详细介绍多元函数的极值和最值计算的方法和步骤。

首先,让我们来了解一下多元函数的概念。

在高等数学中,一个多元函数是指具有多个变量的函数,它通常被表示为f(x1,x2,...,xn),其中x1,x2,...,xn是变量,f是一个函数。

多元函数与一元函数不同,它的输入变量不再是一个实数,而是多个实数。

因此,多元函数的求解方法也与一元函数有所不同。

下面我们将分别介绍多元函数的极大值和极小值的求解方法。

首先是多元函数的极大值和极小值的求解。

要求解多元函数的极大值和极小值,我们需要找到函数的驻点(即导数等于零的点)以及临界点(即定义域的边界点)。

第一步是计算多元函数的偏导数。

在多元函数中,我们根据变量的个数来计算偏导数。

例如,对于一个两个变量的函数f(x1,x2),我们需要计算f对x1的偏导数∂f/∂x1和f对x2的偏导数∂f/∂x2第二步是找到偏导数为零的点。

我们将得到一个方程组,其中每个方程都是一个偏导数等于零的方程。

通过求解这个方程组,我们可以找到多元函数的驻点。

第三步是找到临界点。

临界点是指函数定义域的边界点。

我们需要判断多元函数在这些边界点是否存在极值。

为此,我们可以计算函数在边界点处的取值,并与其他驻点的函数值进行比较。

通过这些步骤,我们可以确定多元函数的极大值和极小值。

接下来,让我们介绍多元函数在给定区域内的最大值和最小值的确定方法。

要确定多元函数在给定区域内的最大值和最小值,我们需要利用拉格朗日乘数法。

首先,确定给定区域的边界条件。

给定区域可以是一个封闭区域,也可以是一个开放区域。

第一步是通过拉格朗日乘数法构建一个方程。

这个方程的形式是多元函数加上一个或多个约束条件的等式。

拉格朗日乘子是用来考虑约束条件对函数极值的影响的。

极值与最值

极值与最值
⑵ f (x, y) f (x0, y0 ) ,则称 P0(x0, y0)为函数 f (x, y) 的极大值点, f (x0, y0 ) 为 f (x, y)的极大值;
极大值点与极小值点统称为极值点
极大值与极小值统称为极值
如:⑴ z 3x2 4y2在 (0,0)处有极小值(如下图) ⑵ z x2 y2 在 (0,0) 处有极大值(如下图) ⑶ z xy 在 (0,0) 处既无极大值也无极小值
M max{ f (x1, y1),, f (xn , yn )} m min{ f (x1, y1),, f (xn , yn )}
例2:求函数 f (x, y) x2 2xy 2 y在矩形闭区域
D {(x, y) 0 x 4,0 y 3}上的最值.
对于实际问题求最值
Lxx 4 A Lxx (40, 24) 4 0 Lxy 4 B Lxy (40, 24) 4
Lyy 8 C Lyy (40, 24) 8
B2 AC 16 0


A 0
Байду номын сангаас
(x0,y0)=(40,24)为极大值点,就 是最大值点。
最大值点与最小值点统称为最值点
最大值与最小值统称为最值
2、最值的求法
设函数 z f (x, y) 在有界的闭区域 D上连续可微,
则求最值的步骤为:
⑴求函数 z 的所有驻点(xi, yi ), i 1,, n ; ⑵求函数 z 在边界上的最大值点和最小值点 (xm, ym) ⑶求最大值与最小值
解此方程有:

x y


x0

a(ax0 a

多元函数的极值及其求法

多元函数的极值及其求法
先构造函数 F( x, y) = f ( x, y) + λϕ( x, y),其中λ 为某一常数, , 为某一常数 可由
f x ( x, y) + λϕx ( x, y) = 0, f y ( x, y) + λϕy ( x, y) = 0, ϕ( x, y) = 0.
标. 解出x, y, λ,其中x, y就是 能 极 点 坐 . 可 的 值 的 标
(1)
2 2 例2 函数 z = − x + y
在(0,0) 处有极大值. 处有极大值.
(2)
例3 函数z = xy
处无极值. 在(0,0) 处无极值.
(3)
2、多元函数取得极值的条件
定理1 必要条件) 定理 1(必要条件) 函 设 数z = f ( x, y)在 ( x0, y0 )具 偏导 , 在 点 有 数且 值, 点( x0, y0 )处有极 ,则它在该点的偏导 必 值 数 然 为零: 为零:
f x ( x0, y0 ) = 0,
f y ( x0, y0 ) = 0, f xy ( x0, y0 ) = B,

f xx ( x0, y0 ) = A,
f yy ( x0, y0 ) = C,则
(1) AC − B2 > 0时具有极值,且 时具有极值, 当A < 0时 极 值 当A > 0时 极 值 有 大 , 有 小 ;
格 日 数 可推 拉 朗 乘 法 推 到 变 多 两 的 况 可 广 自 量 于 个 情 : 找 数 要 函 u = f ( x, y, z, t ) 在 件 ϕ( x, y, z, t ) = 0, 条
ψ ( x, y, z, t ) = 0 下的极值。
构 函 ( 中 数) 先 造 数 其 λ1, λ2 均 常 ) 为 数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题
一、填空题: 1、函数 f ( x, y) (6x x 2 )(4 y y 2 ) 在_______点取 得极_________值为___________. 2、函数 z xy 在附加条件x y 1 下的极______值 为_____________. 3、方程 x 2 y 2 z 2 2x 4 y 6z 2 0 所确定的 函数z f ( x, y) 的极大值是___________,极小值 是_____________.
Ay
2( x
2 y2
)
0
根据实际问题可知最小值在定义域内应存在, 因此可
断定此唯一驻点就是最小值点. 即当长、宽均为 3 2
高为
3
2 23
2
3
2
时,
水箱所用材料最省.
例4. 有一宽为 24cm 的长方形铁板 , 把它折起来做成
一个断面为等腰梯形的水槽, 问怎样折法才能使断面面
积最大.
解: 设折起来的边长为 x cm, 倾角为 , 则断面面积
若 f ( x0 , y)及 f ( x, y0 ) 在( x0 , y0 ) 点均取得 极值,则 f ( x, y)在点( x0 , y0 )是否也取得极值?
思考题解答
不是. 例如 f ( x, y) x 2 y 2,
当x 0时, f (0, y) y2在(0,0) 取极大值; 当 y 0时, f ( x,0) x 2在(0,0) 取极小值; 但 f ( x, y) x2 y2在(0,0) 不取极值.
条 件 极 值 : 对自变量除定义域限制外,
还有其它条件限制 条件极值的求法:
方法1 代入法. 例如 ,
在条件(x, y) 0下, 求函数 z f (x, y) 的极值
转 化
从条件(x, y) 0中解出 y (x)
求一元函数 z f (x, (x)) 的无条件极值问题
条件极值:对自变量有附加条件的极值.
Fx 3 x2 y2z 0

Fy 2x3 yz 0 Fz x3 y2 0
x y z 12
解得唯一驻点(6,4,2) ,
故最大值为 umax 63 42 2 6912.
四、小结
多元函数的极值
(取得极值的必要条件、充分条件)
多元函数的最值 拉格朗日乘数法
思考题
件为
f x ( x0 , y0 , z0 ) 0, f y ( x0 , y0 , z0 ) 0, fz ( x0 , y0 , z0 ) 0.
仿照一元函数,凡能使一阶偏导数同时为零 的点,均称为函数的驻点.
注意: 驻点
极值点
例如, 点(0,0)是函数z xy的驻点,但不是极值点.
问题:如何判定一个驻点是否为极值点?
购买 x 张磁盘,y盒录音磁带达到最佳效果, 效果函数为 U( x, y) ln x ln y.设每张磁
盘8元,每盒磁带10元,问他如何分配这200 元以达到最佳效果.
问题的实质:求 U( x, y) ln x ln y 在条 件 8x 10 y 200下的极值点.
无条件极值: 对自变量只有定义域限制 极值问题
x y
,
故有
fx
f
y
x y
0

fx fy
x y
极值点必满足
fx x 0 f y y 0 (x, y) 0
引入辅助函数 F f (x, y) (x, y)
则极值点满足:
辅助函数F 称为拉格朗日( Lagrange )函数. 利用拉格 朗日函数求极值的方法称为拉格朗日乘数法.
推广
拉格朗日乘数法可推广到多个自变量和多 个约束条件的情形.
例如, 求函数 u f (x, y, z) 在条件 (x, y, z) 0,
(x, y, z) 0下的极值.
设 F f (x, y, z) 1(x, y, z) 2 (x, y, z)
解方程组
可得到条件极值的可疑点 .
例5. 要设计一个容量为 V0 的长方体开口水箱, 试问
二、在 平 面 xoy 上 求 一 点 , 使 它 到 x 0, y 0 及 x 2 y 16 0三直线的距离平方之和为最小.
三、求内接于半径为a 的球且有最大体积的长方体.
四、在第一卦限内作球面 x 2 y 2 z 2 1的切平面,使 得切平面与三坐标面所围的四面体的体积最小,求 切点的坐标.
设函数 z f ( x, y)在点( x0 , y0 )具有偏导数,且 在点( x0 , y0 )处有极值,则它在该点的偏导数必 然为零: f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0 .
证 不妨设z f ( x, y)在点( x0 , y0 ) 处有极大值, 则对于( x0 , y0 )的某邻域内任意 ( x, y) ( x0 , y0 ) 都有 f ( x, y) f ( x0 , y0 ),
f (P)为极小(大) 值
f (P)为最小(大) 值
例3. 某厂要用铁板做一个体积为2 的有盖长方体水
问当长、宽、高各取怎样的尺寸时, 才能使用料最省?
解: 设水箱长,宽分别为
x , y m ,则高为
2 xy
m
,
则水箱所用材料的面积为
2x y
2 x
2 y

Ax
2( y
2 x2
)
0
得驻点 ( 3 2 , 3 2 )
每天的收益为 f ( x, y)
( x 1)(70 5x 4 y) ( y 1.2)(80 6x 7 y)
求最大收益即为求二元函数的最大值.
二、多元函数的极值和最值
观察二元函数 z
xy ex2 y2
的图形
播放
1、二元函数极值的定义
设函数z f ( x, y)在点( x0 , y0 ) 的某邻域内 有定义,对于该邻域内异于( x0 , y0 ) 的点( x, y) : 若满足不等式 f ( x, y) f ( x0 , y0 ) ,则称函数 在 ( x0 , y0 ) 有 极 大 值 ; 若 满 足 不 等 式 f ( x, y) f ( x0 , y0 ) ,则称函数在( x0 , y0 ) 有极
定理 2(充分条件)
设函数z f ( x, y)在点( x0 , y0 )的某邻域内连续,
有一阶及二阶连续偏导数,
又 f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0 , 令 f xx ( x0 , y0 ) A, f xy ( x0 , y0 ) B ,
f yy ( x0 , y0 ) C , 则 f ( x, y)在点( x0 , y0 ) 处是否取得极值的条件如下: (1)AC B2 0时具有极值,
拉格朗日乘数法
要找函数z f ( x, y)在条件 ( x, y) 0 下的
可能极值点,
先构造函数F ( x, y) f ( x, y) ( x, y),
其中 为某一常数,可由
f f
x y
( (
x, x,
y) y)
x y
( (
x, x,
y) y)
0, 0,
பைடு நூலகம்
( x, y) 0.
解出 x, y, ,其中x, y 就是可能的极值点的坐标.
sin 0 , x 0
12 2x x cos 0
24cos 2x cos x(cos2 sin2 ) 0
解得:
60, x 8 (cm)
3
由题意知,最大值在定义域D 内达到, 而在域D 内只有
一个驻点, 故此点即为所求.
三、条件极值拉格朗日乘数法
实例: 小王有200元钱,他决定用来购买两 种急需物品:计算机磁盘和录音磁带,设他

1 (24 2x 2x cos
2
) xsin
24xsin 2x2 sin x2 cos sin
(
D
:
0
x
12,
0
2
)
x 24
x
24 2x
A 24x sin 2x2 sin x2 cos sin
(
D
:
0
x
12,
0
2
)

Ax 24sin 4xsin 2xsin cos 0 A 24x cos 2x2 cos x2 (cos2 sin2 ) 0
将P(1,1)代入原方程, 有z1 2,
当z1
2时,A
1 4
0,
所以z f (1,1) 2为极小值;
当z2
6 时, A
1 4
0,
所以z f (1,1) 6为极大值.
z2 6,
求函数z f ( x, y)极值的一般步骤:
第一步 解方程组 fx ( x, y) 0, f y ( x, y) 0
水箱长、宽、高等于多少时所用材料最省?
解: 设 x , y , z 分别表示长、宽、高, 则问题为求x , y ,
z 使在条件 x yz V0 下水箱表面积 S 2(xz yz) x y
最小.
令 F 2(xz yz) x y (x yz V0 )
z
解方程组
2z y yz 0 2z x xz 0 2(x y) xy 0
故当 y y0, x x0时,有 f ( x, y0 ) f ( x0 , y0 ),
说明一元函数 f ( x, y0 )在 x x0处有极大值,
必有 f x ( x0 , y0 ) 0;
类似地可证 f y ( x0 , y0 ) 0.
推广 如果三元函数u f ( x, y, z)在点P( x0 , y0 , z0 ) 具有偏导数,则它在P( x0 , y0 , z0 )有极值的必要条
求出实数解,得驻点.
第二步 对于每一个驻点( x0 , y0 ),
相关文档
最新文档