函数的极值与最值
函数的极值与最大值最小值

lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n
则
0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.
函数的极值和最值

函数的极值和最值函数的极值和最值是数学中重要的概念,可以帮助我们研究函数的特性和解决实际问题。
本文将介绍函数的极值和最值的定义、求解方法以及应用。
一、函数的极值函数的极值即函数在某个区间内的最大值或最小值。
极值分为两种情况:局部极值和全局极值。
1. 局部极值局部极值是指函数在某个开区间内的最值。
设函数f(x)在点x=a处连续,如果在a的某个邻域内,对于任意的x,有f(x)≤f(a)(或f(x)≥f(a)),则称f(a)是f(x)在该邻域内的局部最小值(或局部最大值)。
其中,f(a)是该局部极值的函数值,a是极值点。
2. 全局极值全局极值是指函数在整个定义域上的最值。
设函数f(x)在[a, b]上连续,如果对于任意的x∈[a, b],有f(x)≤f(a)(或f(x)≥f(a)),则称f(a)是f(x)在[a, b]上的全局最小值(或全局最大值)。
其中,f(a)是该全局极值的函数值,a是极值点。
二、函数极值的求解方法根据函数的极值定义,我们可以通过以下方法求解函数的极值:1. 导数法导数法是一种常用的求解函数极值的方法。
首先,我们计算函数f(x)的导数f'(x),然后找出导数为零或不存在的点。
这些点就是可能的极值点。
接下来,对每个可能的极值点进行二阶导数检查,确认是否为极值。
当二阶导数大于0时,该点为局部最小值;当二阶导数小于0时,该点为局部最大值。
2. 区间法区间法适用于离散函数或无法通过导数法求解的情况。
首先,我们将定义域分为若干个区间,并计算每个区间的函数值。
然后,通过比较函数值得出极值。
例如,当函数值最大时,该点为局部最大值;当函数值最小时,该点为局部最小值。
三、函数极值的应用函数的极值在数学和实际问题中具有广泛的应用。
以下是几个典型的应用场景:1. 优化问题函数的极值在优化问题中起到重要作用。
例如,在生产过程中,我们希望找到产量最大或成本最低的方式,这就需要求解函数的最值。
2. 经济学经济学中的需求、供给、收益等问题通常涉及函数的极值。
函数的极值与最值

函数的极值与最值
函数极值和最值是一个在数学中很重要的概念,它们都涉及到函数的测
量值的变化:极值涉及函数的单调增加和减少,最大值和最小值涉及到函数
的执行值在变换的范围。
函数极值指的是函数上某一点,使得在它一定范围内该函数在该点处取
得局部极大值或者局部极小值,即使函数值改变,其在该点处取得的极大值
和极小值依然是不变的。
极值点可能是极大值点也可能是极小值点,它们分
别表示函数在某个点处取得的局部最大值和局部最小值。
最值指的是函数在一个定义域中的最大值和最小值,这意味着在定义域内,该函数只能取到一个最大值或者一个最小值,而且该值不会改变。
所以,最值用来描述函数输出范围;而极值是用来描述函数变化趋势和单调性的。
显而易见,求一个函数的极值和最值是一个很重要的技能,也是很多科
学计算中的重要组成部分,因此需要学习者对函数极值、最大值和最小值的
计算过程都有足够的掌握,以便更好的实现计算的目的。
函数的极值和最值

函数的极值和最值函数是数学中的一种重要概念,它描述了不同变量之间的关系。
在函数中,极值和最值是十分重要的概念,它们能够帮助我们找到函数的最高点和最低点,从而更好地理解函数的性质和特点。
本文将介绍函数的极值和最值的概念及其求解方法。
一、函数的极值在数学中,函数的极值是指函数在某个点上取得的最大值或最小值。
根据极值的概念,我们可以将其分为两种类型:极大值和极小值。
当函数在某点的函数值比其邻近的其他点都大时,该点上的极值称为极大值;当函数在某点的函数值比其邻近的其他点都小时,该点上的极值称为极小值。
为了找到函数的极值,我们可以通过求函数的导数来实现。
首先,我们需要求函数的导数,然后将导数为零的点找出来。
这些点就是函数可能存在极值的点。
接下来,我们可以通过求二阶导数来判断这些点是否是极值点,也就是通过判断导数的变化来确定函数的极值。
二、函数的最值函数的最值是指函数在某个区间或整个定义域上取得的最大值或最小值。
与极值相似,最值也可以分为最大值和最小值两种类型。
当函数在某个区间或整个定义域上的函数值比其他区间或整个定义域上的其他函数值都大时,该函数值称为最大值;当函数在某个区间或整个定义域上的函数值比其他区间或整个定义域上的其他函数值都小时,该函数值称为最小值。
要求解函数的最值,我们需要先找到函数的临界点和边界点。
临界点是指导数为零或导数不存在的点,而边界点是指函数定义域的端点。
然后,我们将这些点代入函数式中计算函数值,最后找到其中的最大值和最小值。
综上所述,函数的极值和最值是函数分析中的重要内容。
通过求导数和二阶导数,我们可以找到函数可能存在极值的点,并通过判断导数的变化来确定函数的极值。
而求解函数的最值则需要找到临界点和边界点,通过计算函数值来确定最大值和最小值。
这些方法可以帮助我们更好地理解函数的性质和特点。
最后,需要提醒的是,在实际问题中,函数的极值和最值往往对应着一些有意义的物理量或经济量,通过求解函数的极值和最值,我们能够找到最优解或者最优方案,为实际问题的解决提供有力的理论基础。
函数的极值和最值

函数的极值和最值在微积分中,函数的极值和最值是常见的概念。
极值指的是函数在某一区间内取得的最大值或最小值,而最值则是函数在定义域内取得的最大值或最小值。
一、极值的定义对于一个函数f(x),如果存在某个数a使得在a的邻域内的任意x,都有f(x)≤f(a)或者f(x)≥f(a),那么称函数f(x)在点a处有极大值或极小值。
极大值和极小值统称为极值。
二、求解极值的方法为了求解函数的极值,我们需要采用求导的方法。
具体步骤如下:1. 对函数f(x)求导,得到f'(x)。
2. 找出f'(x)的零点,即解方程f'(x)=0。
3. 将零点代入f''(x),判断它们的正负性。
- 如果f''(x)>0,则在该点处取得极小值。
- 如果f''(x)<0,则在该点处取得极大值。
- 如果f''(x)=0,则无法判断,需要进行其他方法的检验。
三、最值的定义函数的最大值和最小值是函数在定义域内取得的最大值和最小值。
最大值用符号"max"表示,最小值用符号"min"表示。
四、求解最值的方法求解函数的最值需要考虑函数的定义域,并结合求导和极值的方法。
1. 函数定义域的判断- 如果函数是一个有限闭区间上的连续函数,则最值必然存在。
- 如果函数的定义域是整个实数集,则最值可能不存在。
2. 求解最值的步骤- 首先,对函数f(x)求导,得到f'(x)。
- 然后,找出f'(x)的零点。
- 接着,将零点和函数的端点代入f(x),求出这些点对应的函数值。
- 最后,比较这些函数值,找出最大值和最小值。
需要注意的是,在求解最值时,还需要考虑函数的边界特性和特殊点,如间断点、开区间端点以及无界区间的端点等。
总结:函数的极值和最值是微积分中的重要概念,通过对函数的导数、零点和二阶导数的分析,可以求解函数的极值和最值。
函数的极值与最值的求解(导数法)

函数的极值与最值的求解(导数法)函数的极值与最值是数学中重要的概念,它们在数学建模、优化问题等方面具有广泛的应用。
在本文中,我们将介绍如何使用导数法求解函数的极值与最值问题。
一、函数的极值与最值在介绍如何求解函数的极值与最值之前,我们首先需要明确这两个概念的定义。
对于函数f(x),如果存在一个区间I,对于区间内的任意x,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么f(x0)就是函数在区间I内的极小值(或极大值)。
而函数f(x)在整个定义域内的最小值和最大值则被称为函数的最小值和最大值。
二、导数法求解极值与最值导数法是求解函数极值与最值常用的方法之一。
通过求解函数的导数和判断导数的正负,可以找到函数的极值点及其对应的极值。
1. 求解函数的极值点首先,我们需要求解函数f(x)的导数,并令导数等于零,即f'(x)=0。
解这个方程可以得到函数的临界点(即导函数为零的点),也就是可能的极值点。
2. 判断极值类型在求得了函数的临界点之后,我们需要判断每个临界点对应的极值类型,即是极小值还是极大值。
我们可以通过求解导数的二阶导数来判断,即求解f''(x),其中f''(x)表示函数f(x)的二阶导数。
若f''(x) > 0,则说明该临界点对应的极小值;若f''(x) < 0,则说明该临界点对应的极大值;若f''(x) = 0,则需要进行其他方法进一步判断。
3. 比较端点值除了求解临界点之外,我们还需要比较函数在区间的端点值,并找出其中的最大值和最小值。
三、实例分析为了更好地理解导数法求解极值与最值的过程,我们举一个实例来进行说明。
假设我们要求解函数f(x)=x^3-3x^2+2x在区间[-1, 3]的极值和最值。
1. 求解导数和临界点首先,求解函数f(x)的导数,得到f'(x)=3x^2-6x+2。
4.5 函数的极值与最值

: x1 , x 2 , x 3 : x4 , x5
极值点或为f ( x )为零的点或为f ( x )不存在的点 .
极值点的必要条件
二.函数极值的求法
定理1(极值点的必要条件)点 x 0 是函数 f ( x )的极值点的
必要条件是:
f ( x 0 ) 0 或者 f ( x 0 ) 不存在
故总利润 L R C 3720 P 40 P 2 77250 令 L 3720 80 P 0 , 得 P 46 . 5
又 L 80 0 , 故当 P 46 . 5 ( 元 )时 , L 有唯一极大值
,
即最大值 . 所以商品单价定为 46 . 5 元时利润最大
(极值的可疑点或临界点) 判定极值点的充分条件
机动 目录 上页 下页 返回 结束
定理2(极值第一判别法) 设函数 f ( x ) 在点 x 0 的某一空心
邻域内可导,且在点 x 0 连续 .
( 1 )如果在点 x 0的左邻域内有
f ( x ) 0,在点 x 0的右 f ( x ) 0,在点 x 0的右 f ( x ) 恒为正或恒为
f (1 ) 7 .
例4
求下列函数的最大值和最小值:
3
(1 ) y x 3 x ,
x [ 2 , 2 ];
因此最大值是 最小值是
(2) y xe
x
y ( 1) y ( 2 ) 2 , y (1 ) y ( 2 ) 2 .
x [0 , 2 ];
x 2 x 在 x 0 点取得极小值
在 x 1 点取得极大值
y (1 ) 1 .
例2 求出函数 f ( x ) x 3 3 x 2 24 x 20 的极值.
高等数学第三章 第5节 函数的极值与最值

极小值 f ( 3) 22.
9
f ( x ) x 3 3 x 2 9 x 5图形如下
M
m
10
例2. 求函数 f ( x) ( x 1) x 的极值 .
2 3
2 3
2 x 5 5 2 f ( x ) x ( x 1 ) x 解: 1) 求导数 3 3 3 x 2) 求极值可疑点 2 令 f ( x ) 0 , 得 x1 5 x2 0 导数不存在的点
所以 ( x0 , f ( x0 ))是y f ( x)的一个拐点。
18
因为当 x x0时, 有f ( x) f ( x0 ) 0,
当x x0时,有f ( x) f ( x0 ) 0,
所以f ( x0 )是f ( x )的极小值,
即
f ( x) f ( x0 ) 0 所以f ( x)单增,
y y
o
x0
x
x0
o
x
(是极值点情形)
7
y
y
o
x0
x
o
x0
x
(不是极值点情形)
求极值的步骤:
(1)确定函数的定义域;
(2) 求函数的驻点及导数不 存在的点 ; (3) 由定理判断极值点 ; (4) 求极值.
8
例1 求出函数 f ( x ) x 3 3 x 2 9 x 5 的极值. 解
x0不是f ( x)的极小值点。
19
二、最值的求法
若函数 f ( x) 在 [a, b] 上连续,则f ( x) 在 [a, b] 上的最大值与最小值存 在.
y
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极值的综合应用
极值问题的综合应用主要涉及到极值的正用和逆 用,以及与单调性问题的综合,题目着重考查已 知与未知的转化,以及函数与方程的思想、分类 讨论的思想在解题中的应用,在解题过程中,熟 练掌握单调区间问题以及极值问题的基本解题策 略是解决综合问题的关键.
例5
设函数f(x)=x3-6x+5,x∈R. (1)求函数f(x)的单调区间和极值; (2)若关于x的方程f(x)=a有三个不同的实根,求实 数a的取值范围.
例1、在边长为60cm的正方形铁皮的四角切去
相等的正方形,再把它的边沿虚线折起,做成 一个无盖的方底箱子,箱底边长为多少时,箱 子容积最大?最大容积是多少?
x
60 x
x x
60
解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积
V(x)=x2h=(60x2-x3)/2(0<x<60).
令V ( x) 60x 3 x2 0 ,解得x=0(舍去),x=40.且V(40)=
S( x) 6x2 24x 16.
令
S(
x)
0
,得x1
2
2
3 3
,
x2
2
2
3 3
.
x1 (0,2), 所以当 因此当点B为(2 2
x
3
2
23 3
时,S( x)max
32 9
3
.
,0) 时,矩形的最大面积是
32
3.
2
9
※拓展提高
我们知道,如果在闭区间【a,b】上函数 y=f(x)的图像是一条连续不断的曲线,那 么它必定有最大值和最小值;那么把闭区间 【a,b】换成开区间(a,b)是否一定有最 值呢?
∴f(x)=x3-12x2-2x+1.∴f′(x)=3x2-x-2. 当 x 变化时,f′(x)、f(x)的变化情况如下表:
x (-∞,-23 ) -23
f′(x)
+
0
(-23,1) -
1 (1,+∞)
0
+
f(x) 单调递增 极大值 单调递减 极小值 单调递减
∴f(x)的递增区间为(-∞,-23)和(1,+∞),递 减区间为(-23,1). 当 x=-23时,f(x)有极大值,f(-23)=4297; 当 x=1 时,f(x)有极小值,f(1)=-12.
(所说区间的也适用于开区间或无穷区间)
例2: 如图,在二次函数f(x)=
4x-x2的图象与x轴所
y
围成的图形中有一个
内接矩形ABCD,求这 个矩形的最大面积.
解:设B(x,0)(0<x<2), 则
x
A(x, 4x-x2).
从而|AB|= 4x-x2,|BC|=2(2-x).故矩形ABCD的面积
为:S(x)=|AB||BC|=2x3-12x2+16x(0<x<2).
当 x= 2时,f(x)有极小值 5-4 2.
(2)由(1)的分析知 y=f(x)的图象的 大致形状及走向如图所示.所以, 当 5-4 2<a<5+4 2时,直线 y =a 与 y=f(x)的图象有三个不同 交点,即方程 f(x)=a 有三个不同 的解.
【名师点评】 用求导的方法确定方程根的个数, 是一种很有效的方法.它通过函数的变化情况, 运用数形结合思想来确定函数图象与x轴的交点 个数,从而判断方程根的个数.
问题在于如果在没有给出函数图象的情况下,怎 样才能判断出f(x3)是最小值,而f(b)是最大值呢?
导数的应用-----求函数最值. 求f(x)在闭区间[a,b]上的最值的步骤
(1)求f(x)在区间(a,b)内极值(极大值或极小值)
(2)将y=f(x)的各极值与f(a)、f(b)(端点处) 比较,其中最大的一个为最大值,最小的 一个最小值.
D、
解:由题设条件得:
f f
(1) 10 / (1) 0
以上都不对
1 a b a
2
入检验
10
3 2a b 0
解之得
a3 b 3
或ab
4 11
注意:f/(x0)=0是函数取得极值的必要不充分条件
已知极值求参数
已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时,注意两点: (1)常根据极值点处导数为0和极值两个条件列方 程组,利用待定系数法求解. (2)因为导数值等于零不是此点为极值点的充要 条件,所以利用待定系数法求解后必须验证根的 合理性.
较极值与端点函数值大小上,从而 解决问题,往往伴随有分类讨论。
应用
1、实际应用问题的表现形式,常常不是以纯数学模 式反映出来:
首先,通过审题,认识问题的背景,抽象出问题的实质; 其次,建立相应的数学模型, 将应用问题转化为数学问题,再解.
2、求最大(最小)值应用题的一般方法: (1)分析实际问题中各量之间的关系,把实际问题 化为数学问题,建立函数关系式,这是关键一步; (2)确定函数定义域,并求出极值点; (3)比较各极值与定义域端点函数的大小, 结合实 际,确定最值或最值点.
方法感悟
1.极值的概念理解 在定义中,取得极值的点称为极值点,极值点指 的是自变量的值,极值指的是函数值.请注意以 下几点: (1)极值是一个局部概念.由定义,极值只是某 个点的函数值与它附近点的函数值比较是最大或 最小,并不意味着它在函数的整个定义域内最大 或最小.
(2)函数的极值不一定是惟一的,即一个函数在 某个区间上或定义域内的极大值或极小值可以不 止一个. (3)极大值与极小值之间无确定的大小关系,即 一个函数的极大值未必大于极小值,如下图所示,
所有极值连同端点函数值进行比较, 最大的为最大值,最小的为最小值
※典型例题6
求函数f (x) 6 12x x3在3,3上的最值.
解:f ' x 12 3x2 x 3,3 1、求出所有导数为0的点;
令f ' x 0,解得:x 2或x 2 2、计算;
例2 已知 f(x)=x3+ax2+bx+c 在 x=1 与 x= -23时都取得极值. (1)求 a,b 的值; (2)若 f(-1)=32,求 f(x)的单调区间和极值. 【思路点拨】 先求导数 f′(x),再令 f′(x)=0
得到关于 x 的一元二次方程,其两根为 x1=1 与
x2=-23,最后由一元二次方程根与系数的关系求 a,b 的值.
A m,若 M=m,则 f ( x) ( )
(A)等于 0 (B)大于 0 (C)小于 0 (D)以上都有可能
A 3.函数 y= 1 x4 1 x3 1 x2 ,在[-1,1]上的最小值为( ) 432
(A)0
(B)-2 (C)-1
(D) 13 12
小结
求在[a,b]上连续,(a,b)上可导的函数f(x)在 [a,b]上的最值的步骤:
【思路点拨】 (1)利用导数求单调区间和极值.
(2)由(1)的结论,问题转化为y=f(x)和y=a的图象
有3个不同的交点,利用数形结合的方法求解.
【解】 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x1=- 2,x2= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以 f(x)的单调递增区间为(-∞,- 2)和( 2, +∞);单调递减区间为(- 2, 2). 当 x=- 2时,f(x)有极大值 5+4 2;
(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较,其中 最大的一个是最大值,最小的一个是最小值.
※思考
已知函数f (x) 2x3 6x2 a在2,2上有最小值 37 1求实数a的值; 2求f (x)在2,2上的最大值。
反思:本题属于逆向探究题型; 其基本方法最终落脚到比
2、f (x) 6 12x x3
x
1 3
,
3
3、f (x) 3x x3 x2,3
※典型例7题
(浙江)(本题满分12分) 已知a为实数,f ( x) ( x2 4)( x a)
(Ⅰ)求导数 f ( x) ;
(Ⅱ)若 f (1) 0 ,求 f ( x)在[-2,2]上的 最大值和最小值;
函数f(x)有一个极值点时,极值点必定是最值点。
有两个极值点时,函数有无最值情况不定。
如果函数f(x)在开区间(a,b)上只有一个极 值点,那么这个极值点必定是最值点。
16000.
2
由题意可知,当x过小(接近0)或过大(接近60)时,箱子 的容积很小,因此,16000是最大值.
答:当x=40cm时,箱子容积最大,最大容积是16000cm3.
说明
1、设出变量找出函数关系式;确定出定义域; 所得结果符合问题的实际意义
2、若函数 f ( x )在定义域内只有一个极值点x0 , 则不需与端点比较, f ( x0 )即是所求的最大值或 最小值.
不同.
如果在x0的两侧f′(x)的符号相同,则x0不是极
值点.
二、新课——函数的最值 y
观察右边一
个定义在区间
[a,b]上的函数
y=f(x)的图象.
a x1 o X2
X3
bx
发现图中__f_(_x_1)_、__f(_x_3_) _是极小值,__f_(_x_2)____是极 大值,在区间上的函数的最大值是___f(_b_)_,最小值 是__f_(_x_3)__。
【解】 (1)f′(x)=3x2+2ax+b,令 f′(x)=0. 由题设,知 x1=1 与 x2=-23为 f′(x)=0 的解. ∴-23a=1-23,b3=1×(-23). ∴a=-12,b=-2. (2)由(1)知 f(x)=x3-12x2-2x+c,