哲学与数学史视域中的极限思想探析

合集下载

极限思想的辩证思考与理解

极限思想的辩证思考与理解

极限思想的辩证思考与理解
极限思想是近代西方哲学史上重要的思想实践,也是现代哲学中一个重要的分支。


探索了人对自我、对他者、对整个世界的理解。

极限思想的发展指出,超越自我认识中的
短暂且不理性的体验,它只有通过一种解释他者的知识才能加深,从释放的局部感知出发,在所有的生活体验中认识具体的自我,在考虑他者时进行社会分析,还有对整个世界的不
断持续探索。

极限思想坚持一种辩证思考和理解的方法,强调从体验角度去形成解释。

首先,它要
求我们在思考过程中更加理解、客观,把当时遇到的问题当成一个谜团,将答案变成多种
可能性,并通过辩证思考实现谜团的破解。

其次,要求我们把实际问题和所发生的事情以
多种视角来考虑,考虑不同的方面和因素,而不是以上位者的视角解释整个现象,在考虑
过程中用经验积累去获得知识,形成逻辑性,最终得出一个客观的观点。

最后,极限思想
也要求我们注重功利性,在任何一次思考过程中,都要站在受众人的角度去评估,根据自
己的理论和观点,制定出有意义的思路,实现把问题的核心想法讲清楚,发掘有效的解决
方案。

极限思想的辩证思考和理解,让我们能够更好地理解问题的关键,从内部的各个层面
去看待问题,而不是仅仅表面上的一层,真切地感受到自我、他者和整个世界的存在,避
免被表层现象所局限,更深入、更全面地发现生活真谛并尝试打破以往的思维框架,让我
们拓展自己的思维深度,获得更多的解决方案。

中国古代数学中的极限思想[含论文、综述、开题-可编辑]

中国古代数学中的极限思想[含论文、综述、开题-可编辑]

设计(20 届)中国古代数学中的极限思想所在学院专业班级信息与计算科学学生姓名学号指导教师职称完成日期年月摘要:“极限”是高等数学中最基础和最重要的概念之一,高等数学中许多深层次的理论及其应用都是极限的延拓与深化。

其中,中国古代数学中的极限思想对整个数学的发展起到了非常重要的作用。

本文在中国古代数学中前人研究的基础上,结合国外古代极限思想,介绍极限思想的萌芽、发展到完善的整个过程,并对其相应的应用和影响做较为全面的探讨。

我们首先介绍中国古代的极限思想,接着从三个角度对中西方的极限思想进行比较,最后总结中国古代极限思想对后世数学的影响极其在文学、哲学和实际生活中的应用。

关键字:古代数学;极限思想;割圆术;圆周率;微积分The Ancient Chinese Mathematics Limit Thought Abstract:" Limit " is one of the most basic and most important concepts in the field of higher mathematics, many deep-level mathematics theories and their applications are extension and deepening of limit. Especially the ancient Chinese limit thought plays a very important role during the whole development of mathematics. Based on the ancient Chinese mathematics and previous studies, combined with the ancient limit of foreign ideas, in this paper we will introduce the whole process of limit thought from embryonic, development to perfect and make a comprehensive discussion about its corresponding applications and impact. First of all, we introduce the ancient Chinese limit thought. Then, we compare the Chinese and the west limit thought from three aspects. Last, we summarize the influence of the ancient Chinese mathematics limit thought on mathematics and the application in literature philosophy and actual life.Key words:Ancient mathematics; limit thought; the method of cutting circle; π; calculus .目录1 绪论 (1)1.1 问题的背景和意义 (1)1.2 极限相关概念 (2)1.2.1 数列极限 (2)1.2.2 函数极限 (2)2 中国古代的极限思想 (4)2.1 极限思想的萌芽 (4)2.2 关于数π (4)2.2.1 π的来历 (4)2.2.2 π的数值精确度的发展 (4)3 中西方极限思想的比较 (7)3.1 割圆术与穷竭法 (7)3.2 先秦极限观与古希腊极限观的比较 (8)3.2.1 对无穷大和无穷小认识的比较 (8)3.2.2 对无限可分性、连续性以及无穷数和的认识比较 (8)3.3 从中西方哲学传统看微积分的创立 (9)4 对后世数学的影响及其应用 (10)4.1 对后世数学的影响 (10)4.2 极限思想在文学和哲学方面的影响 (10)4.3 极限思想在古代的应用 (11)5 结论 (13)致谢 (14)参考文献 (15)1 绪论1.1 问题的背景和意义微积分是近代数学产生的标志之一,而其中极限概念与极限方法是近代微积分学的基础。

极限思想的探讨

极限思想的探讨

引言极限的思想是近代数学的一种重要思想.所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想.极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的完美应用,同时也为辩证法论证世界提供了丰富的表现例证.有了极限思想,常数和变数、有限和无限、精确和近似、任意和确定、抽象和具体、量变与质变、直线与曲线等矛盾问题在这里都得到了完美的科学体现和辩证的统一.用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果.极限思想作为一种哲学和数学思想,其发展经历了思想萌芽、理论发展和理论完善时期.在其漫长曲折的演变历程中,布满了众多哲学家和数学家们的奋斗足迹,闪烁着人类智慧的光芒.极限理论的形成为微积分提供了理论基础,为人类认识无限提供了强有力的工具,它从方法论上凸显出来高等数学不同于初等数学的魅力,是近现代数学发展的一种重要思想和数学方法.理清极限思想的发展过程,熟练掌握极限解题方法,揭示极限思想的核心内容与哲学思想的内在联系,对理解和解决数学史和数学哲学史上的一些疑难问题问将有重大的帮助.1 产生与发展庞加莱说过:能够作出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和神秘美等能力的人,而且只限于这种人.一切数学概念都来自于社会实践,经过千锤百炼从而被提炼为概念,再经过使用、推敲、充实、拓展,不断完善为经典的理论.毫无疑问,极限也是社会实践的产物.1.1 极限思想的产生极限思想的产生可以追溯到古代,战国时代哲学家庄周所著的《庄子.天下篇》中就有关于原始的极限思想的应用:“一尺之棰,日取其半,万世不竭”.意思是一尺长的木棒,第一天取去一半,剩下二分之一尺,第二天再取去二分之一尺的一半,剩下四分之一尺…….按照这样的分法分下去,长度越来越小,但无论多小,永远分不完.也就是说随着分割的次数增加,棰会越来越短 ,长度接近于零,但又永远不会等于零.墨家观点与惠施不同,提出一个“非半”的命题,墨子说“非半弗,则不动,说在端”.意思是说将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点.墨家有无限分割最后会达到一个“不可分”的思想,名家则有“无限分割”的思想.名家的命题论述了有限长度“无限可分”性,墨家的命题指出了无限分割的变化和结果.显然名家和墨家的讨论,对数学理论的发展具有巨大推动作用.已反映出极限思想的萌芽,这无疑成为极限概念产生的丰厚的沃土.但从现有的史料来看,这种思想主要局限于哲学领域,还没有应用到数学上,更加谈不上应用极限的方法来解决数学问题.公元3世纪,我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”.他创造性地将极限思想应用到数学领域.所谓割圆术,具体的方法是把圆周分割得越细,内接多边形的边数越多,其内接正多边形的周长就越是接近圆周.如此不断地分割下去,一直到圆周无法再分割为止,当到了圆内接正多边形的边数无限多的时候,它的周长就与圆周几乎“吻合”,进而完全一致了.刘徽将正多边形的面积算到了3072边形,由此求出的圆周率为3.1416,是当时世界上最早也是最准确的数据.后来祖冲之用这个方法把圆周率的值计算到小数点后七位,这种对于某个值无限接近的思想就是后来建立极限概念的基础.在国外,古希腊时期也有极限思想.古希腊的巧辩派中有相当一批人对几何三大问题感兴趣.安提芬在研究“化圆为方”的问题时想到用边数不断增加的内接正多边形来接近圆面积,当多边形的边数不断加倍时内接正多边形与圆周之间存在的空隙就被逐渐“穷竭”,不过没有具体计算的记载.公元前4世纪,古希腊数学家欧多克斯创立了较严格的确定面积和体积的一般方法—“穷竭法”,这种方法假定量的无限可分性,并且以下面命题为基础:“如果从任何量中减去一个不小于它的一半的部分,从余部中再减去不小于他的一半的另一部分,等等,则最后将留下一个小于任何给定的同类量的量.”应用穷竭法,欧多克斯正确地证明了“圆面积与直径的平方成正比例”以及“球的体积与直径的立方成正比例等结论”.欧多克斯的穷竭法,也已体现出了极限论思想.古希腊最伟大的数学家阿基米德巧妙地运用欧多克斯等人的穷竭法,通过严密的计算,解决了求几何图形的面积、体积、曲线长、计算二值等大量的计算问题.它突破了传统的有限运算,采用了无限逼近的思想,将需要求积的量分成许多微小单元,再利用另一组容易计算总和的微小单元来进行比较,他的无穷小量概念到17世纪被牛顿作为微积分的基础.由此,我们可以看到在数学无穷思想发展之初,古人就己在极限领域开创了一个光辉的起点.1.2极限思想的发展极限思想的进一步发展是与微积分的建立紧密相连的.16世纪的欧洲处于资本主义萌芽时期,生产力发展,生产和技术中大量的问题,只用初等数学的方法已经无法解决,这就要求数学突破传统常量范围,来提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展的社会背景.16世纪,荷兰人斯泰文在考察三角形重心的过程中借助几何直观用极限思想思考问题,将极限概念向前推进了一步,但极限思想仍只停留在思想的层面,没有形成系统的理论体系.进入17世纪,特别是牛顿在建立微积分的过程中,由于极限没有准确的概念,也就无法确定无穷小的概念,利用无穷小运算时,牛顿做出了自相矛盾的推导:在用“无穷小”作分母进行除法时,无穷小量不能为零;而在一些运算中又把无穷小量看作零,约掉那些包含它的项,从而得到所要的公式,显然这种数学推导在逻辑上是行不通的.那么,无穷小量是零还是非零?这个问题困然牛顿也困扰着与牛顿同时代的众多数学家.真正意义上的极限概念产生于十七世纪,由英国数学家约翰瓦里斯提出了变量极限的概念,他认为变量的极限是当变量无限逼近的一个常数,它们的查是一个给定的任意小的量.他的这种描述,把两个无限变化的过程表述出来,揭示了极限的核心内容.约翰的这个表述将极限思想向前做了延伸.到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论,他在《分析教程》中指出,“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值.特别地,当一个变量的数值(绝对值)无限地减小使之收敛到极限0,就说这个变量成为无穷小”.柯西把无穷小视为以0为极限的变量,这就澄清了无穷小“似零非零”的模糊认识,这就是说,在变化过程中,它的值可以是非零,但它变化的趋向是“零”,可以无限地接近于零.柯西试图取消极限概念中的几何直观,作出极限的明确定义.但柯西的叙述中还存在描述性的词语,如“无限趋近”、“要多小就有多小”等,因此还保留着几何和物理的直观痕迹,没有达到彻底严密化的程度.德国数学家,曾被誉为“现代分析之父”的维尔斯特拉斯提出了极限的定量的定义,给微积分提供了严格的理论基础:“如果对任何,总存在自然数,使得时,不等式恒成立”.这个定义定量地、具体地刻画了两个“无限过程”之间的联系,排除了以前极限概念中的直观痕迹,将极限思想转化为数学的语言,用数学的方法描述,完成了从思想到数学的一个转变,使极限思想在数学理论体系中占有了合法的地位.2 极限思想的应用2.1 极限思想在数学分析中的应用极限思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科.在数学分析中的连续函数、导数、定积分、级数的敛散性、多元函数的偏导数等概念都是利用极限思想的方法来定义的.首先,我们引出极限的定义.定义1:设为数列,为定数.若对任给的正数,总存在正整数,使得当时有,则称数列收敛于,定数称为数列的极限,记作,或,读作“当趋于无穷大时,的极限等于或趋于”.例1:证明事实上,当时,即:,当时,,就有所以2.2 微积分与极限极限思想是分析数学最基本的概念之一,特别是极限思想贯穿整个微积分的始终.微积分思想的确立,微积分理论的掌握与应用,以及数学思维的建立都与极限思想的把握有很大关系.设质点在作直线运动时的运动规律为,则质点在时刻的瞬时速度为:.而平面曲线上过点处的切线斜率为:.问题不同,但在数学上的表现却相同,这我们就可以引出导数的意义:设函数在的某邻域内有定义,若极限(1)存在,则称函数在点处可导,并称该极限为函数在点的导数,记作.令,,则(1)式可改写为(2)所以,导数是函数增量与自变量增量之比的极限.这个增量比称为函数关于自变量的平均变化率,而导数则为在处关于的变化率.若(1)(或(2))式极限不存在,则称在点处不可导.可见,微分学的基本概念导数是用极限来定义的.例 2:设,试证证:两式相减可得因,,所以,又因为,故当,时右端极限为零,原极限获证.微分学很多的定理定义都是利用极限的思想直接或间接定义的.首先引出微分的定义.定义2:设函数定义在点的某邻域内.当一个增量,时,相应地得到函数的增量为.如果存在常数,使得能表示成, (3)则称函数在点可微,并称(3)式中的第一项为在点的微分,记作或.定理1:函数在点可微的充要条件是函数在点可导,而且(3)式中的等于证明【必要性】若在点可微,由(3)式有.取极限后有.这就证明了在点可导且导数等于.【充分性】若在点可导,则在点的有限增量公式表明函数增量可表示为的线性部分与较高阶的无穷小量之和,所以在点可微,且有这个定理的证明就充分利用了极限的思想.微分学的另一基本概念积分也是用极限来定义的.定义3:设是定义在区间上的有界函数,用点将区间任意分成个子区间.子区间及其长度记作.在每个子区间上任取一点并作和式.如果当最大的子区间的长度时,和式的极限存在,并且其极限值与的分发及的取法无关,则称在区间上可积,此极限值称为在区间上的定积分,记作即定义4:设为平面上可求长度的曲线段,为定义在上的函数.对曲线作分割,把分成个可求长度的小曲线段,的弧长记为,分割的细度,在上任取一点.若有极限,切的值与分割与点的取法无关,则称此极限为在上的第一型曲线积分,记作.由上充分体现了极限思想在微积分中无可替代的重要地位,除了以上所述,微积分中还有许多重要的定义也离不开极限思想,极限思想无可争议的成为了微积分的核心.2.3 极限思想在代数中的应用行列式和矩阵是线性代数非常重要的内容,极限思想作为数学研究的重要理论基础,自然而然的被应用于行列式的计算以及矩阵的证明.这里我们会做简单的介绍,从而验证极限思想研究的重要性.定义5:在矩阵中,设阶矩阵,若矩阵中是关于变量的函数,则我们称矩阵为矩阵函数.定义6:在矩阵中,设阶矩阵,,为连续函数,若有,称矩阵函数收敛于矩阵,记作或令.例 3 :设、为阶方阵,则有等式成立(1)若、都为阶可逆矩阵,则,因为、都可逆,则也可逆,所以有:,,故.(2)若时,则,此时有或或、以及都为零矩阵,故有:.(3)若,时,可知在矩阵中至少有一个元素的代数余子式不等于零,不妨设(为中元素的代数余子式):令, ,显然,当时,,此时为可逆矩阵,又因为, 所以:由定义6可得:当时,,所以,即:即:当时有:.类似可证明当时也有成立.关于阶行列式的计算,有的题目运算比较复杂不易发现规律,有的运算量非常庞大,这时我们就可以适当运用极限的思想来求解.例 4:特殊行列式证明:已知利用数学归纳法,当时,;当时,;以此类推,可推测当时, .假设,当时行列式对上式也成立,即:,;当时:按第一行展开====故推测等式成立.综上所述:,时.当时,上述公式不能直接求解,但此时的值仍然存在,可设为常数,令:可知,为关于的连续幂函数,且当时,同样有:当,根据连续函数的性质有:即当时,,可以验证,将时展开计算也得到该表达式.所以:3 极限思想的哲学意义极限理论的建立,使数学摆脱了许多与无穷有关的悖论的困扰,悖论思想是一种探索性的辩证思维,这种思维的追索可以揭示一个概念、一种学说中存在的深刻的内在矛盾性.极限思想正是在这种悖论思维中得以发展和完善的.学习极限思想对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力,形成正确的世界观和人生价值观都有极好的作用.极限思想的哲学意义主要表现在以下几个方面:(1)极限思想是变与不变的对立统一.“变”与“不变”反映了事物运动变化与相对静止的两种不同状态,是事物两种对立的矛盾状态.辩证唯物主义观点认为,它们在一定条件下可以相互转化.极限思想的研究提供了“变”与“不变”相互转化的方法和理论依据.使得人们能够由“不变”认识了“变”,实现了“变”中求得“不变”.因为有了极限的思想和方法,为人们解决事物变化中的问题提供了科学方法,形成了实用有效的“微元法”.(2)极限思想是有限与无限的对立统一.有限与无限有着本质的不同,但二者又有联系,无限是有限的发展,同时借助极限法,从有限认识无限.例如,在极限式,中对应数列中的每一项,这些不同的数值既有相对静止性,又有绝对的运动性.数列中的每一项和是确定不变的量,是有限数;随着无限增大,有限数向无限接近,正式这些有限数的无限变化,体现了无限运动的变化过程,这种无限运动变化结果是数值.因此在极限思想中无限是有限的发展,有限是无限的结果,他们既是对立又是统一的.(3)极限思想是近似与精确的对立统一.近似与精确在一定条件下可以相互转化,这种转化是理解数学运算的重要方法.在极限抽象的概念中,引入“圆内接正多边形面积”,其内接多边形面积的近似值是该圆面积,当多边形的边数无限增大时,内接多边形的面积无限接近于圆的面积,取极限值后就可以得到圆面积的精确值,这就是借助极限法,从近似认识精确.虽然近似与精确是两个性质不同、完全对立的概念,但是通过极限法,建立两者之间的联系,在一定条件下可以相互转化.因此,近似与精确既是对立又是统一的.(4)极限思想是量变与质变的对立统一.辩证唯物主义认为,事物是处于不断变化过程中的,是量变和质变的统一.量变是事物发生变化的前提和准备条件,质变是事物变化的必然结果.当事物的量积累到一定的基础、达到事物变化的度时就一定发生质变.极限思想生动地诠释了马克思主义这一科学原理.例如对任何一个圆内接正多边形来说,当它边数加倍后,得到的还是内接正多边形,是量变,不是质变.但是,不断地让边数加倍,无限地进行下去的时候,多边形就质变为圆,多边形面积就转化为圆的面积.极限的思想方法让我们从量变认识到了质变.(5)极限思想是过程与结果的对立统一.过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一.例如,平面内一条曲线上某点的切线斜率为.当曲线上的点无限接近于点的过程中,是变化过程,是变化结果.一方面,无论曲线上点多么接近点,都不能与点重合,同样曲线上变化点的斜率也不等于,这体现了过程和结果的对立性;另一方面,随着无限接近过程的进行,斜率越来越接近,二者之间有紧密的联系,无限接近的变化结果使得斜率等于了,这体现了过程与结果的统一性.所以,极限思想是过程与结果的对立统一.(6)极限思想是否定与肯定的对立统一.任何事物的内部都包含着肯定因素和否定因素,都是肯定方面和否定方面的对立统一.单位圆和它的内接正多边形分别是两个事物的对立面,内接正多边形是事物对自身的肯定,其中也包含着否定,这种内在的否定因素是通过圆内接正多边形的边数的改变来体现的.随着圆内接正多边形的边数逐渐增加到无穷时,内接正多边形的面积转化为圆的面积,促使该事物转化为自己的对立面.由肯定达到自身的否定,这体现了否定与肯定的对立;圆的内接正多边形和圆虽然是两个对立的事物,但是二者之间有紧密的联系,圆内接正多边形的面积可以转化为圆的面积,而圆是通过逐步增加内接正多边形的边数来实现的,从而建立了两者的联系,体现了否定与肯定的统一.小结极限的思想方法作为人类发现数学问题和解决数学问题的一种重要手段,它不仅是我们学习极限或高等数学所必须理解的,也是我们解决数学问题或实际问题所必须掌握的思想方法.它使得局部与整体,微观与宏观,过程与状态,瞬间与阶段的联系更加明确.使我们既可以居高临下,从整体角度考虑问题,又可以析理入微,从微分角度考虑问题.它的产生为数学的发展增加了新的动力,使数学得以在新的领域不断开拓新的道路,也使哲学找到了更多新的用以描述和论证世界的工具.本文从极限的产生与发展入手,描述了极限思想产生的背景,前进的过程,再到完善。

极限方法与哲学思想读后感

极限方法与哲学思想读后感

极限方法与哲学思想读后感一。

1.1极限方法,这玩意儿可真是数学里的一个奇妙概念。

就像是在探索一个无尽的深渊,又或者是追逐那遥不可及的地平线。

它充满了神秘的魅力,让人忍不住想要深入探究。

从数学的角度来看,极限是一种对变量变化趋势的描述,就好比是看着一个东西一点点接近某个值,但可能永远也达不到。

这就像我们生活中的梦想,总是在前方吸引着我们,我们努力靠近,却可能永远无法完全实现。

比如说,当我们求一个函数在某一点的极限时,就像是在推测这个函数在那个点周围的行为趋势,就像我们推测一个人在特定情境下的反应一样。

1.2极限方法在数学发展中的地位那可相当重要。

它就像是数学大厦的一块基石,很多定理和理论都是建立在极限概念之上的。

没有极限方法,微积分就无从谈起。

微积分是现代科学技术的重要工具,这就好比如果没有地基,高楼大厦就建不起来一样。

极限方法让数学家们能够处理那些看似难以捉摸的变化量,就像在一团乱麻中找到了头绪。

二。

2.1哲学思想呢,它是一种对世界、对人生的深层次思考。

哲学思想就像一盏明灯,照亮我们在生活中的道路。

它不像科学那样追求精确的答案,而是更多地关注那些根本性的问题,比如“我是谁”“我从哪里来”“我要到哪里去”。

哲学思想有很多流派,就像不同的菜系一样,各有各的风味。

有的哲学思想强调理性,就像一道精心烹制的法式大餐,精致而有条理;有的则更注重感性,像充满烟火气的川菜,热烈而直接。

2.2极限方法与哲学思想的联系那可真是妙不可言。

极限方法中的那种趋近于某个值但又不一定能达到的概念,和哲学中的很多思想有相通之处。

比如说,哲学中的理想状态,就像极限中的那个目标值。

我们在生活中追求完美,可是完美就像极限一样,可能永远无法真正达到。

我们只能不断地朝着那个方向努力,就像函数不断地趋近于极限值一样。

这就好比是我们追求幸福,幸福似乎总是在前方一点点的地方,我们一直追逐,却难以完全握住。

2.3这种联系还体现在思考的深度和广度上。

高等数学中极限思想的浅析

高等数学中极限思想的浅析

高等数学中极限思想的浅析微积分学教育教学中构建学生“数学极限思想”的研究微积分学作为数学学科的重要组成部分,对于培养学生的数学素养和解决实际问题具有重要意义。

然而,微积分学具有一定的难度,学生在学习过程中经常遇到困难。

为了帮助学生更好地理解和掌握微积分学知识,本文将探讨在微积分学教育教学中如何构建学生的“数学极限思想”。

数学极限思想是指通过研究变量在无限变化过程中的趋势,用极限值来描述变量的变化规律。

在微积分学中,极限概念是非常重要的基础知识,许多微积分学概念和定理都涉及到极限思想。

因此,构建学生的数学极限思想对于学好微积分学具有重要意义。

在微积分学教育教学过程中,可以从以下几个方面入手构建学生的数学极限思想:引入极限概念在微积分学教学中,首先要让学生了解极限的概念。

教师可以介绍一些实际例子,如速度、加速度、曲线斜率等,通过这些例子让学生感受到极限的思维方式。

无限与有限的对立统一教师要帮助学生理解无限和有限的对立统一。

虽然学生在初学微积分学时很难理解无限的概念,但可以通过有限次运算来获得无限次运算的结果。

例如,利用极限的运算性质求出函数在某一点的极限值,这个极限值是无限次运算的结果,但可以通过有限次的计算得到。

理解极限的思维方式学习微积分学需要掌握极限的思维方式。

极限思想是通过研究变量在无限变化过程中的趋势,用极限值来描述变量的变化规律。

教师可以通过具体例子帮助学生理解极限的思维方式,例如利用极限的定义证明函数的连续性、导数和定积分等微积分学基本概念。

应用极限思想解决实际问题学习微积分学的目的是为了解决实际问题。

教师可以通过一些实际例子来让学生感受到极限思想的应用。

例如,利用极限的思想解决经济增长、人口增长等问题;又如,利用极限的定义证明物理中的基本定理,如能量守恒定律等。

在实际教学过程中,教师可以根据具体的教学内容和学生的实际情况选择合适的教学方法。

例如,可以采用探究式教学法、案例分析法、问题解决法等多种教学方法,帮助学生深入理解极限思想,并培养其应用微积分学知识解决实际问题的能力。

浅谈中学数学中的极限思想毕业论文

浅谈中学数学中的极限思想毕业论文

浅谈中学数学中极限思想的应用1 极限思想极限思想是指用极限概念分析问题和解决问题的一种数学思想,是近代数学的一种重要思想.简单地说极限思想即是用无限逼近的方式从有限中认识无限,用无限去探求有限,从近似中认识精确,用极限去逼近准确,从量变中认识质变的思想.1.1 极限思想的产生与一切科学的思想方法一样,极限思想也是社会实践的产物.极限思想可以追溯到古代,刘徽的“割圆术”就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,他们借助间接证法——归谬法来完成了有关的证明.16世纪,荷兰数学家斯泰文改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明.如此,他就在无意中指出了把极限方法发展成为一个实用概念的方向. 1.2 极限思想的发展与完善极限思想的进一步发展和完善是与微积分紧密相联系的.16世纪欧洲的处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题只用初等数学的方法已无法解决,为了解决这些问题,科学家们开始专心研究促进技术革新.在这样的社会背景下,牛顿和莱布尼茨以无穷小量为基础建立了微积分,微积分的建立极大的促进了极限思想的发展.到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论.为了排除极限概念中的直观痕迹,德国数学家维尔斯特拉斯提出了极限的静态的定义,给微积分提供了严格的理论基础.所谓n A =,就是指“如果对任何0ε>,总存在自然数N ,使得当n N >时,不等式n A ε-<恒成立”.这个定义,借助不等式,通过ε和N 之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系.因此,这样的定义是严格的,可以作为科学论证的基础,至今仍在数学分析书籍中使用.1.3 中学数学中的极限思想极限思想并非只出现在高等数学中.在中学数学里也有很多方面体现了极限思想,其中最典型的就是在求圆面积时候的用到分割法.在初高中时我们只知道圆的面积公式:2S Rπ=(R为圆的半径).其实,深入探究会发现圆面积的计算就是运用极限的思想得出的.在学圆的面积之前,我们只学过三角形和常规的四边形的面积计算,那么我们如何把圆的面积化为求三角形或者四边形的面积呢?如图1-1是一个以R为半径的圆O,我们给这个圆O作n条半径,如图1-2所示.图这样我们就可以发现,圆的面积是由n个小扇形相加得来.这时你会发现,当n不断增大()n→∞时,圆里面的每一个小扇形我们就可以近似的看成一个小三角形,此小三角形的底可以近似的看成扇形的圆弧()1n n A A+,高为圆的半径R.我们知道三角形的面积为112n nS R A A+≈⋅,则整个圆的面积为122334111112222n nS R A AR A A R A A R A A+≈⋅+⋅+⋅+⋅⋅⋅+⋅()122334112n nS R A A A A A A A A+≈⋅+++⋅⋅⋅+由于12233412n nA A A A A A A A Rπ++++⋅⋅⋅+=带入即可得出圆面积的近似值为:2S Rπ≈,当n越大时越精确,当n→∞即得证.圆面积的探讨运用了“无限分割”的思想方法,同时也体现了“化曲为直,化整为零,积零为整,逐渐趋近近视值”的极限思想.当然这只是极限思想运用的一部分,在中学数学中还有很多的问题渗透了极限的思想.如函数、数列、球的表面积和体积推导、双曲线的渐近线、曲线的切线等等无不包含着极限思想的渗透和运用.本文我们结合一些具体的例子来探讨极限思想在初等数学中的一些运用.2 极限思想在函数中的渗透在中学数学中,很多幂函数、指数函数、正切函数、双曲线等等都存在渐近线,通过利用极限思想可以巧妙的研究这些函数的渐近线.例1 研究函数1+y x x =的图像.分析 函数1+y x x=的定义域为{}|0x x ≠.且为奇函数,因此可以先做出0x >时的函数图像.(1)当0x >时,由基本不等式可得1+2y x x=≥,当且仅当1x =时min 2y =;(2)当0x +→ 时,y →+∞,所以0x =是1+y x x=的一条渐近线;(3)当+x →∞时,10x →,y x →,所以y x =也是1+y x x=的一条渐近线.由此三个条件即可作出函数1+y x =的图像.如图2-1:图2-1极限思想在函数中的应用非常广泛,不仅应用于研究一些函数的渐近线,在求一些特殊函数的最值的问题中极限思想也是很好的切入点.例2 试讨论函数y =的最值. 分析 注意到函数表达式可以变形为:y=从数形结合的角度来看,函数值y可以看成做是平面直角坐标系中x轴上的动点(,0)x到两定点(32)A,、(11)B,的距离之差,即y MA MB=-(如图2-1),由平面几何的知识,易得当M移动到2(M'在线段AB的延长线上)点时y值最大maxy=下面我们探讨此函数有无最小值,分三种情况:①当M在如图2中M(线段AB的垂直平分线l与x轴的交点)右侧移动时;②当M在M'与M中间图2-1图2-2下面我们先看①时由于MB MA>,不妨记=y MB MA--,图2-2中,点1M、2M均在M的右侧(其中2M又在1M的右侧).我们来比较111()=y M B M A--与222()=y M B M A--的大小,移项之后即比较12M B M A+与21M B M A+的大小.设1M A与2M B相交于点T,则有1212<()()M B M A M T BT M T AT++++12()()M T AT M T BT=+++21M B M A=+即12()()y y-<-所以当M在M右侧向右运动时,()y-的值越来越大,下面我们讨论()y-有无最大值.上面已知y MB MA-=-===114-=()114lim lim x x y →∞--=4211==+ 于是当x →+∞时,=y MB MA --的值越来越大的趋近于2,但是永远都不可能达到2,即y -没有最大值.但是<2y -,即2y >-.所以在第①情况下y 的取值范围为(]2,0-.同理,在第③种情况下,MB MA <当M 在M '左侧时(]1x ∈-∞-,,讨论y MA MB =-.计算可得y 的取值范围为(.在第②种情况下,当M 在M '与0M 之间且由0M 向M '移动时,y 值不断增大,所以y 的取值范围为⎡⎣0.综上所述,本题y的值域为(2-本题在高中阶段可能就只会让我们求此函数的最大值,但是如果我们进一步研究这个问题的时候,就能发现其与高等数学的衔接点.本题所涉及的函数最值问题,看似跟极限思想没多大联系,但是通过深入的研究我们才能发现其中的奥妙.3 极限思想在数列中的应用极限分析法是研究数列问题的一个有效方法.对于一个等比数列,在高中教材中给出的求和公式是11(1)(1)1(1),,.n n a q q q q S na -≠-=⎧⎪=⎨⎪⎩等比数列的求和公式是要分情况的,即1q =和1q ≠的情况.这样最简单的等比数列——常数列就被分裂出来.然而,利用极限就可以将它合二为一.对于上面1q ≠的情况,讨论1q →时,n S 的极限.111(1)lim lim 1n n q q a q S q→→-=- 2111(1)(1)lim 1n q a q q q q q-→-+++⋅⋅⋅+=-2111lim (1)n q a q q q-→=+++⋅⋅⋅+1na =这也就是说,1q =时的n S 就是1q ≠时n S 的极限.那么,等比数列求和公式就可以用一个公式来表示1(1)lim 1n n n q a q S q→-=-当然,这比高中课本上给出的公式要复杂点,但是这显然让我们重新思考了问题,使得这些分类的东西变成一个整体.对于一个无穷数列,它本身就是一个极限形式.所以在数列的有关问题中涉及到极限思想的题目很多,灵活运用极限思想能让我们解题方法更加简便,减少计算量和计算时间,优化解题过程.例3 已知数列{}n a 中,满足1=1a ,且对任意自然数n 总有12n n n a a a +-=,问是否存在实数a ,b 使得2()3n n a a b =--对于任意自然数n 恒成立?若存在,给出证明;若不存在,说明理由.分析 假设存在这样的实数a 、b ,满足2()3n n a a b =--对于任意自然数n 恒成立,则lim n x a a →∞=;再由12n n n a a a +-=两边同取极限有2aa a =-,解得0a =或3a =验证,当0a =时,数列{}n a 应该是以1为首项,以23-为公比的等比数列,显然,不可能对于任意自然数n 都满足12n n n a a a +-=恒成立.所以0a =不满足题意.当3a =时,将1=1a ,代入2()3n n a a b =--,求得3b =-,则233()3n n a =+⋅-,验证可得同样不满足对于任意自然数n 都满足12n n n a a a +-=恒成立.所以3a =同样不满足题意.综上所述,0a =和3a =都不满足题意,所以假设与题意矛盾,不存在这样的a 、b .在高中阶段,对于解这样的数列问题一般思路是按照 “由一般到特殊再到一般”的思维原则,再通过数学归纳法将{}n a 表达出来.但是对于这一个题目用这样的方法远没有借用极限思想简单.4 极限思想巧解立几问题在一些复杂立体几何的问题中,我们只要巧妙的利用无限逼近的思想,就可以将原本复杂难懂的问题简单化.像这样的问题在高中数学中很常见,比如像下面这道例题.例4 在四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( ).(0A.(1B ,C.(0D ,分析 一般的方法,我们通过三角形三条边之间的等量关系列不等式,通过解不等式可以得出来,但是通过极限思想也可以巧妙的解决这个问题.显然,对于四根长度相等的直铁条有两种摆放方法: (1)底面为等腰三角形,两腰长度为2,底长为a (图4-1); (2)底面为等边三角形,三条边的长都为2(图4-2).图 4-2 由于a 是ABC ∆的边,所以04a <<.如图4-1,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于BDC ∠的角平分线)上运动,且A 到B 、C 的距离为2.当A D →时,0a →;当平面ABC 与平面BDC 重合时,A 与D 距离最远即a 值最大.此时由菱形的性质可解得a =由于此图形必须要构成三棱锥,所以平面ABC 与平面BDC 不可以重合,即取不到所以(0,a ∈.如图4-2,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于DBC ∠的角平分线)上运动,且A 到B 的距离为2.当A 在DBC ∠的角平分线上时,a 最小,可解得a =-;当A 在DBC ∠的角平分线的反向延长线上时,a 最大,可解得a =.由于此图形必须要构成三棱锥,所以A 不能在DBC ∠的角平a ∈.综上所说,a ∈,所以此题选A .这是2010年辽宁省的一道高考题,如果用一般的方法解不等式将会非常复杂,也浪费了考试时宝贵的时间.而如果使用无限逼近思想来研究就可以将原本复杂难懂的问题简单化. 从本题可以发现,极限思想在几何解题过程中的应用可以起到良好的导向作用,同时也是一种探索解题思路或切入点的有效武器.例5 正三棱锥相邻两侧面所成的角为α,则α的取值范围是 ( )o o .(0180)A ,o o .(60180)B , o o .(600)C ,9 o o .(00)D ,6 分析 如图4-3所示,正三棱锥S ABC -中,SO 是正三棱锥S ABC -的高,图4-3当0180.SO→时,S无限靠近于O,此时相邻两个侧面的夹角趋近于o 当SO→∞时,正三棱锥S ABC-无限接近一个底面为正三角形的三棱柱,这时两侧面的夹角越来越小,趋近于o60.所以α的取值范围为o o(60180),,故本题选B.从这些例题可以感受到,极限思想不仅是一种解决问题的方法,同时它也是一种思维方式.我们可以从极限或极端状态的数学问题的研究中得到启发,从而得到数学关系的猜想,有时也会通过这种启发找到问题的解决方法.5 总结本文结合具体的例题讨论了极限思想在初等数学中的一些应用.当然,极限思想作为数学中的重要的思想在中学数学中的涉及范围远不止这几个方面.所以我觉得,在我们的中学教学中,若能通过一些例题,来向学生渗透极限思想,对学生数学思维能力的提高将会有很大帮助.参考文献[1]谢慧杰.极限思想的产生、发展与完善.数学学习与研究,2008,(09):13-15.[2]梁克强.刘徽割圆术.中学生数学,2010,(06):23-24.[3]杨君芳.例析极限思想在高中数学中的一些应用.中学数学研究,2009,11(1):27-28.[4]孙道斌.利用极限思想巧解立几问题.中学生数学,2007,(1上):17-18.[5]吕士虎,徐兆亮.从高等数学看中学数学,2005,(03):1-3.[6]华东师大数学系.数学分析第三版.北京:高等教育出版社,2001:42-48.[7]张永辉,用极限思想解题.中学生数学,2006,(9上):8-9.。

浅论高等数学中的极限思想

浅论高等数学中的极限思想

浅论高等数学中的极限思想浅论高等数学中的极限思想谷亮(辽宁铁道职业技术学院辽宁锦州 121000 中国)摘要:极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学思想,本文从极限的定义、极限思想的价值、教学中如何渗透极限思想几个方面进行了简要论述。

关键词:高等数学,极限,极限思想、教学一、极限的概念1、数列极限:设{x }n 为一个数列,a 为一常数,若0ε?>,总存在一个正整数N ,使得当n N >时,有n x a ε-<,称a 是数列{x }n 的极限。

记作lim n n x a →∞=2、函数极限:设函数(x)f 在点a 的某去心邻域内有定义,A 为一常数,若0ε?>,总存在一个正数δ,使得当0x a δ<-<时,有(x)f A ε-<,称A 是当x 趋向于a 时函数(x)f 的极限。

记作lim (x)x af A→=。

自变量变化过程还包括:,,,x a x a x x +-→→→+∞→-∞,极限的定义类似。

在数学发展的过程中,出于不同需要,还引进了不同意义下的极限概念,比如在集论中引进了集列的上、下极限的概念,在无穷级数论中引进级数绝对收敛与条件收敛的概念,以及在函数逼近论中引进了一致逼近、平均逼近等的极限概念.无论怎样定义,其本质都是一样的,都是从有限观念发展到无限观念的过程。

二、极限思想的价值极限思想揭示了变量与常量、无限与有限的关系,通过极限思想,我们可以从有限来认识无限,以直线近似代替曲线,以不变认识变化,从量变认识质变。

因此,极限思想具有由此及彼的创新作用,极限思想方法也广泛用于微分方程、积分方程、函数论、概率极限理论、微分几何、泛函分析、函数逼近论、计算数学、力学等领域。

生活中也有这样的例子:一张饼,第一天吃它的一半,第二天吃它的一半的一半,第三天吃它的一半的一半的一半,……如此这样,这张饼能吃得完吗?显然是永远吃不完的,虽然饼越来越小,但还是有的。

浅谈极限思想

浅谈极限思想

浅谈极限思想摘要:对极限思想的起源与发展进行探究,将极限的发展历程分为三个阶段,具体介绍了每个阶段的代表人物以及阶段特点,重点放在极限概念的演变及其文化价值上。

最后结合探究极限发展历程的经历,提出自己对极限教学的建议。

关键词:极限思想;数学史实;文化价值:教学建议如果把数学比作一个浩瀚无边而又奇异神秘的宇宙,那么极限思想就是这个宇宙中最闪亮最神秘最牵动人心的恒星之一。

极限,单从字面上来讲,就足以让人浮想联翩,发散思维,引发出无限的想象。

“挑战极限,超越自我”曾是我们激励自己努力学习的铮铮誓言,然而这只是生活中我们对极限的理解,还很幼稚很肤浅,与数学上所讲的“极限”还有很大的区别。

结合自己近期来搜集整理的资料,我想对极限思想的起源与发展以及一些极限的简单应用做一个小小的探究。

我觉得,我们可以把极限思想的发展历程大致分为三个阶段——萌芽阶段、发展阶段、进一步发展完善阶段。

一、极限思想的产生数学家拉夫纶捷夫曾说:“数学极限法的创造是对那些不能够用算术、代数和初等几何的简单方法来求解的问题进行了许多世纪的顽强探索的结果。

”极限思想的历史可谓源远流长,一直可以上溯到2000多年前。

这一时期可以称作是极限思想的萌芽阶段。

其突出特点为人们已经开始意识到极限的存在,并且会运用极限思想解决一些实际问题,但是还不能够对极限思想得出一个抽象的概念。

也就是说,这时的极限思想建立在一种直观的原始基础上,没有上升到理论层面,人们还不能够系统而清晰地利用极限思想解释现实问题。

极限思想的萌芽阶段以希腊的芝诺,中国古代的惠施、刘徽、祖冲之等为代表。

提到极限思想,就不得不提到著名的阿基里斯悖论——一个困扰了数学界十几个世纪的问题。

阿基里斯悖论是由古希腊的著名哲学家芝诺提出的,他的话援引如下:“阿基里斯1不能追上一只逃跑的乌龟,因为在他到达乌龟所在的地方所花的那段时间里,乌龟能够走开。

然而即使它等着他,阿基里斯也必须首先到达他们之间一半路程的目标,并且,为了他能到达这个中点,他必须首先到达距离这个中点一半路程的目标,这样无限继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哲学与数学史视域中的极限思想探析
/****************************************************************************/ 亲爱的朋友,您好,此文档为我站的宣传信息,若需查看部分资料或者购买此套资料,请联系我们的客服或登陆我们的网站--3A学习网万分感谢您对我站的关注与支持!!!
/****************************************************************************/
“t0证丘n沁,舫mch觚g她t0
unch缸giIlg,丘.om s锄ght丘gur嚣t0 cuⅣed丘gur鹤,丘Dm小团饷觚Ve change to qllalitatiVe change,丘.0m approxinlation to exaCti_tIlde.The髓_tabIisll卫nent of也e liIIlit 也eoreIn mak懿mams get rid ofm姐y仃0ubl镐ofparadoxes a:bout砌te.It is删for
not only cultiVating ways缸d qllaIiti懿of thinl【ing,bIIt髓Il瑚cing the曲ili够of
ana:lyzillg and solVing pI.0blems.
4
Key Wrords:me Li血id船,P饿,IIIfinite,Calclll惦,Dial cc_如.
己I 吉
J I 口
极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限
理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨
认真、孜孜以求的奋斗足迹。

极限思想的演变历程,是数千年来人类认识世界和
改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地
求实、创新的生动写照。

依据辨证唯物主义的观点来研究数学的对象和特点,研究数学发生和发展的
规律,研究数学思想和哲学思想的关系,研究数学内容的现实原型和辩证性质等
问题,是很有意义的工作。

本文将站在哲学和数学史的视角,仅就极限思想的来
源、极限思想的发展历程、极限内容的辨证性质等问题进行探析。

在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂
的情况。

纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家
们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家
们一次一次地进行探究求证,使这一思想不断得以发展和完善。

而数学的求证又
给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。

从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的
极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。

极限理论是微积分学的基础,极\n76边形得到:
3.1415926<兀<3.1415927,
这是领先国外上千年的惊人成果。

在国外,古希腊时期也有极限思想。

古希腊的巧辩派中有相当一批人对几何
三大问题感兴趣。

安提芬在研究。

化圆为方一的问题时想到用边数不断增加的内
6
接正多边形来接近圆面积,当多边形的边数不断加倍时内接正多边形与圆周之间
存在的空隙就被逐渐“穷竭’’,而布赖森(Bryson,约公元前450年)则从相反的
方向,提出通过圆的外切正多边的面积来逼近圆面积的思想。

不过没有他们具体
计算的记载。

公元前4世纪,古希腊数学家欧多克斯创立了较严格的确定面积和体积的一
般方法一“穷竭法",这种方法假定量的无限可分性,并且以下面命题为基础:“如果从任何量中减去~个不小于它的一半的部分,从余部中再减去不小于
他的一半的另一部分,等等,则最后将留下一个小于任何给定的同类量的量。

一①应用穷竭法,欧多克斯正确地证明了“圆面积与直径的平方成正比例”以及
“球的体积与直径的立方成正比例等结论”。

欧多克斯的穷竭法,也已体现出了
极限论思想。

德谟克利特(Democritus,约公元前46卜前357),古希腊数学家、哲学家,
他把哲学上的原子论引入了数学,创立了数学原子论。

数学原子认为,线段、
面积、立体多是由一些不可分的原子构成的,而计算面积、体积就是将这些“原子"累加起来。

虽然思想比较粗糙,但却是不可分量的雏形,带有了古朴的积
分思想。


古希腊最伟大的数学家阿基米德生于西西里岛的一个希腊殖民城市叙拉古,
他的数学著作主要有:《圆的测量》、《论球与圆柱》、《抛物线求积法》、《论螺线
等等》,被誉为数学之神。

他巧妙地把欧多克斯等人的穷竭法与德谟克利特的原子论观点结合起来,通过严密的计算,解决了求几何图形的面积、体积、曲线长、
计算万值\n数学家魏尔斯特拉斯给
出更为完善的到目前仍在使用的“£一6’’方法。

另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。

不过,在
当时情况下,由于实数的严格理论尚未建立起来,所以柯西的极限理论还不可能
完善。

柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过独立深入的研究,都将
分析基础归结为实数理论,并于十九世纪的七十年代各自建立了完整的实数体系。

魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的
戴德金分割;康托尔提出用有理“基本序列”的极限来定义无理数。

由此,沿柯
西开辟的道路,建立起来了严谨的极限理论与实数理论,完成了分析学的逻辑奠
基工作。

数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这
座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。

重建微积分学基础
这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成,极限理论的
完善使微积分有了坚实的基础。

9
(一)芝诺悖论
芝诺悖论与极限思想
芝诺,古希腊哲学家。

他提出的四个悖论虽是哲学命题。

但却对数学无穷思
想的发展产生了至深至远的影响。

芝诺牛活在古希腊的意大利半岛南部的城邦爱利亚(E1ea),芝诺是位唯心主
义哲学家,属于爱利亚学派。

爱利亚学派的创始人是克塞诺芬(Xenophanes),它
否认世界的物质“始基’’,认为“有一个唯一的神”。

爱利亚学派把克塞诺芬的“唯
一的神”解释为“唯一的存在”,还否认运动的存在,因而陷入形而上学。

芝诺是
克塞诺芬的门徒巴门尼德(Pa瑚enides)的学生和义子,后来成为爱利亚学派的
中坚人物。

巴门尼德继承并发展了他的先驱克塞诺芬的神论思想,他在回答世界本原问
题时认为只有“存在”(=神)是不生不灭的,它是完整、唯一和不
/****************************************************************************/
3A学习网------专业提供交通土木专业论文、体育专业论文、教育专业论文、法律专业论文、计算机专业论文、美学专业论文、宗教学专业论文、语言学以及应用语言学专业论文、刑事法专业论文、伦理学专业论文、科技技术与哲学专业论文、管理类专业论文、传播学专业论文、汉语学文学专业论文、农业经济管理专业论文、工商管理专业论文、国际贸易学专业论文、机械模具专业论文、文学专业论文、生物专业论文、物理专业论文、数学专业论文、材料化工专业论文、外国语专业论文、艺术专业论文、经济方面专业论文本文档为3A学习网宣传资料,如需全套资料,请上网站选择,我们的网站是-----3A学习网
/****************************************************************************/。

相关文档
最新文档