小学五年级数学第三单元《小数的意义和性质》知识点整理

合集下载

小数的意义和性质知识点归纳

小数的意义和性质知识点归纳

小数的意义和性质知识点归纳小数的意义和性质知识点归纳小数是数学中一种重要的数形式,它可以表示介于整数之间的数值,并且能够精确到小数点后任意位数。

小数具有许多特殊的性质和意义,对于数学的学习和实际应用都有重要的作用。

本文将对小数的意义和性质进行归纳,以帮助读者更好地理解和应用小数。

一、小数的意义1. 表示实数的部分:小数能够表示介于整数之间的数值,例如1.5表示了介于1和2之间的数值。

2. 表示精确度:小数能够将数字的精确程度提高到小数点后的位数,例如1.333表示了比1.3更为精确的近似值。

3. 表示比例和百分比:小数常用于表达比例和百分比的数值,例如0.5表示50%。

二、小数的性质1. 小数的有限性和无限性:小数可以是有限的,也可以是无限的。

例如0.75是有限小数,而1/3=0.3333...是无限小数。

2. 小数的循环和不循环:循环小数是指小数部分出现循环的情况,例如1/3=0.3333...;不循环小数是指小数部分没有出现循环的情况,例如0.75。

3. 小数的大小比较:对于小数的大小比较,可以将小数转化为分数进行比较。

如果分母相同,则比较分子的大小;如果分母不同,则将小数乘以适当的倍数,使得分母相同后再比较大小。

4. 小数的运算:小数可以进行加、减、乘、除等基本运算。

在进行小数的加减运算时,将小数的小数点对齐后进行相加或相减;在进行小数的乘除运算时,先将小数转化为分数,然后进行相应的运算,最后将结果转化为小数形式。

5. 小数的化简:小数可以进行化简,即将一个无限循环小数或无限不循环小数化简为分数的形式。

例如0.3333...可以化简为1/3;0.242424...可以化简为8/33。

6. 小数的近似值:小数可以用有限的小数表示无限小数或循环小数的近似值。

例如3.14可以用来近似表示圆周率π。

三、小数的应用小数的应用广泛。

例如:1. 在计算中,小数被广泛应用于测量、科学计算、工程设计以及金融领域等等,可以准确表示小数点后的数值,提高计算精度。

苏教版五年级上册第三单元“小数意义和性质”知识点复习和对应巩固练习

苏教版五年级上册第三单元“小数意义和性质”知识点复习和对应巩固练习

小数的意义和性质一、知识梳理1.小数的意义:分母是10、100、1000……的分数都可以用( )表示。

一位小数表示( )分之几,两位小数表示( )分之几,( )位小数表示千分之几……2.小数的读写:整数部分的0在每一级( )要读出来,在( )不用读出来,而小数部分的0( )读出来(常考题)3. 小数的计数单位和数位顺序表:(1)相邻两个计数单位之间的进率都是( );(2)整数部分没有最( )位,小数部分没有最( )位;(3)整数部分最低位是( )位,小数部分最高位是( )位。

4. (1)小数的性质:小数的末尾添上“0”或去掉“0”,小数的( )不变。

(2)易错点:①在小数点后面添上0或者去掉0,小数的大小不变。

( ) ②在一个数后面添上0或者去掉0,小数的大小不变。

( )5. 小数的大小比较:先看整数部分,整数部分( )的数就( );整数部分相同的,( )位上的数大的小数就大;( )位上的数相同的,再比较( )位上的数,以此类推.6. 大数值的改写:(1)用“万”作单位:a 、从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b 、去掉小数末尾的“0”,添上“万”字;c 、用“=”连接。

(2)用“亿”作单位:a 、从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b 、去掉小数末尾的“0”,添上“亿”字;c 、用“=”连接。

7. 小数的近似数(1)保留整数:就是精确到( )位,要看( )位上的数来决定四舍五入。

(2)保留一位小数:就是精确到( )位,要看( )位上的数来决定四舍五入。

(3)保留两位小数:就是精确到( )位,要看( )位上的数来决定四舍五入。

二、巩固练习:1.填空(1)506毫米=( )米; (2)23分=( )元;(3)148厘米=( )米; (4)8角5分=( )元;(5)0.023米=( )毫米 ; (6)3.09元=( )元( )分;(7)0.008= ()(); 0.621= ()(); 3.15=()(); 2.用0、0、2、6这四个数字和小数点组成小数。

小数的意义和性质重点知识总结

小数的意义和性质重点知识总结

小数的意义和性质重点知识总结小数的意义和性质重点知识总结一、小数的意义和性质小数是数学中一种非整数的表示方法,用于表示介于两个整数之间的数。

它可以表示实数的一部分,是真实世界中无限小的部分的数值化表达。

小数是把实数按照单位划分为更小的部分,进而实现对实数的更精确的度量。

小数的性质包括有限小数和无限小数。

有限小数是指小数部分有限位数的小数,如0.25、3.14等;无限小数是指小数部分有无限位数的小数,如0.33333……、3.14159……等。

除此之外,小数还有周期小数和非周期小数的性质。

周期小数是指无限小数中存在循环的部分,即小数部分会出现重复的数位。

例如,1/3的小数表示为0.33333……,其中3无限循环出现。

周期小数可以用一个带圈的数字来表示循环的部分,如0.3̅表示为0.33333……。

非周期小数则是指无限小数中没有循环的部分,例如π的小数表示为3.14159……,其中没有具体的循环部分。

二、小数的表示与运算1. 小数的表示小数可以用十进制表示,其中整数部分位于小数点的左边,小数部分位于小数点的右边。

例如,小数0.5表示为五分之一,即0.5 = 5/10。

小数也可以用百分数表示,例如小数0.25可以表示为25%。

2. 小数的转换将小数转换为分数需要确定分母,可以通过给定分母来确定,也可以通过逆运算来确定。

例如,小数0.5可以表示为5/10,进一步化简为1/2。

将分数转换为小数可以通过除法运算得出。

3. 小数的加减乘除运算小数的加减乘除运算与整数的运算类似。

在加法和减法运算中,将小数对齐小数点,依次相加(减)即可。

在乘法运算中,将小数乘数与被乘数的数位对齐,然后进行普通的乘法计算,最后确定小数点的位置。

在除法运算中,要将被除数与除数扩大相同的倍数,使除数变为整数,然后进行整数的除法运算。

4. 近似数的运算小数的运算有时候会出现近似数。

例如,无限小数π的近似值可用3.14表示。

在近似数的运算中,需要注意保留有效数字,尽量减少误差的积累。

小数的意义和性质知识点归纳总结

小数的意义和性质知识点归纳总结

小数的意义和性质知识点归纳总结小数是数学中的一个重要概念,它在我们的日常生活和学习中都有着广泛的应用。

了解小数的意义和性质对于我们掌握数学知识、提高数学运算能力都有着重要的意义。

下面我们就来对小数的意义和性质进行归纳总结。

一、小数的意义。

小数是指整数和分数之间的数,它可以表示分数的十进制形式。

在实际生活中,小数经常用来表示长度、重量、价格、比率等概念,比如我们常说的1.5米、2.3公斤、9.99元等,这些都是小数的应用。

小数的意义就是将一个数分割成若干等分,每一份称为一个小数位,这样就可以用小数来表示这个数。

二、小数的性质。

1. 小数的位数,小数点右边的数字位数可以是有限的,也可以是无限的。

有限小数是指小数点右边有限个数字的小数,比如0.25、3.14等;无限小数是指小数点右边有无限个数字的小数,比如0.3333……(3的循环小数)、0.123456789101112……(无限不循环小数)等。

2. 小数的大小比较,当比较两个小数的大小时,可以将它们化为相同位数的小数,然后从左到右逐位比较大小。

如果有一位数字较大,则这个小数就较大;如果对应位的数字相等,则继续比较下一位,直到找到大小不同的数字为止。

3. 小数的运算,小数的加减乘除运算和整数、分数的运算类似,需要注意小数点的对齐和进位借位等问题。

在进行小数的运算时,应该先将小数化为相同位数,然后按照整数的运算规则进行计算。

4. 小数的转化,小数可以转化为分数,也可以将分数转化为小数。

将小数转化为分数时,可以将小数部分的数字作为分子,分母为10、100、1000……,然后进行约分;将分数转化为小数时,可以进行除法运算,得到的商即为小数。

5. 小数的应用,小数在日常生活和学习中有着广泛的应用,比如计算商品的价格、测量长度和重量、计算比率和百分数等,都需要用到小数。

综上所述,小数作为数学中的重要概念,具有着重要的意义和丰富的性质。

掌握小数的意义和性质,对于我们提高数学运算能力、解决实际问题都有着重要的帮助。

小数的意义和性质重点知识

小数的意义和性质重点知识

小数的意义和性质重点知识小数的意义和性质重点知识一、小数的意义小数是数学中的一种数的表现形式,用于表示介于两个整数之间的数值,是整数与分数之间的数值形式。

小数包括有限小数和无限小数两种形式。

在实际生活中,小数具有广泛的应用。

例如,小数在金融领域中用于计算利率、股票涨幅等;在科学领域中用于表示实验数据的精确度;在商业领域中用于计算商品价格和销售额等。

小数的使用可以更加准确地表示和计算实际问题,提高计算精度和效率。

二、小数的性质小数具有许多重要的性质,了解和掌握这些性质对于正确理解和运用小数具有重要意义。

1. 小数的等值性小数的等值性是指两个小数表示的数值相同。

在小数运算中,我们可以用分数、百分数、乘方等形式表示小数,但这些不同表示形式的小数在数值上是等值的。

2. 有限小数与无限小数有限小数是指小数的小数位数有限,可以用有限个数的数字表示;无限小数是指小数的小数位数无限,没有重复的循环。

例如,1/2可以表示为0.5,是一个有限小数;而1/3可以表示为0.3333...,是一个无限小数。

3. 无限循环小数的表示无限循环小数是指小数的小数位数无限,但其中的某一段数字会无限重复。

无限循环小数可以通过加上一个点上划线的数字来表示重复的部分,例如1/3可以表示为0.3̅。

4. 有限小数和无限小数的大小比较在比较大小时,有限小数和无限小数的大小可以通过逐位比较的方式确定。

我们可以将小数按照小数点后的数字位数进行对齐,然后逐位比较大小。

5. 小数的四则运算小数的四则运算包括加法、减法、乘法和除法。

在小数的四则运算中,我们需要注意小数位数对齐,进行逐位运算,最后进行进位处理。

6. 小数的化简与约分小数可以通过化简和约分来简化计算和表达。

化简是指将小数表示为最简分数的形式,约分是指将小数分子和分母的公约数约掉。

7. 小数的转换小数可以转换为分数、百分数等形式。

转换为分数时,将小数的小数部分作为分子,小数位数对应的位数作为分母即可;转换为百分数时,将小数乘以100并加上百分号即可。

小数的意义和性质重点知识整理

小数的意义和性质重点知识整理

小数的意义和性质重点知识整理小数的意义和性质重点知识整理一、小数的意义小数是一种特殊的有限小数和无限小数,是数学中用来表示介于两个整数之间的数的一种表示形式。

在日常生活中,小数用于表示比整数更精确的数值或者比例关系,因此具有重要的意义。

1. 小数的精确性:小数可以表示更精确的数值。

在一些需要高精度的领域,如科学研究、工程测量、金融计算等,小数的使用可以提高计算结果的准确性。

2. 小数的比较能力:小数可以用来比较两个数的大小。

通过小数的表示形式,我们可以直观地判断两个数的大小关系,便于进行数值比较和排序。

3. 小数的实际应用:小数在日常生活和各个领域中具有广泛的应用。

例如,货币的计算、时间的表示、温度的测量、百分比的表示等,都需要使用小数来进行精确计算和表示。

二、小数的性质小数具有一些重要的性质,理解和掌握这些性质有助于我们正确应用小数进行数学计算和解决问题。

1. 有限小数和无限小数:小数可以分为有限小数和无限小数两种形式。

有限小数是指小数部分有限的小数,如0.5、1.25等;无限小数是指小数部分无限循环或无限不循环的小数,如0.333...、0.714285...。

无限小数可以表示为无限多个0到9的数字的排列。

2. 小数的循环节:有些无限小数具有循环节,即小数部分有一段数字循环出现。

循环节由一个或多个数字组成,表示为一对圆括号括起来的数字。

例如,0.333...的循环节为3,0.714285...的循环节为142857。

3. 小数的转换:小数可以与分数相互转换。

有限小数可以转换为分数,分子为小数的整数部分与小数部分的数字,分母为10的小数位数;无限循环小数可以通过运用数学技巧转换为分数。

4. 小数的运算:小数可以进行加、减、乘、除的四则运算。

在小数的加减运算中,需要根据小数位数对齐,保持小数位数一致;在小数的乘除运算中,可以先将小数转换成分数来进行计算,最后再将结果转换为小数。

5. 小数的近似值和有效数字:某些小数是无法被准确表示出来的,需要使用近似值来表示。

小数的意义和性质重点内容归纳

小数的意义和性质重点内容归纳

小数的意义和性质重点内容归纳小数的意义和性质重点内容归纳一、小数的意义小数是数学中的重要概念之一,它是表示实数的一种数学表示形式。

实数是包含了所有的有理数和无理数的数集,小数则是用有理数的特殊形式来表示实数的一种方式。

小数的意义主要体现在以下几个方面:1. 分数的扩展:小数是分数的一种形式,它可以将分数表示为整数与真分数的形式,方便数值的比较和计算。

2. 准确度的提高:小数是一种用数字表示实际测量值的方式,它能够提高数值的准确度,尤其适用于测量和科学实验等领域。

3. 计算的便利性:小数具有较高的运算性质,可以方便地进行加、减、乘、除等运算,更加符合人们实际计算的需要。

4. 实际问题的应用:小数的概念在现实生活中有广泛的应用,例如货币计量、比例计算、时间计算等,准确的小数表示可以帮助人们更好地解决实际问题。

二、小数的性质小数具有以下几个重要的性质:1. 小数的位值:小数的每一位都有固定的位值,根据小数点的位置从左到右,依次为个位、十分位、百分位、千分位等,位值依次变为1、0.1、0.01、0.001等。

2. 小数的整数部分和小数部分:小数的整数部分是小数点左边的所有位数,小数的小数部分是小数点右边的所有位数。

例如,对于小数3.14来说,整数部分为3,小数部分为0.14。

3. 小数的有限循环小数和无限循环小数:有些小数在小数点后某一位开始出现循环,这种小数是有限循环小数;而有些小数的小数部分无限地循环下去,这种小数是无限循环小数。

例如,1/3=0.33333...是无限循环小数,而1/4=0.25是有限循环小数。

4. 小数的大小比较:小数的大小比较可以通过比较其整数部分和小数部分来进行。

对于整数部分相等的两个小数,首先比较小数部分的位数,位数多的小数更大;如果位数相等,则从高位开始逐位比较,第一个不相等的数字决定了小数的大小。

5. 小数的四则运算:小数的四则运算与整数的运算类似,可以通过对齐小数点,然后逐位进行加、减、乘、除运算。

小数的意义和性质知识点汇总

小数的意义和性质知识点汇总

小数的意义和性质知识点汇总小数的意义和性质知识点汇总一、小数的意义小数是数学中的一类数,它用来表示大于整数但小于1的数。

小数的意义和作用在我们的日常生活中十分重要,下面将介绍小数的几个主要意义。

1. 小数的分数意义小数可以被看作是分数的一种表现形式,例如0.5可以表示为1/2,0.75可以表示为3/4。

我们可以通过小数来进行精确的计算,这在很多实际问题中是非常有用的。

比如我们要将一块蛋糕平均分给4个人,那每个人能分到多少蛋糕就可以通过小数来计算了。

2. 小数的百分比意义小数可以转化成百分数,方便我们进行比较和计算。

百分数是将小数乘以100得到的。

例如,0.75就是75%,0.5就是50%。

百分比在商业、经济、统计等领域都有广泛的应用。

比如说,我们看到某个商品打折30%,就可以通过将原价乘以0.7来计算出折扣价。

3. 小数的近似值意义小数可以用来表示一个数的近似值。

在实际问题中,我们经常会遇到测量、估算等情况,这时小数就是非常有用的。

比如我们要计算1/3的近似值,我们可以得到0.3333...这个小数,它无限循环,但我们可以截取一部分,比如0.33,作为1/3的近似值。

二、小数的性质小数作为一种特殊的数,具有一些特殊的性质,下面是几个小数的性质的汇总。

1. 小数的有限循环性质小数有时会出现循环小数,即小数部分出现了一个或多个循环节。

循环节是指小数部分的某一段数字在不断重复出现。

例如,1/6的小数表示为0.1666...其中6是一个循环节。

我们可以通过将分数化为小数来判断其是否为循环小数。

2. 小数的无限循环性质有些小数没有循环节,小数部分的数字无限不循环地一直进行下去。

例如,π的小数表示为3.1415926535...其中的数字无限不循环。

这种小数被称为无理数,无理数在数学中有着重要的地位。

3. 小数的大小比较小数可以通过比较小数部分的大小来进行大小的比较。

小数的比较可以通过将小数转化成分数的形式进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元认识小数
2、分母是10、100、1000……的分数都可以用小数表示。

分母是10的分数写成一位小数,表示十分之几。

分母是100的分数写成两位小数,表示百分之几。

分母是1000的分数写成三位小数,表示千分之几。

3、判断一个小数是几位小数,可以通过数小数点后面的数,小数点后面有几个数,就是几位小数。

注意:写几位小数要大写,如:4.032,小数点后面有3个数字,是(三)位小数。

4、小数点左边第一位是个位,计数单位个(一)
小数点左边第二位是十位,计数单位十
小数点右边第一位是十分位,计数单位十分之一(0.1)
小数点右边第二位是百分位,计数单位百分之一(0.01)
小数点右边第三位是千分位,计数单位千分之一(0.001)
小数部分最高位是十分位,最大的计数单位是十分之一。

整数部分没有最高数位。

相邻两个计数单位之间的进率都是10。

5、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一),0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。

6、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。

7、比较小数的大小方法:先比较小数的整数部分,整数部分大的小数大;如果整数部分相同,再比较小数部分。

先比较十分位,十分位上的数大,这个小数就大;十分位相同的,再比较百分位,百分位上的数大,这个小数就大;百分位相
同的,再比较千分位……
8、数的改写:
(1)改写用“万”作单位:<1>从右边开始向左数四位,在万位和千位之间画“┆”,在“┆”下方点上小数点;<2>把小数点末尾的“0”去掉,添个“万”字;<3>用“=”号连接。

(2)改写用“亿”作单位:<1>从右边开始向左数八位,在亿位和千万位之间画“┆”,在“┆”下方点上小数点;<2>把小数点末尾的“0”去掉,添个“亿”字;<3>用“=”号连接。

注意事项:(1)改写不能改变原数的大小;(2)位数不够的用“0”补上(先写上虚写的“0”,=后面就改为实写的“0”。

举例:4309→0┆.4309=0.4309 309→0┆.0309=0.0309)(3)它是准确数,前后数必须用“=”连接。

9、求整数的近似数:
省略万后面的尾数:要看“千”位上的数,用四舍五入法取近似值。

用“≈”号连接。

省略亿后面的尾数:要看“千万”位上的数,用四舍五入法取近似值。

用“≈”号连接。

10、求小数的近似数:
保留整数,就是精确到个位,要看小数部分第一位(十分位)上的数来决定四舍五入。

保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)上的数来决定四舍五入。

保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)上的数来决定四舍五入。

注意事项:
(1)在表示近似值时末尾的“0”一定不能去掉。

(例如,一个小数保留两位小数是1.50,末尾的“0”不能去掉。

虽然1.50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。


(2)向前一位数字五入进一时,满十要向前进一,再满十继续向前进一(举例:19.97保留一位小数,19.97≈20.0,百分位上数字是7,比5大,舍去7,向十分位上的9进1,9+1=10,继续向个位上的9进1,19+1=20)。

相关文档
最新文档