微电子技术在医学中的应用
微电子科学与工程在生物医学领域的应用

微电子科学与工程在生物医学领域的应用微电子科学与工程作为一门交叉学科,涵盖了微电子器件、成像技术、传感技术等多个领域,并在生物医学领域展示了巨大的应用潜力。
本文将重点探讨微电子科学与工程在生物医学领域的应用,并介绍一些相关的最新进展。
一、生物传感器生物传感器是微电子科学与工程在生物医学领域应用的重要领域之一。
生物传感器通过将微电子器件与生物体相结合,能够实时监测和检测生物体内的生理指标。
例如,通过耳机式生物传感器可以实时监测人体心率、血氧饱和度等生理参数,为个人健康管理提供及时数据支持。
二、医学成像技术微电子科学与工程在医学成像技术领域的应用也非常广泛。
微电子器件的微小尺寸和高精度特性使得医学成像设备更加紧凑和精确。
例如,微型超声成像设备可以通过微电子传感器实现对人体内部器官的高清成像,为医生提供诊断和治疗的依据。
此外,微电子器件还广泛应用于核磁共振成像、放射性核素成像等多种医学成像技术中,提高了成像的精确度和效率。
三、生物芯片生物芯片是微电子科学与工程在生物医学领域的又一重要应用。
生物芯片通过在微米尺度上集成多种生物传感器和微流控技术,能够实现对生物体内样本的快速检测和分析。
例如,在临床诊断中,利用生物芯片可以快速检测病原体的存在,减少人工操作的误差,提高诊断的准确性。
四、生物模拟器件微电子科学与工程在生物医学领域的应用还涉及到生物模拟器件的研发和应用。
生物模拟器件可以模拟人体器官的功能和特性,用于疾病治疗和康复训练。
例如,通过微电子技术,可以研制出人工耳蜗和人工智能义肢等器件,帮助听力受损和肢体残疾的患者重获听力和运动能力。
总结:微电子科学与工程在生物医学领域的应用正在持续深入发展,为医疗保健和疾病治疗带来了革命性的变革。
通过生物传感器、医学成像技术、生物芯片和生物模拟器件的应用,微电子科学与工程为医学领域提供了更加精确、便捷和有效的技术手段。
我们对微电子科学与工程在生物医学领域的应用前景充满期待,相信随着科技的不断发展,它将继续发挥重要作用,推动医学的进步与发展。
生物芯片技术及其在医学上的应用

生物芯片技术及其在医学上的应用近年来,随着生物芯片技术的高速发展,其在医学领域中的应用越来越广泛。
生物芯片技术是指将微小的生物材料固定在芯片的表面上,以探测生物分子、细胞或组织的一种技术手段。
它的优势在于快速、准确、高通量和高灵敏度,被广泛应用于高通量基因分型、蛋白质鉴定、细胞生物分析、药物筛选、立体图像构建等领域。
一、生物芯片技术生物芯片技术是指使用微电子技术制造出小型芯片,在芯片上通过精巧的设计排列多个生物分子检测元件,可同时进行大量生物学实验,并可快速记录和分析实验结果,极大地提高了实验效率。
其中,常用的生物芯片技术有基因芯片技术、蛋白质芯片技术和细胞芯片技术。
1.基因芯片技术基因芯片技术是基于DNA、RNA的芯片技术,用于同步探测及分析大量基因DNA序列的表达情况,从而了解不同组织、不同状态下基因表达水平的变化,并寻找与特定疾病有关的基因表达水平的差异。
它的快速高通量的处理能力可为全基因组表达分析、基因突变筛查、SNP检测、基因亚型鉴定、疾病识别、药物靶标发现和新药研究等提供有力的支持。
2.蛋白质芯片技术蛋白质芯片技术是利用固相法在玻片、滤膜、微球或微芯片的表面上制备一系列纯化的特异性或全长的蛋白质样品阵列,用于快速大规模地筛选靶蛋白质,分析蛋白质相互作用、酶活性或某些组分与特定蛋白质的结合能力等。
它可用于疾病标记物的检测和筛选、蛋白功能鉴定、蛋白特异性鉴别、药物筛选等方面。
3.细胞芯片技术细胞芯片技术是利用微流控技术制作微小的通道和微型反应器,在芯片上实现细胞的悬浮、培养和观测等操作。
它可应用于各种组织细胞的轻松快捷的分离、单细胞的提取、测序和分析,可推广到药物筛选和个性化医疗等领域。
二、生物芯片技术在医学上的应用生物芯片技术的高通量、高灵敏度、高可靠性和高通用性,使其成为了医学领域中的重要工具,可应用于诊断、预后分析、治疗方案的制定和药物研究等方面。
1.疾病诊断和预后分析基因芯片技术可用于疾病的早期诊断,如乳腺癌、卵巢癌、肾癌、直肠癌等癌症的检测。
MEMS技术在生物医学中的应用

MEMS技术在生物医学中的应用随着微电子技术的发展,MEMS ( Micro-Electro-Mechanical Systems ) 技术也逐渐被应用于生物医学领域。
MEMS技术以微米或纳米级别的线性、转动、弯曲和膨胀等机械位移效应,以及群体作用为基础,实现了集成化、微型化和高精度的运动控制、信号检测、流动控制等功能。
它在医疗诊断、生命科学、药物研发等方面具有广阔的前景。
MEMS技术在生物医学中的应用主要有以下几个方面:1. MEMS传感器在生命科学研究中的应用MEMS传感器可以用于生命科学研究中的动态监测和分析。
例如,MEMS压力传感器可以用于血压监测和动脉血流变化检测;MEMS加速传感器可以用于运动监测和肌肉疲劳分析;MEMS荧光探头可以用于药物筛选和生物分子检测;MEMS TEM探针可以用于高分辨率的细胞成像等。
这些传感器可以将许多生命科学指标转化为电信号,便于记录、分析和研究。
2. 全自动化实验芯片MEMS技术可以在微通道中引入一系列的功能模块,实现微流控,将需要进行的各个步骤缩小到微米级别的区域,通过微米级的通道网络将反应分子分离、混合、诱导、分析和检测,对生物分子进行精细处理和快速分析。
这种微流控全自动化实验芯片可以同时完成样品预处理、混合反应、产物分离、检测等成千上万的生物实验,有效提高了实验效率。
3. 生物芯片生物芯片采用类似半导体芯片的技术,将数以千计的微小的反应区域集成到一个晶片上,用于在生物样本中进行特定的反应。
MEMS技术可以制造出非常复杂的生物芯片,包括基于PCR技术的扩增芯片、DNA芯片、蛋白质芯片等一系列生命科学芯片。
生物芯片具有高精度、高通量、高灵敏度和快速分析等特点,已经成为许多生物医学领域研究的重要工具。
4. MEMS传输MEMS流控技术可以带来微型流体静电喷雾器、微流控传感器和微磁场操控装置等全新的生物医药应用。
例如,MEMS微型流体控制器被广泛用于微型诊断测试设备、实验室实验仿生应用、微型流体控制手术等领域。
生物芯片技术在医学检验中的应用

生物芯片技术在医学检验中的应用生物芯片技术,是一种利用微电子技术制造的生物检测标准品,用于对特定生物分子进行检测的技术。
它广泛应用于药物研发、疾病诊断、基因筛查等领域,特别是在医学检验中,由于其高效准确、快速简便的特点,被越来越广泛地应用。
1. 蛋白芯片技术在肿瘤筛查中的应用蛋白芯片技术是一种利用微阵列芯片来检测蛋白质结构和功能的技术。
在肿瘤筛查中,蛋白芯片技术可以用于检测特定蛋白质的表达情况,为癌症的早期诊断提供了一种新的手段。
目前,蛋白芯片技术已经被广泛应用于人类乳腺癌、肺癌、卵巢癌等多种肿瘤的诊断,成为肿瘤筛查中不可或缺的技术手段。
2. 基因芯片技术在疾病预测中的应用基因芯片技术是一种利用微阵列芯片来检测基因表达的技术。
在疾病预测中,基因芯片技术可以用于检测特定基因的表达情况,从而预测患有某种疾病的风险。
例如,对于某些与遗传性疾病、癌症等相关的基因,通过基因芯片技术可以快速、精准地筛查患者是否存在相应的基因突变,从而预测有无发病风险。
3. DNA芯片技术在个性化医疗中的应用DNA芯片技术是一种利用微阵列芯片来检测DNA序列的技术。
在个性化医疗中,DNA芯片技术可以用于分析患者基因序列的特点,并根据这些特点制定适合他们的治疗方案,以达到最佳的治疗效果。
例如,在癌症等疾病治疗中,利用DNA芯片技术可以精确地判断患者针对某种药物的敏感性,从而指导临床治疗方案的制定。
4. 微量分析芯片在医学诊断中的应用微量分析芯片是一种利用微流控和微纳米加工技术制造的高通量、高灵敏度的检测平台。
在医学诊断中,微量分析芯片可以用于极小体积样品的快速检测,例如血液、尿液等生物体液。
同时,由于微量分析芯片的高灵敏度,可以检测到非常微量的生物标记物,有助于提高医学检查的准确性与敏感性。
总之,生物芯片技术在医学检验中的广泛应用,极大地提高了检测的准确性和效率,为临床诊断和治疗提供了新的手段和思路。
随着技术的不断创新和进步,相信生物芯片技术的应用领域还将不断拓展,为医学检验带来更多的创新和突破。
微电子在医学中的应用

微电子在医学中的应用随着微电子技术的不断发展,其在医学领域中的应用愈发广泛。
以下将从医学成像、生物传感、医疗器械等方面介绍微电子在医学中的应用。
医学成像是微电子在医学领域中的一个重要应用。
现代医学普遍使用各种成像技术,如X射线、核磁共振成像、超声波成像等技术。
这些技术的广泛应用使医学诊疗变得更加精准和高效。
其中,核磁共振成像(MRI)技术以其高强度磁场和无创性检查为特点而被广泛使用。
微电子制造技术在MRI中的应用将电子元件制造到医疗设备中,减少了设备的重量和功耗,同时实现了更快的成像速度。
生物传感领域是微电子在医学中的另一个应用方向。
基于微电子技术,已经开发出许多不同类型的生物传感器,例如用于检测血糖、血氧、心率和体温等生命体征的传感器。
其中,微电子生物传感器已被证明在治疗糖尿病、高血压和心脏病等疾病中具有非常有效的作用。
这些传感器可以通过无需采集血样或其他形式的小型化技术来进行监测,并可以使患者在自己家中或在医院外自行进行监测,减少了治疗成本和患者的不便之处。
微电子技术还广泛地应用于医疗器械中。
例如,微电子技术在人工器官、心脏起搏器、胰岛素泵等医疗器械中起着关键的作用。
作为一个示例,人工器官可以依靠微电子技术检测和管理患者内部的荷尔蒙水平,从而实现内分泌功能的替代。
因为这些设备是可移植的且需要长时间的稳定运行,因此微电子制造技术非常有利。
总的来说,微电子技术在医学领域中应用日益广泛,对医疗事业的发展起着重要的推动作用。
虽然还有一些技术难题需要攻克,但是微电子技术发展的趋势非常乐观,未来将会有更多的医疗设备和技术使用微电子技术来实现更加高效、安全、准确的医疗服务。
微电子技术在医学上的应用

微电子技术在医学上的应用近年来,随着微电子技术的不断进步,其在医学上的应用也越来越广泛。
微电子技术是一种将电子和微型器件技术结合起来的新兴技术,其可以用于制造各种微型器件和集成电路,其中有一些应用可以用于医学领域。
本文将从三个方面探讨微电子技术在医学上的应用,分别为:医学影像、耳机和假肢。
一、医学影像医学影像是现代医学中的重要手段之一,可用于检测、诊断和治疗各种疾病。
微电子技术被广泛应用于医学影像方面,特别是在计算机断层扫描(CT)和磁共振成像(MRI)方面。
计算机断层扫描(CT)是一种利用X射线的技术,其可以产生三维图像。
CT扫描相对较快和准确,可用于识别各种疾病和异常。
微电子技术被应用于CT扫描仪中,以控制所需的辐射剂量和生成三维图像。
磁共振成像(MRI)是一种使用强磁场和无线电波的技术。
MRI可以检测人体内的各种组织和器官,并产生高分辨率的3D图像。
微电子技术被应用于MRI仪器中,以控制磁场和无线电波,并增强MRI图像的质量。
二、耳机无线耳机,尤其是由微型设备制造的无线耳机,是现代医学中的一种重要设备。
无线耳机被广泛用于听力检测、治疗和辅助听力。
动态减噪和远程听力监控是无线耳机的典型应用。
动态减噪技术可以消除环境噪声,从而减轻耳朵的负担。
动态减噪技术需要微电子技术来控制和监控信号的量和质量。
远程听力监控是一种将患者的听力数据实时传输到医生那里的技术。
远程听力监控可以用于帮助医生对患者进行诊断和治疗。
此技术需要微电子技术来确保数据的精度和保密性。
三、假肢假肢是用于替代残缺或缺失肢体的设备,其由传统的机械结构转向了微型电子器件的方向。
微电子技术被应用于假肢中,以提供更好的控制和反馈。
微电子技术可以使假肢比传统假肢更易于控制。
由于假肢中的微电子器件可以传感和监测身体的信号,因此患者可以更容易地控制假肢的运动。
此外,微电子技术还可以在缺少神经反馈的情况下提供反馈,从而提高假肢的精度和可用性。
总之,微电子技术在医学领域中的应用是各种应用中最具前途和实用价值的。
微电子设备在生物医学研究中的应用

微电子设备在生物医学研究中的应用在现代科技日益发展的时代,微电子技术的应用越来越广泛,其中生物医学领域是一个应用非常广泛的领域。
微电子设备的应用为生物医学研究和医疗治疗提供了许多可能性,可以帮助医生更好地了解疾病发生的原因和治疗方式,也可以提高医疗领域的效率和精确度。
一、微电子技术在生物医学研究中的应用1.神经研究神经研究是微电子技术在生物医学研究中的一个应用,通过微小的电极可以监测到神经元的活动,对于研究神经系统的运作过程有非常重要的作用。
此外,微电子设备还可以用于病态神经元的抑制或刺激,从而帮助治疗神经疾病,例如帕金森病、抑郁症等。
2.纳米疫苗纳米疫苗是一种新型疫苗,由微小的粒子组成,可以针对不同种类的疾病进行疫苗开发。
微电子技术可以帮助制备纳米粒子,并对它们进行定位,从而提高疫苗的效果和精确度,进一步帮助人们预防疾病。
3.细胞治疗细胞治疗是一种非常新的疗法,可以通过先抽取细胞,然后进行修复和重新注入患者体内来治疗疾病。
微电子设备可以帮助检测和监测这一过程中的关键环节,例如细胞的培养、检测和分离等,从而提高治疗效果。
二、微电子技术在医疗治疗中的应用1.微型医疗设备微电子技术可以帮助制造出微型医疗设备,例如可植入式血糖仪、可植入式心脏起博器、可植入式聋人耳植入物等。
这些设备可以帮助医生更好地了解病情和治疗方案,也可以方便患者进行监测和治疗,提高治疗的效果和舒适度。
2.医疗成像微电子技术可以用于医疗成像设备,例如核磁共振仪、X射线机、超声波等。
这些设备可以协助医生对患者进行诊断,并指导治疗方案,提高了医生判断疾病的准确性和治疗方案的科学性。
三、微电子设备的未来应用微电子设备是生物医学领域的重要组成部分,其应用前景非常广阔。
未来,微电子设备将会广泛应用于快速诊断、治疗、机器人介入手术等领域,从而提高了生物医学领域的效率、准确性和可靠性,为人类健康事业带来更大的发展空间。
总之,微电子技术在生物医学领域的应用为医生和患者提供了更加有效和精确的治疗方案,促进了生物医学科技的发展。
生物医学工程中的微电子技术研究

生物医学工程中的微电子技术研究生物医学工程是研究生物与工程学科相结合的新学科,其核心目标是将工程科学技术应用于医学领域,提高医疗保健的水平与效率。
而微电子技术在生物医学工程中也发挥着重要的作用,这里我们就来了解一下微电子技术在生物医学工程中的研究进展和未来发展趋势。
一、微电子技术的应用微电子技术在生物医学工程中的应用十分广泛,主要包括:医学影像、生物监测、医疗器械和药物传递等方面。
其中,医学影像是目前应用较广泛的一方面,如医学成像材料、超声检测、X射线设备、计算机断层扫描等。
这些技术可以帮助医生准确、快速地诊断疾病,并进行治疗方案的设计;而生物监测则是对患者病情的监测和分析,包括心电图、脑电图等。
此外,还有医疗器械和药物传递等方面的应用,如人工器官、人工关节等,这些器械在手术中起到了至关重要的作用。
二、微电子技术的研究进展随着科技的发展,微电子技术在生物医学工程中的应用也在不断地推陈出新,研究进展如下:1. 智能医疗监测传统的生命体征监测是靠人工护理或专门的医疗器械完成的,但随着技术的发展,微电子技术被应用到这一领域中,智能医疗监测也因此得以实现。
通过传感器和移动设备等技术的结合,可以实现患者的测量、记录、远程监测等功能,及时预警患者的体征异常,帮助医生快速作出诊断和治疗计划。
2. 微型医疗器械微机电系统技术(MEMS)是一种使用微电子加工技术和微加工工艺制作微运动器件的技术。
随着技术的发展,微型医疗器械也成为了一种热门研究方向,如微型人工耳蜗、微型内窥镜、微型药物泵和微型传感器等。
3. 生物医学芯片生物医学芯片是一种可以诊断和治疗疾病的微型芯片,可以进行生物分析、药物发现、DNA检测、基因组学研究等。
这种芯片结合了微流体、生物工程、微机电系统和生物技术等多种技术,具有高精度、高灵敏度和高通量等优势,正成为生物医学工程中的研究热点。
三、微电子技术的未来发展目前,微电子技术在生物医学工程中已经取得了一定的进展,然而未来还有更多的潜力和发展空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微电子技术在生物医学中的应用摘要:生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。
在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。
特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。
本文将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。
关键词:生物医学电子学,生物医学传感器,植入式电子系统,生物芯片,基因芯片,随着科技的迅速发展,和医疗水平息息相关的电子技术应用也越来越广泛。
微电子技术的发展大大方便了人们的生活,随着微电子技术的发展,生物医学也在快速的发展,微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。
生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。
微电子技术与生物医学之间有着非常紧密的联系。
一、生物医学传感器生物传感器(biosensor)对生物物质敏感并将其浓度转换为电信号进行检测的仪器。
是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。
生物传感器具有接受器与转换器的功能。
对生物物质敏感并将其浓度转换为电信号进行检测的仪器。
生物传感器具有接受器与转换器的功能。
1967年S.J.乌普迪克等制出了第一个生物传感器葡萄糖传感器。
将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。
当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。
固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。
现已发展了第二代生物传感器(微生物、免疫、酶免疫和细胞器传感器),研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。
由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。
缺点是生物固化膜不稳定。
生物传感器涉及的是生物物质,主要用于临床诊断检查、治疗时实施监控、发酵工业、食品工业、环境和机器人等方面。
常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。
医学领域的生物传感器发挥着越来越大的作用。
在临床医学中,酶电极是最早研制且应用最多的一种传感器。
利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。
生物医学传感器相较于传统医疗方式具有以下特点:1、生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。
因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。
2、生物传感器专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响,准确度高,一般相对误差可以达到1%;分析速度快,可以在一分钟得到结果。
因此,这一技术应用于医学上不仅提高了检测结果的准确性,更是缩短了整个过程所需的时间,进一步提供了救治病人的先机。
3、操作系统比较简单,容易实现自动分析。
在临床中,许多操作对于病患来说是痛苦的,若能很好的利用生物传感器的这一特点,我相信将为他们减少很多的痛苦。
当前各种利用生物传感技术开发的仪器也已问世,但是在应用上还有许多技术需要深入研究。
诊断各种疾病的医用传感器,还有待于引深研发,例如谷氨酸传感器是一种稳定的脱氢酶、转氨酶、血氨的指示性传感器,它在临床急症室等许多场合可取代光度法测定,有潜在应用前景;测定胸外科病人乳酸指标的生物传感器也已开始应用,与肾透析联用的几种生物传感器也有产业化开发价值。
今后这些生物传感器将逐渐得到普及,给广大病患带来更多的福音。
二、植入式电子系统植入式电子系统是一种埋植在人体或生物体内的电子设备,它用来测量生命体内的生理、生化参数的变化,或用来诊断与治疗一些疾病,即实现在生命体自然状态下体内直接测量和控制功能或者代替功能残缺的器官。
随着高可靠性、低功率集成电路的发展,植入式电子系统的能源供给方式的多样化,无毒性生物相容性等性能优良的生物材料研究的深入,以及显微外科手术水平的不断提高,使得植入式电子系统得到飞速的发展,植入式电子学已成为生物医学电子学中一个极为重要的组成部分。
植入电子系统主要包括:植入式测量系统、植入式刺激器、植入式药疗(控制)装置、植入式人工器官及辅助装置等设备。
采用植入式电子测量与控制装置主要具有如下优点:1、可保证生物体在处于自然的生理状态条件下对各种生理、生化参数进行连续的实时测量与控制;2、采用植入式测量装置后可大大减少各种干扰因素,因此体内的各种信息不需经皮肤测量就可得到更加精确的数据;3、便于对器官和组织的直接调控,能获得理想的刺激和控制响应,有利于损伤功能的恢复和病情的控制;4、可以用来治疗某些疾病,比如癫痫、瘫痪等;5、用来代替某些器官的功能,比如肾脏、四肢、耳蜗等。
植入式电子系统在微电子方面研究的关键技术主要有:1、植入式天线的设计技术。
主要是解决效率与天线微型化之间的矛盾,2、RF射频电路的设计技术。
射频电路是植入体内部分与体外部分通信的关键电路;3、低功耗植入式集成电路设计技术,它一方面是要保证植入式系统在有限能源的前提下能在体内长期稳定工作,另一方面是电路产生过多热量会对生命体本身造成危害;4、植入式系统的能量供给技术。
由于经常把把植入体内设备拿出体外进行充电是不实际的,目前一般采用下述四种方式给体内供能:植入式电源、红外线偶合供能、射频供能或者是利用体内其他能量的转换,比如温差供电,利用血液中氢和氧进行燃料电池反应或利用生物体自身的机械能等;5、微弱信号的提取技术。
生物信号都是微弱信号,而且往往存在着背景噪音都很强大的情况;6、一些前沿的数字信号处理技术的应用。
比如利用人工神经网络技术与线性预测技术来通过脑电实时控制多自由度的假肢的研究,以及基于小波变换的语音信号处理技术应用于人工耳蜗等;7、植入式电子系统的制作与封装技术。
主要研究的是如何利用生物相容性优良的生物材料来对集成电路进行封装,这样既能保证植入到体内的系统不会对生命体造成危害,也能保证其能在人体环境中长期稳定地工作。
三、生物芯片生物芯片一种芯片技术,即借助微加工和微电子技术。
将大量已知序列的核酸或蛋白质片段有序地组合在一个微小基片表面,通过与标记的核酸或蛋白质分子进行反应,分析待检标本的相应成分。
广义的生物芯片指一切采用生物技术制备或应用于生物技术的微处理器。
包括用于研制生物计算机的生物芯片、将健康细胞与电子集成电路结合起来的仿生芯片、缩微化的实验室即芯片实验室以及利用生物分子相互间的特异识别作用进行生物信号处理的基因芯片、蛋白质芯片、细胞芯片和组织芯片等。
狭义的生物芯片就是微阵列,包括基因芯片、蛋白质芯片、细胞芯片和组织芯片等。
生物芯片是生命科学领域中迅速发展起来的一项高新技术,主要是指通过微加工技术和微电子技术在固格体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。
广义的生物芯片指一切采用生物技术制备或应用于生物技术的微处理器。
包括用于研制生物计算机的生物芯片,将健康细胞与电子集成电路结合起来的仿生芯片,缩微化的实验室即芯片实验室以及利用生物分子相互间的特异识别作用进行生物信号处理的基因芯片、蛋白质芯片、细胞芯片和组织芯片等。
生物芯片技术与传统的仪器检测方法相比具有高通量、微型化、自动化、成本低、防污染等特点。
生物芯片最大用途在于疾病检测、基因表达水平的检测、基因诊断、药物筛选、个体化医疗测序以及生物信息学研究。
生物芯片将极大的改变我们的医疗模式,提高我们疾病的监测和治愈水平,更好地保障人类的将康。
除此之外,生物芯片的成熟和应用一方面将为本世纪的新药开发、分子生物学、航空航天、司法鉴定、食品卫生和环境监测等领域带来一场革命;另一方面生物芯片的出现为人类提供了能够对个体生物信息进行高速、并行采集和分析的强有力的技术手段,故必将成为未来生物信息学研究中的一个重要信息采集和处理平台。
生物芯片主要特点是高通量、微型化和自动化。
生物芯片上高度集成的成千上万密集排列的分子微阵列,能够在很短时间内分析大量的生物分子,使人们能够快速准确地获取样品中的生物信息,检测效率是传统检测手段的成百上千倍。
生物芯片将是继大规模集成电路之后的又一次具有深远意义的科学技术革命。
基因芯片是生物芯片技术中发展最成熟和最先实现商品化的产品。
基因芯片是基于核酸探针互补杂交技术原理而研制的。
所谓核酸探针只是一段人工合成的碱基序列,在探针上连接上一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。
基因芯片,又称DNA芯片,DNA微阵列,和我们日常所说的计算机芯片非常相似,只不过高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,通过已知碱基顺序的DNA片段,来结合碱基互补序列的单链DNA,从而确定相应的序列,通过这种方式来识别异常基因或其产物等。
目前,比较成熟的产品有检测基因突变的基因芯片和检测细胞基因表达水平的基因表达谱芯片。
基因芯片技术主要包括四个基本技术环节:芯片微阵列制备、样品制备、生物分子反应和信号的检测及分析。
技术进展与市场动态,生物芯片是一个新兴的科学领域,具有良好的发展前景。
现在生物芯片主要向以下几个方向发展。
一是产业化。
对于现在技术已经相对成熟的生物芯片,如基因芯片,产业化是发挥生物芯片作用的最好途径。
现在很多公司已经推出各种不同种类的基因芯片。
而且相关其产业,如点样设备,检测设备也有重要的价值。
现在成本是束缚产业化的一个关键的因素。
二是微型化。
由于微加工技术,生物芯片的尺寸范围已经从微米尺寸向纳米尺寸发展。
例如在硅片上刻制的纳米尺寸的微结构阵列,可以完成生物大分子如DNA的筛选。
但是,由于细胞等生物样品本身尺寸的限制,生物芯片的微型化不是无限的。