国内外大型永磁风力发电机的应用
永磁电机应用场景

永磁电机应用场景
永磁电机是一种利用永磁体产生磁场来实现转换电能和机械能的装置。
它具有高效率、高性能和小体积等优点,在各个领域都有广泛的应用。
以下是永磁电机的一些常见应用场景:
1. 工业自动化:永磁电机在工业自动化领域中被广泛应用于传动装置,如机床、机器人、印刷机械等。
由于永磁电机具有快速响应、高效率和较小的体积等特点,能够满足工业生产对高精度运动控制的需求。
2. 电动汽车:永磁电机作为电动汽车的主要驱动装置之一,在电动汽车行业中得到了广泛应用。
相比传统的内燃机,永磁电机具有高效率、无污染和低噪音等优点,能够提供强大的动力输出和长续航里程。
3. 家用电器:永磁电机在家用电器领域中被广泛应用,如空调、洗衣机、冰箱、吸尘器等。
永磁电机具有启动快、运行平稳和低能耗等特点,能够满足家用电器对高效节能的需求。
4. 新能源领域:永磁电机在新能源领域中起到了重要的作用。
例如,永磁发电机被广泛应用于风力发电和水力发电等领域,利用风能或水能产生电能。
此外,永磁电机还被用于太阳能光伏跟踪系统、海洋能发电等新能源装置中。
5. 医疗设备:永磁电机在医疗设备中也有应用,如医用注射泵、呼吸机等。
由于永磁电机具有体积小、噪音低和运行平稳等特点,能够满足医疗设备对高精度和可靠性的要求。
总之,永磁电机的应用场景非常广泛,涵盖了工业、交通、家电、能源等多个领域,随着技术的不断进步和应用需求的不断增加,永磁电机在未来的应用前景将会更加广阔。
永磁同步电机应用场景

永磁同步电机应用场景介绍永磁同步电机具有高效、高可靠性和高功率密度的特点,因此在各个领域中都有广泛的应用。
本文将深入探讨永磁同步电机的应用场景。
工业领域1. 工业机械设备永磁同步电机在工业机械设备中应用广泛。
其高效率和高功率密度使其成为理想的电机选择。
以下是一些常见的应用场景: - 空压机:永磁同步电机在空压机中能够提供高效能的压缩空气供应,同时减少能源浪费。
- 水泵和风机:永磁同步电机可用于驱动水泵和风机,提供高效能的流体和气体传输。
2. 工业自动化永磁同步电机在工业自动化中的应用越来越普遍。
其响应快、控制精度高的特点使其成为控制系统的理想选择。
以下是一些常见的应用场景: - 机器人:永磁同步电机能够提供高速、高精度的动力,使机器人在工业自动化中能够完成各种任务。
- 传送机械:永磁同步电机可用于驱动传送带、输送机等设备,实现高效的物料输送。
3. 工业制造永磁同步电机在工业制造中起到至关重要的作用。
其高效率和高精度的特点使其成为各种机械加工设备的驱动力源。
以下是一些常见的应用场景: - 数控机床:永磁同步电机能够提供高速、高精度的运动控制,适用于各种数控机床。
- 激光切割机:永磁同步电机可用于驱动激光切割机,实现高速、高精度的切割。
新能源领域1. 新能源发电永磁同步电机在新能源发电中具有重要的地位。
其高效率和高转矩密度的特点使其成为风力发电和水力发电的理想选择。
以下是一些常见的应用场景: - 风力发电:永磁同步电机被广泛用于驱动风力发电机组,将风能转换为电能。
- 水力发电:永磁同步电机可用于驱动水力发电机组,将水能转换为电能。
2. 电动汽车永磁同步电机在电动汽车领域中有广泛的应用。
其高效率和高功率密度使其成为电动汽车的理想驱动器。
以下是一些常见的应用场景: - 电动汽车驱动系统:永磁同步电机被广泛用作电动汽车的主驱动系统,提供高效能的动力输出。
- 制动能量回收系统:永磁同步电机可实现制动能量的回收,提高电动汽车的能源利用效率。
风力发电的发展现状及应用

风力发电的发展现状及应用一、风力发电的发展现状风力发电是一种利用风能产生电力的技术,目前已经成为可再生能源领域中的主要代表之一。
随着全球对清洁能源的需求不断增加,风力发电技术取得了长足的发展,成为全球能源结构的重要组成部分。
1.全球风力发电装机容量的快速增长根据国际能源署(IEA)的数据显示,2000年至2019年,全球风力发电的装机容量从17.5GW增长到651GW,呈现出了快速增长的趋势。
特别是在欧洲、北美以及亚洲地区,风力发电已成为主要的清洁能源之一。
2.技术进步推动风力发电成本持续下降随着技术的不断创新和进步,风力发电的成本在持续下降。
据国际可再生能源机构(IRENA)的数据显示,全球范围内,风力发电的成本已经大大降低,特别是在欧洲一些发达国家,风力发电的成本已经竞争力十足,甚至低于传统化石能源。
3.政策和市场推动风力发电的发展许多国家和地区都出台了支持风力发电的政策和规划,鼓励企业和投资者加大对风力发电的投入。
而且,一些国家还采取了采购电力的方式,鼓励风力发电项目的建设和发展。
4.风力发电在能源转型中的重要作用当前,全球正在进行能源结构的转型,寻求更加清洁和可持续的能源供应。
而风力发电正是能够满足这一需求的重要能源形式,它能够代替传统的化石能源,减少温室气体的排放,保护环境和改善空气质量。
二、风力发电的应用风力发电作为一种清洁、可再生的能源形式,具有较广泛的应用领域。
它不仅可以用于大型商业发电项目,也可以在小型家庭和商业用途中得到应用。
1.大型商业风电项目大型商业风电项目是风力发电的主要应用形式,它通常是由大型风力发电场组成,通过集中式的发电和输送系统,为城市和工业区域供应电力。
这种风电项目通常会占据较大的土地面积,需要大规模的投资和建设。
2.分布式风能发电项目分布式风能发电项目是指在城市、农村或者工业区域附近设立小型风力发电设备,利用风能为小范围用户供电。
这种项目通常规模较小,可以分散建设,适合于电网不发达或者需求相对较小的地区。
风力发电机用途

风力发电机用途风力发电机是一种通过风力驱动发电机转动,进而产生电能的装置。
它利用自然界中存在的风资源,将风能转化为可利用的电能,是一种清洁、可再生、环保的能源利用方式。
风力发电机的用途非常广泛,下面将对其主要用途作详细介绍。
首先,风力发电机被广泛应用于电力供应系统中。
传统的电力供应系统主要由燃煤、燃气、核能等传统能源提供电能,但这些能源在使用过程中会产生大量的二氧化碳等有害气体,对环境造成严重污染。
而风力发电机利用风能发电的过程中不会产生污染物,对环境友好。
因此,在国内外的电力供应系统中,风力发电机作为清洁能源的一种,被广泛应用于电网中,用于插电网发电。
其次,风力发电机在乡村和偏远地区的电力供应方面发挥着重要作用。
由于传统的电力供应网络无法延伸到乡村和偏远地区,导致这些地区的供电非常不稳定,居民的生活和工作受到了很大的限制。
而风力发电机可以根据乡村和偏远地区特殊的地理环境和资源条件,通过自然风能发电,为这些地区提供稳定可靠的电力供应。
因此,在乡村和偏远地区,风力发电机被广泛应用于供电系统中,改善了居民的生活条件。
此外,风力发电机在农业和农村经济发展中也发挥着重要作用。
农村地区的农田、草场、渔场等可以利用风力发电机为灌溉和供电提供能源。
农村经济的发展也需要电力的支持,因此风力发电机的使用可以帮助农村地区提高农业生产效益,促进农村经济的发展。
另外,风力发电机还可以应用于工业生产中,为工业生产提供动力支持。
工业生产通常需要大量的电能供应,传统的电力供应方式存在能源资源有限、价格波动大的问题。
而风力发电机利用自然风能发电,不仅能够为工业生产提供可靠的电力供应,而且风力发电可以实现分布式发电,即在工业生产现场直接利用风能发电,减少能源传输损耗,提高能源利用效率。
此外,风力发电机还可以用于学校、医院、办公楼等公共设施的电力供应。
这些公共设施对电力供应的稳定性和可靠性有很高的要求,风力发电机作为一种可再生能源,可以为这些设施提供可靠的、环保的电力供应。
风力发电机的工作原理与应用

风力发电机的工作原理与应用风力发电机作为可再生能源的一种重要形式,具有环保、经济、高效等优势,受到世界各国的广泛关注和应用。
本文将介绍风力发电机的工作原理以及其在能源领域的应用。
一、工作原理风力发电机的工作原理基于利用风的动能转变为电能。
其主要组成部分包括风轮、发电机、控制系统等。
1. 风轮风轮是风力发电机的核心部件,它由叶片、轴、塔架等组成。
当风吹过叶片时,产生的动能转化为旋转能力,推动风轮转动。
2. 发电机风轮通过轴将机械能转化为电能。
发电机利用转动产生的磁场与线圈之间的相互作用,通过电磁感应原理将机械能转化为电能。
3. 控制系统控制系统是风力发电机的关键部分,它能根据风速、发电机负载情况等参数进行实时监测和调节,以保证风力发电机的安全稳定运行。
二、应用领域风力发电机在能源领域有着广泛的应用,以下将介绍其在电力、工业和农村地区的应用情况。
1.电力应用风力发电机可以作为独立的发电设施,用于为城市、乡村等地区供电。
同时,多个风力发电机也可以组成风力发电场,集中供电。
2.工业应用风力发电机在工业领域广泛应用,可以为工厂、矿山等大型企业提供电力。
利用风力发电机代替传统能源,不仅可以减少环境污染,还可以降低能源成本。
3.农村地区应用在偏远农村地区,利用风力发电机可以解决电力供应问题。
农村地区的风力资源丰富,通过搭建风力发电机,可以提供清洁而稳定的电力,满足当地民众的生活和生产需求。
三、发展前景风力发电作为一种可再生能源,具有巨大的发展前景。
以下是其发展前景的几个方面。
1. 环保减排风力发电机不会产生排放物和废气,相比传统能源发电方式,利用风力发电可以极大地减少温室气体排放,对环境具有明显的保护作用。
2. 节能高效相比燃煤、燃油等传统能源,风力发电无需燃料,充分利用自然资源,具有极高的能源转化效率,有助于实现能源的节约和可持续利用。
3. 市场潜力随着全球对可再生能源的需求的不断增加,风力发电作为其中的重要组成部分,有着广阔的市场潜力。
大型双定子超导磁场调制风力发电机关键技术

优势与挑战
优势
发电效率高、噪音低、寿命长、环境 友好等。
挑战
超导材料的制备与维护成本高、磁场 调制技术的实现难度大、发电系统的 稳定性与可靠性需要进一步提高等。
02
关键技术解析
超导磁场调制技术
01
02
03
磁场调制技术
通过调节超导线圈的电流 ,实现对发电机磁场强度 的动态调节,从而提高发 电机的输出功率和效率。
THANKS
谢谢您的观看
,以确保长期稳定运行。
可靠性分析
采用可靠性分析和寿命预测方法 ,对发电机进行全面的可靠性评
估和预测。
技术挑战
稳定性与可靠性分析技术的实现 难度和成本问题。
03
大型化发展与实现
大型化设计原则与策略
高效能设计
通过优化磁场调制和电机设计,提高发电机的能 效和功率密度。
可靠性原则
确保大型化设计能够承受恶劣环境和长期运行, 提高发电机的可靠性和寿命。
风能捕获与转化
风能捕获
通过风力涡轮机将风能转 化为机械能,再通过超导 磁场调制技术将机械能转 化为电能。
转化效率
提高风能捕获和转化的效 率是关键技术之一,需要 采用高效的风力涡轮机和 超导磁场调制技术。
技术挑战
风能捕获与转化技术的实 现难度和成本问题。
稳定性与可靠性分析
稳定性
大型双定子超导磁场调制风力发 电机需要具备高稳定性和可靠性
技术优势
超导材料具有高导电性和 零电阻特性,使得磁场调 制技术具有高效、低能耗 的优点。
技术挑战
超导材料的稳定性和成本 问题,以及磁场调制技术 的控制策略和实现难度。
双定子结构设计与优化
双定子结构
大型双定子超导磁场调制风力发 电机采用双定子结构,以提高发
永磁悬浮风力发电机国内外技术发展及专利简介

永磁悬浮风力发电机国内外技术发展及专利简介供稿人:张蓓文现行的风力发电机多为螺旋桨式结构,由于结构上的原因,一般都是定向安放,需要4级以上的风力才可以运行发电。
对于2级以下的微风状态,基本上很难正常工作,这使得风能的利用和技术推广受到一定限制。
随着永磁风力发电机的产生,使发电机的结构得到简化,效能提高,各种损耗也有明显的降低。
它具有在额定的低转速下输出功率较大、效率高、温升低、起动阻力矩小、建压转速低等优点。
在此基础上,研究人员又引入了磁力传动技术和磁悬浮技术,研制成了更为先进、高效的永磁悬浮风力发电机。
相关专利列举以“(磁+悬浮)*风*(发电+风电)”及“wind and (turbine or generat) and (magnet and levitat or MAGLEV or breeze)”为检索策略,对中国知识产权局网站及欧洲专利局网站进行检索,现列举检索到的相关专利:1、磁悬浮永磁风力发电机申请人:赵克发明人:赵克摘要:一种磁悬浮永磁风力发电机,它采用了磁力传动技术和磁悬浮技术,从系统上解决了风力发电机向大功率发展中遇到需启动风力达一定大的难题,同时,通过磁力传动技术和磁悬浮技术的结合,克服了永磁转子风力发电机输出特性偏软的缺点。
该磁悬浮永磁风力发电机,它是由原动力传送装置,磁力传动调速装置,磁轮,磁悬浮永磁发电机等几部分组成的。
因其启动风力小的特点,它可广泛用于各种交通工具,工厂,农村,城市住宅小区,高层建筑等领域。
主权项:一种磁悬浮永磁风力发电机,它包括:原动力传送装置、磁力传动调速装置、磁轮、磁悬浮永磁发电机等几部分。
其特征在于:原动力传送装置中的磁轮,与由不同规格大小、不同转速比的磁轮组成的磁力传动调速装置,保持着一定的间隙;同时,磁力传动调速装置中的磁轮,与安装在磁悬浮永磁发电机转轴上的磁轮,也保持着间隙;在转轴与磁悬浮永磁发电机的端盖之间,安装有磁悬浮装置。
2、新型永磁风力发电机申请人:白晶辉发明人:白晶辉摘要:本实用新型公开了一种新型永磁风力发电机,其特征在于发电机部分中的发电机定子绕组,其结构采用双线并绕的形式进行绕制,两个绕组的头尾通过开关器件串联在一起,控制电路B通过D1、D2对由运算放大器IC1组成的电压比较电路进行供电,运算放大器IC1组成的电压比较电路对发电机定子绕组L1和L2上的电压进行检测,并输出信号,通过对开关器件J1、J2的通、断,改变发电机定子绕组L1和L2为串联或并联。
科技成果——大功率高速永磁海上风力发电机技术

科技成果——大功率高速永磁海上风力发电机技术技术开发单位中国船舶重工集团公司山西汾西重工有限责任公司技术简介技术开发单位利用自主研发的舰用发电机,功率范围从300kW-5.3MW,掌握大功率电机研制技术;同时进行1200kW、4.5MW 永磁推进电机的研制,掌握了永磁推进电机研制技术。
开发了多型具有自主知识产权的电机产品,产品涵盖了船用中高压大功率发电机、海洋平台用发电机、系列双馈异步风力发电机、系列同步风力发电机、油田变频电动机等,具有丰富的电机研发设计、工艺制造、试验验证能力。
将现有军用电机大功率研制技术和永磁电机制造技术推广到海上风电机组用高速永磁风力发电机上,掌握高速永磁风力发电机关键核心设计技术和大功率永磁发电机的制造技术,开发海上风电机组用系列高速永磁风力发电机,形成具有自主知识产权的高速永磁风力发电机系列产品,产品技术指标先进,性能优越,全面满足海上风电机组要求。
技术指标额定功率:5MW-7MW额定电压:690V/3300V额定频率:60.6Hz效率:≥97.5%绝缘等级:H级振动速度:2.8mm/s通过选取具有代表性的海上风电机组用高速永磁风力发电机,结合典型样机的研制和试验结果,完善高速永磁风力发电机的设计方法,进行高速永磁风力发电机型谱设计。
技术特点目前国内外海上风电机组类型主要有三种,即双馈异步式、高速永磁式和低速直驱永磁式。
高速永磁风力发电机具有重量轻、效率高、故障率低、后期维护量小,低电压穿越能力强的特点,因此高速永磁风电机组因其良好的综合性能,必将在大功率海上风电市场中有更好的发展。
技术水平国内领先可应用领域和范围海上高速永磁风力发电领域专利状态已取得专利5项技术状态批量生产、成熟应用阶段合作方式许可使用、融资投入需求6000万元转化周期3年预期效益通过将大功率高速永磁发电机技术应用于海上风力发电机技术后,为国内风力发电场提供优质的系列高速永磁发电机,改变国外高速永磁风力发电机产品占主导地位的局面,减少对进口设备的依赖,满足国内高速永磁发电机组的配套需求,提高国产高速永磁海上风力发电机的市场占有率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、国内外大型永磁发电机的应用
永磁同步发电机是用永磁体来代替普通同步发电机的励磁系统,为发电机提供励磁的一种发电机。
由于永磁发电机字很无法调节励磁,发电机端口电压将随着转速而变化,因而早期永磁发电机往往与小功率的变流装置配套应用于小型风力发电机上,但随着永磁技术与大功率变流技术的提高,风电新技术方案的出现,永磁发电机逐渐在大型风力发电上的到了广泛的应用,并将成为未来风力发电机的一种趋势。
2000年瑞典ABB公司研制成功了3MW-5MW的巨型可变速风力发电机组,其中发电机采用了低速多极的永磁式转子结构的高压风力发电机Windformer,由于Windformer为风轮直接驱动永磁转子,结构简单,可直接并网使用,具有容量大,效率高,运行可靠及环保效果好等特点。
2005年德国Multibrid安装了第一台5MW风机,M5000风机由德国工程咨询公司aerodyn设计,采用了单级齿轮箱和水冷式中速永磁同步发电机相结合的混合传动技术,相比传统三级齿轮箱的双馈技术方案,大大简化了传动系统结构,提高了电能品质,而相比直驱技术中采用的低速电机,中速电机的尺寸和重量大为减少,从而为生产、运输和吊装带来了一系列的优势。
国内目前能够批量化生产永磁风力发电机仅有金风科技和湘电风能公司两家风电整机厂商。
2、不同类型风力发电机的技术对比
目前风电市场中,以三级齿轮箱加双馈异步发电机为技术发难的变速恒频风力发电机应用最为广泛。
但随着大功率器件的发展,大功率变流器的成本及技术瓶颈已逐渐打破,低速同步发电机配全功率整流器的直驱式结构成为了风力发电的另一个重要发展方向。
永磁电机具有结构简单、效率高、免维护等优点,尤其是船舶、风机等这种对电机稳定性要求高且维修不易的环境中具有应用优势,因而低速永磁电机往往是直驱式结构风机用发电机的首选方案。
随着风力发电机不断大功率化,双馈式风力发电机组除论像的机械故障率较高,稳定性及电能品质较差,同时直驱式风力发电机组中的低速同步发电机尺寸偏大也增加了设计及运输难度,因而将上述两种方案相结合的第三种技术路线即齿轮箱加中高速同步发电机的混
合传动结构风机异军突起,而采用永磁同步发电机作为中高速等级的同步电机也是最优的选择。
下面仅对风力发电上最多采用这三种方式进行分析:
(1)变速恒频双馈异步发电机
如图4(a)所示,双馈式风力发电机组主要由风机叶轮、三级齿轮箱、双馈异步发电机、双向PWM变流器等部件组成,双馈机的定子与电网直接相连,而转子通过滑环与变频器连接到电网中,通过调节转子励磁电流,可实现对发电机无功功率和有功功率的调节。
由于该发电机定转子都有外接电源并与之实现能量交换,因而成为双馈发电机。
双馈异步发电机具有技术成熟、风机厂商进入的门槛低、制造成本低、非全功率变流器容量小等优点,但是同时也具有运行范围较窄、转子花环部分容易磨损、齿轮箱机械部件故障率高维护量大、对电力品质相对较差等不足,这种齿轮箱加常规电机的传统技术路线,将有可能在即将到来的新一轮风能产业技术革新中被新的技术方案所取代。
(2)直驱同步风力发电机
直驱风力发电机组包括风机叶轮、多极低速同步发电机、全功率变流器等。
风机的控制系统主要靠变流器对发电机输出电流进行调节,从而实现对转矩的调节。
由于此类发电机组中风力机与发电机直接连接,而不使用齿轮箱即“直接驱动”的风力发电技术,因而被称为直驱风力发电机。
与双馈式风机不同,此风机系统的输出功率通过全功率变流器输送到电网中而与电网彻底隔开,电能品质优越,同时直驱风力发电机组省去了故障率高的齿轮箱,传动系统简单,可靠性增加,维护性好,由于低负荷下能发出更多的电能,又使其具有较高的效率。
(3)混合传动风力发电机
混合传动风力发电机包括风机叶轮、齿轮箱、中高速发电机及全功率变流装置。
风机叶轮转速经齿轮箱后被升高至100-2000r/min的中高速等级,再与中高速等级发电机相连,发电机发出的功率通过全功率变流器后并网运行
相比三级齿轮箱的双馈方案,此种技术方案可将传动系统简化,可靠性高,电能品质优越,相比带低速发电机的直驱方案,其发电机转速高,尺寸重量大幅降低,制造难度降低,运行稳定性也有所提高。
(4)对比关系
根据上述分析,对各种性能指标进行总结,并列在表1中。
可以看出,双馈机虽然技术门槛低,价格便宜,但在电能品质、维护性和稳定性都不及其他两种方案,制约直驱机组的主要方面是发电机尺寸重量过大,也带来了机舱与塔架的设计与制造难度,并随着功率的增大难度加剧,而混合传动虽然在维护性和经济性居中,但其中速电机尺寸相对较小,机舱内部更加紧凑,相应零部件设计制造简单,在未来更大功率风机应用上将具有显著优势。
3、大型永磁风力发电机的技术难点
(1)电机设计难点
永磁体是永磁电机代替传统电机励磁系统的关键部件,同事它也是磁路的组成部分之一。
由于不同型号永磁体的内在磁性能差异较大、此路结构形式多样、漏磁路复杂且漏磁比例较大,同时还要考虑故障下的过流冲击及正常运行时工作温度带来的永磁退磁问题等,都使永磁发电机的电磁设计变得异常复杂。
而永磁体材料中有大量的稀有金属,如果永磁材料用得过多会造成成本的增加,过少又达不到使用要求,因而兼顾经济性与稳定性也是方案设计的重要考核目
标之一。
除了合理的磁路设计,还要考虑如何确切地计算出风力发电机的起动阻力矩并采取措施予以降低,如果起动阻力矩小,发电机在较低风速便能起动发电,就可以更加有效地利用资源,提高发电性能。
在开发永磁风力发电机时,电机的温升也是电机设计的主要关键点。
由于永磁电机运行在风机上,空间狭小,散热性能较差,如果电机散热设计不合理,工作温升过高会导致永磁体退磁,带来电机出力不够、效率下降等一系列问题,因而如何利用有限空间,同时兼顾经济性及运行效率,设计出合理的散热系统是一个重点与难点问题。
此外,风机往往运行在戈壁、盐海、滩涂及海上等环境恶劣的地方,尤其对于大功率机组安装在海上将是未来的一个必然趋势,因而如何对电机进行防护将是设计成败的关键因素。
如果永磁体不能很好地防护,表面腐蚀会导致电机性能下降,而盐雾、风沙以及雨水的侵蚀,也会造成电机绝缘性能的下降,严重时将会造成击穿事故的发生。
3.2电机工艺难点
目前大功率电机均采用先将永磁体充磁后,再安装到转子上,这就带来了永磁体的安装问题。
磁极由多个永磁体组成,永磁体由专门的磁材厂家制作并充磁,目前风电用永磁体多为烧结工艺制作,永磁体机械强度小且易碎,同时永磁体的强磁性又使其容易吸附在铁心、转轴等地方,增加了安装难度,尤其对于内置式结构,一旦安装中发生永磁体破碎,碎块残留在转子铁心内部,很难清理,因而必须
设计可行的导入工装来保证安装成功。
而对于面贴式结构,还要考虑如何固定永磁体,目前较多的处理方式是将永磁体用特殊的粘接剂粘在磁轭表面,防止转子运行时,永磁体脱落或在磁轭表面移动。
永磁体安装完毕后,下一个面对的难题就是定转子的套装。
与传统套装不同,安装了永磁体的转子整体吸附力极强,转子之间气隙较小,在总装时容易造成定、转子之间因吸力大而发生碰撞,一旦定、转子吸附在一起将难以分开,甚至报废,且易造成人身伤害。
因而传统的立装或卧装工艺已无法满足要求,因此必须制作精确的导入及定位工装,在保证定、转子绝对同心的条件下再行总装是套装工艺的关键。
另外,在制造过程中,还必须做好清洁防护工作,防止铁屑、杂物掉入,工序安排也要合理,永磁体安装后,尽量避免再进行焊接、打磨等容易产生铁屑的工序。
同时在永磁体运输过程中及发电机安装完成后,要做好防护工作。