纵联差动保护仿真文献综述

纵联差动保护仿真文献综述
纵联差动保护仿真文献综述

本科毕业设计(论文)文献综述

课题名称:基于LabVIEW的输电

线路纵联差动保护

的研究

一、课题国内外现状

基于LabVIEW的输电线路的纵联差动保护,首先应该从纵联差动保护说起。电流纵联差动保护凭借其优越性在电力系统中得到广泛应用,因此我的毕业设计也将以电流纵联差动保护为研究对象。

追溯电流纵联差动保护的历史,用金属导引线作为通信通道的导引线纵联差动保护,是最早的输电线路电流纵联差动保护。输电线路的纵联保护根据所应用的通道分为导引线保护、载波保护、微波保护和光纤通道保护。按照输电线路两端所用的保护原理分类,又可分为纵联差动保护、方向比较式纵联保护和距离纵联保护。不同分类方法的各种保护任意组合,构成多种多样的保护方式,导引线纵联差动保护就是如此组合得来。在光纤通道普及后,导引线正在被光纤所取代,但是其基本原理仍以纵联差动保护的原理为基础。

电流纵联差动保护是反应从被保护元件各对外端口流入该元件的电流之和的一种保护,它的选择性不是靠延时、方向、定值来保证,而是根据克希霍夫的电流定律,即流向一个节点的电流之和等于零来保证,因此它是至今最理想的保护原理,被誉为有绝对选择性的快速保护原理。它已被广泛的用于电力系统发电机、变压器、母线等重要电气设备的保护。凡是有条件应用这种保护原理的场合都使用了这种原理,短距离输电线路也不例外。目前,随着通讯技术的高速发展,光纤电流差动保护越来越多的运用到长距离高电压输电线路之中。在国外,数字式电流差动保护的应用较多,尤其是在日本和英国,数字式电流差动保护是输电线路主保护中应用最多的保护,而在其它国家也有应用。

应用LabVIEW,实现纵联差动保护的仿真,对于虚拟仪器的了解也是非常有必要的。虚拟仪器概念提出至今,有关虚拟仪器技术的研究方兴未艾。研究人员在虚拟仪器硬件接口、虚拟仪器软件及其设计方法等方面做了许多有意义的研究工作,并已开发了许多实用的虚拟仪器系统。各种虚拟仪器开发平台为虚拟仪器的推广应用奠定了基础。美国NI公司在虚拟仪器概念出现以后,推出了图形化虚拟仪器专用开发平台LabVIEW。这种平台采用独特的图形化编程方式,编程过程简单方便,是目前最受欢迎的虚拟仪器主流开发平台。

二、研究主要成果

差动保护的原理以克希霍夫电流定律为基础,如果不考虑输电线路分布电容、分布电导和并联电抗器等,则电流纵联差动保护原理对任何故障都适用。但是在真正使用时,仍然存在很多问题,针对这些问题,科学家们有了一步又一步的研究成果。

1、对电流的幅值和相位分别传送的高频幅、相差动保护原理的研究,提出用抗扰度最大的频率调制。

2、只传送和比较输电线路两端电流相位的电流相位比较式纵联保护。

3、利用微波或光纤通道同时传送四个电流瞬时采样值数字量的数字微波或数字光纤电流纵联差动保护原理。

4、输电线路微机自适应分相电流纵联差动保护。

5、不受电容电流影响的基于贝瑞隆模型的分相电流差动保护。

对于现在很多课题而言,仿真实验是课题中最重要的环节。如今虚拟实验室代替了真实的实验室,已成功地应用于许多大型实验室的实验研究和高等学校的实验教学。它不受时间和空间的约束,弥补了传统仪器落后于科学理论的弊端,节约投资,满足了学校教学和科研的基本要求。

三、发展趋势

国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,电流差动保护作为一种简单可靠广泛使用的继电保护原理,自然也是向着这些方面发展。随着电力系统的发展,远距离输电、超高压输电这样的输电线路越来越多,电力系统通讯技术的迅猛发展,电流差动保护很显然将会得到更加广泛的应用,尤其是在高压和超高压输电线路上。

在人工智能研究的影响下,人们开始关注如何提高虚拟仪器的智能化水平。重庆大学秦树人等提出的智能化控件的思想,通过具有一定智能的多功能控件提高虚拟仪器灵活性。

四、存在问题

1、电流差动保护

(1)我们只能通过降低保护的灵敏度或者通过适当的补偿,来弥补电

容电流在超高压长线路或者电缆线路上造成的输电线路两端电流大小和相位发生严重畸变的情况。我们需要提出在不降低保护灵敏度的情况下,实现差动保护的新方法。

(2)虽然纵联差动保护是高压输电线路的主要快速保护原理,但是它必须与通讯通道配合工作,因而受通信通道可靠性的影响,纵联保护的正确率总是低于其他保护。我们需要进行无通道保护方向的研究。

2、虚拟仪器

智能化软件开发平台是虚拟仪器一个重要的发展方向。尽管目前虚拟仪器的研究已取得许多重大进展,但现在的虚拟仪器体系仍存在以下问题:(1)仪器开发严重依赖经验。 (2)仪器设计的效率低。 (3)仪器的可扩展性和可重构性差。因此,采用人工智能技术提高虚拟仪器软件系统的可重构能力,降低虚拟仪器的设计难度,真正实现用户自己定义仪器的目标,是虚拟仪器研究中亟待解决的一项重要工作。

五、主要参考文献

1 李晓明. 现代高压电网继电保护原理. 北京: 中国电力出版社, 2007: 1-2

2 陈国清. 浅析电流互感器饱和对继电保护的影响及对策. 自动化技术与应用, 2007, 26(10): 115-116

3 贺家李, 宋从矩. 电力系统继电保护原理(第三版). 北京: 中国电力出版社, 1994: 7-8

4 周培华. 浅谈电力系统中继电保护的发展趋势. 科技咨询导报, 2007, 16(2): 57-58

5 于艳莉. 超高压线路电流差动保护原理的研究. [华北电力大学硕士论文]. 2004, 36-44

6 张艳霞, 姜惠兰. 电力系统保护与控制. 北京: 清华大学出版社, 2005: 124

7 李瑞生. 光纤电流差动保护与通道测试技术. 北京: 中国电力出版社, 2005: 2

8 董新洲, 苏斌, 薄志谦等. 特高压输电线路继电保护特殊问题的研

究. 电力系统自动化, 2004, 22(28): 19-22

9 苏斌, 董新洲, 孙元章. 适用于特高压线路的差动保护分布电容电流补偿算法. 电力系统自动化, 2005, 29(8): 36-40

10 罗晓宇, 王秀梅. 数字式纵联电流差动保护算法同步策略探讨. 电力自动化设备, 2006, 7(26): 90-94

11 吴心弘. 线路纵联差动保护研究. [浙江大学硕士论文]. 2006:10-15

12 陈建玉, 孟宪民, 张振旗等. 电流互感器饱和对继电保护影响的分析及对策. 电力系统自动化, 2000, 24(6): 54-56

13 K Mok Aloysius, Stuart Douglas. RTL Semantics for LabVIEW. IEEE Aerospace Applications Conference Proceedings, 2001: 61-71

14 Swain Nikunjak, James. Remote Data Acquisition Control and Analysis using LabVIEW Front Panel and Real Time Engine. IEEE Region Jamaica Proceedings Institute of Electrical and Electronics Engineers, 2003: 1-6

15 Turley Russ, Wright Matthew. Developing Engine Test Software in LabVIEW. IEEE Systems Readiness Technology Conference, 2002: 89-93

16 Stegawski M A, SchaumannR. A New Virtual-Instrumentation Based Experimenting Environment for Undergraduate Laboratories with Application in Research an Manufacturing. IEEE Trans IM, 1998, 47(2): 1503-1507

17 C C Ko, B M Chen, S H Chen. A Large Scale Web-based Virtual Oscilloscope Laboratory Experiment, IEEE Engineering Science and Education Journal. 2000, 9(2): 69-76

18 Fortino Giancarlo. Multimedia Networking-based Approach to the Development of Distributed Virtual Instruments. IEEE Instrumentation and Measurement Technology Conference, 2005: 1863- 1867

指导教师审阅签字:

年月日

线路纵联保护

输电线路纵联保护 2009.06 钟应贵 1、纵联保护的构成 图1输电线路纵联保护结构框图 2、两端功率方向的故障特征 当线路发生区内故障和区外故障时输电线路两端功率方向特征也有很大区别,发生区内故障时两端功率方向为由母线流向线路,两端功率方向相同,同为正方向。发生区外故障时,远故障点端功率由母线流向线路,功率方向为正,近故障点端功率由线路流向母线,功率方向为负两端功率方向相反。 图2双端电源线路区内、区外故障功率方向

3、纵联保护分类 1)按信息通道不同分 a、导引线纵联保护 b、电力线载波纵联保护 c、微波纵联保护 d、光纤纵联保护 2)按保护动作原理分 (1)方向比较式纵联保护。两侧保护装置将本侧的功率方向、测量阻抗是否在规定的方向、区段内的判别结果传送到对侧,每侧保护装置根据两侧的判别结果,区分 是区内故障还是区外故障。这类保护在通道中传送的是逻辑信号,而不是电气量 本身。按照保护判别方向所用的原理可将方向比较式纵联保护分为方向纵联保护 和距离纵联保护。 (2)纵联电流差动保护。这类保护在通道中传送的是电气量,如电流的波形或代表电流相位的信号传送到对侧,每侧保护根据对两侧电流的幅值和相位比较的结果区 分市区内故障还是区外故障。这类故障在每侧都直接比较两侧的电气量。 4、电力线载波通信的构成 图3载波通信示意图 1—阻波器2—耦合电容器3—连接滤波器4—电缆 5—载波收发信机6—接地刀闸 阻波器:阻挡载波电波(高频电波)控制在本线路内,工频电流畅通。 耦合电容器:阻挡工频电流,允许高频电流通过。 连接滤波器:通过所需频带电波,隔离高压电,提高收发信机安全性。 载波收发信机:由继电保护控制发出预定频率的高频信号。通常是在电力系统发生故障保护动作后发出信号。也有采用长期发信,故障时保护动作后停信,或改变信号频率的工作方式。 接地刀闸:当检修连接滤波器时,接通接地刀闸,使耦合电容下端可靠接地。 5、载波通道的工作方式

变压器纵联差动保护

第四节变压器纵联差动保护 一、变压器纵联差动保护的原理 纵联差动保护是反应被保护变压器各端流入和流出电流的相量差。对双绕组变压器实现纵差动保护的原理接线如下图所示。 为了保证纵联差动保护的正确工作,应使得在正常运行和外部故障时,两个二次电流相等,差回路电流为零。在保护范围内故障时,流入差回路的电流为短路点的短路电流的二次值,保护动作。应使 或 结论: 适当选择两侧电流互感器的变比。 纵联差动保护有较高的灵敏度。 二、变压器纵联差动保护在稳态情况下的不平衡电流及减小不平衡电流的措施 在正常运行及保护范围外部短路稳态情况下流入纵联差动保护差回路中的电流叫稳态不平衡电流I bp。 1.由变压器两侧电流相位不同而产生的不平衡电流 思考:由于变压器常常采用Y,dll的接线方式, 因此, 其两侧电流的相位差30o。此时,如果两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,会有一个差电流流入继电器。如何消除这种不平衡电流的影响?

解决办法:通常都是将变压器星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形。 2.由两侧电流互感器的误差引起的不平衡电流 思考:变压器两侧电流互感器有电流误差△I,在正常运行及保护范围外部故障时流入差回路中的电流不为零,为什么? 为什么在正常运行时,不平衡电流也很小? 为什么当外部故障时,不平衡电流增大? 原因:电流互感器的电流误差和其励磁电流的大小、二次负载的大小及励磁阻抗有关,而励磁阻抗又与铁芯特性和饱和程度有关。 当被保护变压器两侧电流互感器型号不同,变比不同,二次负载阻抗及短路电流倍数不同时都会使电流互感器励磁电流的差值增大。 减少这种不平衡电流影响的措施: (1)在选择互感器时,应选带有气隙的D级铁芯互感器,使之在短路时也不饱和。 (2)选大变比的电流互感器,可以降低短路电流倍数。 (3)在考虑二次回路的负载时,通常都以电流互感器的10%误差曲线为依据,进行导线截面校验,不平衡电流会更小。最大可能值为: 3.由计算变比与实际变比不同而产生的不平衡电流 思考:两侧的电流互感器、变压器是不是一定满足 或的关系? 原因:很难满足上述关系。 减少这种不平衡电流影响的措施: 利用平衡线圈W ph来消除此差电流的影响。 假设在区外故障时,如下图所示,则差动线圈中将流过电流(),由它所产生的磁势为W cd()。为了消除这个差动电流的影响,通常都是将平衡线圈W ph接入二次电流较小的一侧,应使 W cd()=W ph 4.带负荷调变压器的分接头产生的不平衡电流 思考:在电力系统中为什么采用带负荷调压的变压器会产生不平衡电流?

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

纵联保护原理

纵联保护原理?我们先来瞧一下反映一侧电气量变化得保护有什么不足? 对于反映单侧电气量变化得M侧保护来说,它无法区分就是本侧线路末端故障还就是下级线路始端故障。所以在保护整定上要将它瞬时段得保护范围限制在全线得70%~80%左右,也即反映单侧电气量变化得保护不能瞬时切除本线路全长内得故障。 因此,引入了纵联保护,纵联保护就是综合反映线路两侧电气量变化得保护,对本线路全长范围内得故障均能瞬时切除。 为了使保护能够做到全线速动,有效得办法就是让线路两端得保护都能够测量到对端保护得动作信号,再与本侧带方向得保护动作信号比较、判定,以确定就是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路得任何一处发生故障,线路两侧得保护都能瞬时动作跳闸。快速性、选择性都得到了保证。?在构成保护上,就是将对侧对故障得判断量传送到本侧,本侧保护经过综合判断,来决定保护就是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障就是否在本线路正方向得判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护得方式: 1、闭锁式:也就就是说收不到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护得正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 ? 2、允许式:也就就是说收到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护得正方向保护范围均超过本线路全长得50%以上,但没有超出本线路全长);高频信号采

纵联差动保护联调方法

采样 相关概念: ?定值中的“CT变比系数”: 将电流一次额定值大的一侧设定为1,小的一侧整定为本侧电流一次额定值与对侧电流一次额定值的比值。 如:本侧CT变比1250/5;对侧2500/1,则本侧CT变比系数整定为0、5,对侧整定为1。 步骤: 本侧CT变比:a/b,对侧CT变比c/d。 ?(1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 ?(2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 模拟空充 相关概念: ?没有CT断线时差动跳闸需同时满足如下条件: 1、两侧差动保护均投入(控制字+软压板+硬压板) 2、没有通道异常 3、有差流 4、本侧保护启动 5、对侧差动信号,即给本侧发差动允许信号(a、b同时满足) a、有差流 b、对侧分位无流或对侧启动 步骤: ?①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 解释: 1、对侧分位无流+有差流->给本侧发允许信号 2、对侧不启动->对侧不跳 ?②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 相关概念: ?保护启动方式: 1、电流变化量启动 2、零序过流元件启动 3、位置不对应启动(针对偷跳) 4、弱馈启动(针对弱电源侧) 步骤: ?①两侧合位。对侧加一低于正常值电压34V(1、之所以加34V就是为了满足如下两 条:a、满足弱馈条件<65%额定,b、大于33V避开PT断线,2、其实PT断线并不影响弱馈启动,即只要加的电压满足<65%额定即可,也就就是说不加也行。),本侧加差流,则两侧跳。 解释: 1、本侧启动+有差流->给对侧发允许信号

2、对侧弱馈+本侧允许信号->对侧启动(弱馈启动方式) 3、对侧启动+有差流->给本侧发允许信号 ?②两侧合位。本侧加一低于正常值电压34V,对侧加差流,则两侧跳。 模拟远跳 步骤: 方法一: ?①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧 跳。(若点的就是TJR继电器,则对侧也跳,但保护装置跳闸灯不亮。若点的就是保护装置的TJR开入,则对侧开关不跳。) ?②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧 跳。 (注:因TJR与启动量需要时间上的配合,较难把握,可采用如下简便方法。) 方法二: ?①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ?②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 简化整组联调实用版步骤: 一、前提: 1、“通道异常”灯熄灭,两侧主保护投入(控制字+软压板+硬压板)。 2、给两套主保护并上电压、串上电流。 二、采样 本侧CT变比:a/b,对侧CT变比c/d。 (1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 (2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 三、模拟空充 ①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 ②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 ①两侧合位。对侧加一小于65%额定电压,本侧加差流,则两侧跳。 ②两侧合位。本侧加一小于65%额定电压,对侧加差流,则两侧跳。 四、模拟远跳 方法一: ①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧跳。 ②②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧跳。方法二(较简单): ①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 ③两侧恢复“远跳经本侧控制”。

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流 为1 1 TA I n -2 2 TA I n = 1 I'- 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时,I1与I2 同向流入,KD的电流为: 1 1 TA I n +2 2 TA I n = 1 I'+ 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I'-(3) max max / unb st unp i k TA I K K f I n =≠ 0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达: .min .min.min () brk brk op ork brk op I I I K I I I > ≥≤+ 式中:Kst——同型系数,取0.5; Kunp——非周期性分量影响系数,取为1~1.5; fi ——TA的最大数值误差,取0.1。 为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max (Krel为可靠系数,取1.3)。Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg

纵联保护分类

1 纵联保护分类 仅反应线路一侧的电气量不可能区分本线末端和对侧母线(或相邻线始端)故障,只有反应线路两侧的电气量才可能区分上述2点故障,为了达到有选择性地快速切除全线故障的目的。需要将线路一侧电气量的信息传输到另一侧去,也就是说在线路两侧之间发生纵向的联系。这种保护称为输电线的纵联保护。 1.1 按使用通道分类 为了交换信息,需要利用通道。纵联保护按照所利用通道的不同类型可以分为4种(通常纵联保护也按此命名):导引线纵联保护(简称导引线保护)、电力线载波纵联保护(简称载波保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。 1.2 各种传送信息通道的特点 1.2.1 导引线通道。这种通道需要铺设电缆,其投资随线路长度而增加。当线路较长(超过10 km以上)时就不经济了。导引线越长,安全性越低。导引线中传输的是电信号。在中性点接地系统中,除了雷击外,在接地故障时地中电流会引起地电位升高,也会产生感应电压,对保护装置和人身安全构成威胁,也会造成保护不正确动作。所以导引线的电缆必须有足够的绝缘水平(例如15 kV的绝缘水平),从而使投资增大。导引线直接传输交流电量,故导引线保护广泛采用差动保护原理,但导引线的参数(电阻和分布电容)直接影响保护性能,从而在技术上也限制了导线保护用于较长的线路。 1.2.2 电力线载波通道。这种通道在保护中应用最广。载波通道由高压输电线及其加工和连接设备(阻波器、结合电容器及高频收发信机)等组成。高压输电线机械强度大,十分安全可靠。但正是在线路发生故障时通道可能遭到破坏(高频信号衰减增大),为此需考虑在此情况下高频信号是否能有效传输的问题。当载波通道采用“相-地”制,在线路中点发生单相短路接地故障时衰减与正常时基本相同,但在线路两端故障时衰减显著增大。当载波通道采用“相-相”制,在单相短路接地故障时高频信号能够传输,但在三相短路时仍然不能。为此载波保护在利用高频信号时应使保护在本线路故障信号中断的情况下仍 能正确动作。 1.2.3 微波通道。微波通道与输电线没有直接的联系,输电线发生故障时不会对微波通信系统产生任何影响,因而利用微波保护的方式不受限制。微波通信是一种多路通信系统,可以提供足够的通道,彻底解决了通道拥挤的问题。微波通信具有很宽的频带,线路故障时信号不会中断,可以传送交流电的波形。采用脉冲编码调制(PCM)方式可以进一步扩大信息传输量,提高抗干扰能力,也更适合于数字保护。微波通信是理想的通信系统,但是保护专用微波通信设备是不经济的,应当与远动等在设计时兼顾起来。同时还要考虑信号 衰耗的问题。 1.2.4 光纤通道。光纤通道与微波通道有相同的优点。光纤通信也广泛采用(PCM)调制方式。当被保护线路很短时,通过光缆直接将光信号送到对侧,在每半套保护装置中都

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

纵联差动保护

6.2 纵联差动保护 6.2.1 基本原理 6.2.1.1 定义 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 6.2.1.2 基本原理 变压器纵差保护是按照循环电流原理构成的 变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2?'I -2? ''I =0,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。 (a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布 (图6.4 变压器纵差保护原理接线图) 在图6.4(a )双绕组变压器中,变压器两侧电流1?'I 、1?''I 同相位,所以电流互感器TA 1、TA 2二次的电流2?'I 、2?''I 同相位,则2?'I -2?''I =0的条件是2?'I =2? ''I ,即 2?'I =2?''I = 11i n I ?'=21i n I ? '' (6.1) 即 12i i n n =1 1?? '''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。 若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为 K I ?=2?'I -2? ''I =0 (6.3) 当区内故障时,2?''I 反向流出,则流入差动继电器的电流为

线路纵联保护

输电线纵联保护 §4-1 输电线纵联差动保护 一、基本原理: 1.反应单侧电气量保护的缺陷: ∵无法区分本线路末端短路与相邻线路出口短路。∴无法实现全线速动。 原因:(1)电气距离接近相等。(2)继电器本身测量误差。 (3)线路参数不准确。 (4)LH、YH有误差。 (5)短路类型不同。(6)运行方式变化等。 2. 输电线路纵联差动保护: (1)输电线路的纵联保护:(P129 第二自然段)。 (2)导引线纵联差动保护: 用导引线传送电流(大小或方向),根据电流在导引线中的流动情况, 可分为环流式和均压式两种。(P131 图4-2)自学。 (注意图中隔离变压器GB的极性) 例:环流法构成了导引线纵联保护: 线路两侧装有相同变比的LH 正常或区外短路:Im1=-In1 ∴Im2=-In2 I J=Im2+In2=0 J不动 区内短路:I J=Im2+In2=(Im1+ In1)/n LH = I d/ n LH > I d z ( 同时跳两侧DL)←J动作 可见纵联差动保护的范围是两侧LH之间,理论上具有绝对选择性可实现全线速动。但它只适用于< 5~7公里的短线路。若用于长线路技术上有困难且经济上不合理。 (P136 标题2) 它在发电机、变压器、母线保护中应用得更广泛(后述) 3. 纵联保护信号传输方式: (1)辅助导引线(2)电力线载波:高频保护(3)微波:微波保护(4)光纤:光纤保护 1

2 §4-2 输电线的高频保护 一、 高频保护概述: 高频保护的定义:(P136) 分类:按照工作原理分两大类,方向高频保护和相差高频保护。 方向高频保护:比较被保护线路两侧的功率方向。 相差高频保护:比较被保护线路两侧的电流相位。 二、 高频通道的构成: 有“相-相”和“相-地”两种连接方式 ∨ “我国广泛运用” 构成示意图P137 图4-7 1. 阻波器:L 、C 并联谐振回路,谐振于载波频率。 对载波电流:Z>1000Ω——————限制在本线路。 对工频电流:Z<0.04Ω——————畅流无阻。 2.结合电容器 带通滤波器 ①通高频、阻工频 3.连接滤波器 ②阻抗匹配 4.高频电缆:将位于主控制室的高频收、发信机与户外变电站的带通滤波器连接起来。 5.高频收、发信机 三、 高频通道工作方式及高频信号的应用: 无高频电流是信号 1. 高频通道的工作方式 两种: 长期发信方式:正常运行时,始终收发信(经常有高频电流) 故障时发信方式:正常运行时,收发信机不工作。当系统故障时,发信机由启动元件启动通 道中才有高频电流(经常无高频电流) 另:改变频率也是一种信号。 2.高频信号的分类及应用 有高频电流是信号 按高频信号的应用分三类:跳闸信号、允许信号、闭锁信号 (1) 跳闸信号 (2) 允许信号 “与”门:高频信号是跳闸的必要条件 (3) 闭锁信号:

变压器差动保护原理

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流;

I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们

纵联保护方式比较分析

纵联保护方式比较分析 摘 要 对纵联保护进行了分类,分析了各类纵联保护的原理、技术特点和工作方式,并比较了各类纵联保护的优缺点。 关键词 纵联保护分类 工作方式 1 纵联保护分类 仅反应线路一侧的电气量不可能区分本线末端和对侧母线(或相邻线始端)故障,只有反应线路两侧的电气量才可能区分上述2点故障,为了达到有选择性地快速切除全线故障的目的。需要将线路一侧电气量的信息传输到另一侧去,也就是说在线路两侧之间发生纵向的联系。这种保护称为输电线的纵联保护。 1.1 按使用通道分类 为了交换信息,需要利用通道。纵联保护按照所利用通道的不同类型可以分为4种(通常纵联保护也按此命名):导引线纵联保护(简称导引线保护)、电力线载波纵联保护(简称载波保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。 1.2 各种传送信息通道的特点 1.2.1 导引线通道。这种通道需要铺设电缆,其投资随线路长度而增加。当线路较长(超过10 km以上)时就不经济了。导引线越长,安全性越低。导引线中传输的是电信号。在中性点接地系统中,除了雷击外,在接地故障时地中电流会引起地电位升高,也会产生感应电压,对保护装置和人身安全构成威胁,也会造成保护不正确动作。所以导引线的电缆必须有足够的绝缘水平(例如15 kV的绝缘水平),从而使投资增大。导引线直接传输交流电量,故导引线保护广泛采用差动保护原理,但导引线的参数(电阻和分布电容)直接影响保护性能,从而在技术上也限制了导线保护用于较长的线路。 1.2.2 电力线载波通道。这种通道在保护中应用最广。载波通道由高压输电线及其加工和连接设备(阻波器、结合电容器及高频收发信机)等组成。高压输电线机械强度大,十分安全可靠。但正是在线路发生故障时通道可能遭到破坏(高频信号衰减增大),为此需考虑在此情况下高频信号是否能有效传输的问题。当载波通道采用“相-地”制,在线路中点发生单相短路接地故障时衰减与正常时基本相同,但在线路两端故障时衰减显著增大。当载波通道采用“相-相”制,在单相短路接地故障时高频信号能够传输,但在三相短路时仍然不能。为此载波保护在利用高频信号时应使保护在本线路故障信号中断的情况下仍能正确动作。 1.2.3 微波通道。微波通道与输电线没有直接的联系,输电线发生故障时不会对微波通信系

纵联保护原理

纵联保护原理 我们先来看一下反映一侧电气量变化的保护有什么不足? 对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。 因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。 为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。快速性、选择性都得到了保证。 在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护的方式: 1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号采用收发不同频率,即双频制。

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,差动保护是输入的两端CT电流矢量差,当两端CT电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律, = ∑?I;式中∑?I表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为 11TA I n - 22 TA I n =1I ' - 2I ' ≈0 ,故KD 不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为: 11TA I n + 22TA I n =1I ' + 2I '=2k TA I n 当 2k TA I n 大于KD 的整定值时,即 1I ' - (3)max max /unb st unp i k TA I K K f I n =≠0 ,KD 动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时, 2k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取; Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop= (Krel 为可靠系数,取)。越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。对于大、中型发电机,即使轻微故障也会造成严重后果。为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。显然,图所示的差动保护整定的动作电流已大于额定电流,无法满足这种要求。 具有比率制动特性的差动保护 保护的动作电流Iop 随着外部故障的短路电流而产生的Iunb 的增大而按比例的线性增大,且比Iunb 增大的更快,使在任何情况下的外部故障时,保护不会误动作。这是把外部故障

继电保护原理第一次作业答案

首页 - 我的作业列表 - 继电保护原理第一次作业答案 欢迎你,周永刚(FH1092DC010) 你的得分: 70.0 完成日期:2011年08月18日 11点33分 说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2011年09月08日)后显示在题目旁边。 一、单项选择题。本大题共20个小题,每小题 2.0 分,共40.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1.电流保护I段的灵敏系数通常用保护范围来衡量,其保护范围越长表明保 护越( ) ( C ) A.可靠 B.不可靠 C.灵敏 D.不灵敏 2.使电流速断保护有最大保护范围的运行方式为系统( ) ( B ) A.最大运行方式 B.最小运行方式 C.正常运行方式 D.事故运行方式 3.在中性点非直接接地电网中的并联线路上发生跨线不同相两点接地短路 时,两相星形接线电流保护只切除一个故障点的几率为( )。 ( B ) A.100% B.2/3 C.1/3 D.0 4.按900接线的功率方向继电器,若I J =-I c ,则U J 应为( ) ( B ) A.U AB B.-U AB C.U B D.-U C 5.电流速断保护定值不能保证( )时,则电流速断保护要误动作,需要 加装方向元件。 ( B )

A.速动性 B.选择性 C.灵敏性 D.可靠性 6.作为高灵敏度的线路接地保护,零序电流灵敏 I 段保护在非全相运行 时需( )。 ( D ) A.投入运行 B.有选择性的投入运行 C.有选择性的退出运行 D.退出运行 7.在中性点不接地电网中采用的有选择性零序电流保护,在接地故障时,它 是靠线路对地( )零序电流动作的。 ( B ) A.电感性 B.电容性 C.电阻性 D.暂态 8.方向阻抗继电器的最大灵敏角是可以调节的。调节方法是改变电抗变换器 DKB ( ) ( D ) A.原边匝数 B.副边匝数 C.原边线圈中的电阻大小 D.副边线圈中的电阻大小 9.距离 II 段的动作值应按分支系数K fz 为最小的运行方式来确定,目的是为了保证保护的( )。 ( B ) A.速动性 B.选择性 C.灵敏性 D.可靠性 10.反应相间短路的阻抗继电器采用00接线,则I J =I B -I A 时,U J =( )。 ( B )

高压线路纵联保护基本原理

概述输电线的纵联保护,就是用某种通信通道(简称通道)将输电线两端或 各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在个线路范围内还是在线路范围之外,从而决定是否切断被保护线路。因此,理论上这种纵联保护具有绝对的选择性。 基本原理利用比较两侧的电流相位或功率方向判断故障是否在区内按照纵联保护构成原理分类 单元式纵联保护 将输电线看作一个被保护单元如同变压器和发电机一样。 这种保护方式是从输电线的每一端采集电气量的测量值,通过通信通道传送到其他各端。在各端将这些测量值进行直接比较,以决定保护装置是否应该动作跳闸。如比较 电流相位的相位差动保护、比较电流波形(幅值和相位)的电流差动保护 非单元式保护 也是在输电线各端对某种或某几种电气量进行测量,但并下将测量值直接传送到其他各端,直接进行比较。而是传送根据这些测量值得到的对故障性质(如故障方向、故障位置等)的判断结果。如方向比较式纵联保护、距离纵联保护等 按照传送的通信信号分类 任何纵联保护都是依靠通信通道传送的某种信号来判断故障的位置是否在被保线路内。因此信号的性质和功能在很大程度上决定了保护的性能。 信号按其性质可分为三种; 闭锁信号、允许信号和跳闸信号。 这三种信号可用任一种通信通道产生和传送。 闭锁信号 以两端线路为例,所谓闭锁信号就是指:“收不到这种信号是保护动作跳闸的必要条件”。就是当发生外部故障时,由判定为外部故障的一端保护装置发出闭锁信号,将两端的保护闭锁。而当内部故障时,两端均不发、因而也收不到闭锁信号,保护即可动作于跳闸。 允许信号 所谓允许信号是指:“收到这种信号是保护动作跳闸的必要条件”。因此,当内部故障是,两端保护应同时向对端发出允许信号,使保护装置能够动作于跳闸。而当外部故障时,则因接近故障点端判出故障在反方向而不发允许信号,对端保护不能跳闸,本端则因判出故障在反方向也不能跳闸。 跳闸信号 跳闸信号是指:“收到这种信号是保护动作于跳闸的充要条件”。实现这种保护时,实际上是利用装设在每一端的瞬时电流速断、距离I段或零序电流瞬时速断等保护,当其保护范围内部故障而动作十跳闸的同时,还向对端发出跳

纵联和横联差动保护的原理

纵联和横联差动保护的原理~! 电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。这就不能满足高压输电线路系统稳定的要求。如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。当在被保护范围内任一点发生故障时,它都能瞬时切除故障。-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。纵联差动保护原理接线如下图所示。,即为电流互感器二次电流的差。差回路:继电器回路。正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。实际上,差回路中还有一个不平衡电流Ibp。差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。?Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。缺点:需敷设与被保护线路等长的辅助导线,且要求电流互感器的二次负载阻抗满足电流互感器10%的误差。这在经济上,技术上都难以实现。需装设辅助导线断线与短路的监视装置,辅助导线断线应将纵联差动保护闭锁。在输电线路中,只有用其它保护不能满足要求的短线路(一般不超过5~7km 线路)才采用。应用:第二节平行线路横联差动方向保护一、横联差动方向保护的工作原理横差方向保护:是用于平行线路的保护装置,它装设于平行线路的两侧。其保护范围为双回线的全长。横差方向保护的动作原理是反应双回线路的电流及功率方向,有选择性地瞬时切除故障线路。正常运行及外部发生短路:两线路中的电流相等。两电流互感器差回路中的电流仅为很小的不平衡电流,小于继电器的起动电流,电流继电器不会起动。内部故障时:如在线路XL-l的d点发生短路,M侧电流继电器中的电流当Ij>Idz时,电流继电器1动作。功率方向继电器2承受正方向功率动作,功率方向继电器3承受负功率不动作,因而跳开1QF。线路N侧:流过差回路中的电流当Ij>Idz

继电保护的基本原理及其组成

第二节继电保护的基本原理及其组成参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。 一、继电保护装置对正常与故障或不正常状态的区分 通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。 1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。 图1-1 正常运行情况 在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。 由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。 图1-2 d点三相短路情况 当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。 设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为 此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。 2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护: (1)反应于电流增大而动作的过电流保护; (2)反应于电压降低而动作的低电压保护; (3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或

相关文档
最新文档