知识讲解_函数y=Asin(ωx+φ)的图象_基础

知识讲解_函数y=Asin(ωx+φ)的图象_基础
知识讲解_函数y=Asin(ωx+φ)的图象_基础

sin()y A x ω?=+的图象与性质

编稿:丁会敏 审稿:王静伟

【学习目标】

1.了解,,A ω?对函数图象变化的影响,并会由sin y x =的图象得到sin()y A x ω?=+的图象; 2.明确函数sin()y A x ω?=+(A 、ω、?为常数,0,0A ω>>)中常数A 、ω、?的物理意义,理解振幅、频率、相位、初相的概念.

【要点梳理】

要点一:用五点法作函数sin()y A x ω?=+的图象

用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3

0,,,,222

π

πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.

要点诠释:用“五点法”作sin()y A x ω?=+图象的关键是点的选取,其中横坐标成等差数列,公差为

4

T

. 要点二:函数sin()y A x ω?=+中有关概念

()sin()0,0y A x A ω?ω=+>>表示一个振动量时,A 叫做振幅,2T π

ω

=

叫做周期,12f T ωπ

=

=叫做频率,x ω?+叫做相位,x=0时的相位?称为初相.

要点三:由sin y x =得图象通过变换得到sin()y A x ω?=+的图象 1.振幅变换:

sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短

(0

2.周期变换:

函数()sin 01y x x R ωωω=∈>≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1

ω

倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期.

3.相位变换:

函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”).

要点诠释:一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的:

(1)先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位;

(2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的

1

ω

倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

类型一:三角函数sin()y A x ω?=+的图象 例1.画出函数y=sin(x+3

π

),x ∈R 的简图. 【解析】

法一:(五点法): 列表

法二:(图象变换) 函数y=sin(x+

3π),x ∈R 的图象可看作把正弦曲线上所有的点向左平行移动3

π

个单位长度而得到.

例2.画出函数y=3sin(2x+

),x ∈R 的简图. 【解析】(五点法)由2T π

=,得T π=,列表:

描点画图:

这种曲线也可由图象变换得到:

【总结升华】由y=sinx 的图象变换出sin()y x ω?=+的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换.

途径一:先平移变换再周期变换(伸缩变换).

先将y=sinx 的图象向左(?>0)或向右(?<0)平移?个单位,再将图象上各点的横坐标变为原来的

ω

1

倍()0ω>,便得sin()y x ω?=+的图象. 途径二:先周期变换(伸缩变换)再平移变换. 先将y=sinx 的图象上各点的横坐标变为原来的ω

1

倍()0ω>,再沿x 轴向左(?>0)或向右(?<0)平移

ω

?|

|个单位,便得sin()y x ω?=+的图象.

举一反三:

【变式1】已知函数2sin 23x y π??=+

??

?. (1)作出函数的简图;

(2)指出其振幅、周期、初相、值域. 【解析】(1)2sin 23x y π??

=+ ??

? 列表:

把210,33ππ??

-

????

之间的图象向左、右扩展,即可得到它的简图. (2)振幅为2,周期为4π,初相是

3

π

,最大值为2,最小值为―2,故值域是[―2,2]. 【变式2】如何由函数y=sin x 的图象得到函数3sin 23y x π??

=- ??

?

的图象? 【解析】 解法一:

3sin sin sin(2)

33y x

y x y x π

ππ?

?=????????→

=-???????????→=- ??

?1

2向右平移个单位长度

将各点的横坐标缩短为原来的倍3???????????→将各点的纵坐标伸长为原来的倍

3sin 23y x π??=- ??

?.

解法二:

1

62sin sin 2y x y x

π

=??????????→=????????→

向右平移个单位长度

将各点的横坐标缩短为原来的

3sin 23sin 23sin 2663y x y x x πππ?????????

?=-???????????→=-=- ? ? ????????

???????将各点的纵坐标伸长为原来的倍.

【总结升华】本题用了由函数y=sin x (x ∈R )的图象变换到函数sin()y A x ω?=+(x ∈R )的两种方法,要注意这两种方法的区别与联系.

类型二:三角函数sin()y A x ω?=+的解析式

【高清课堂:正弦型函数sin()y A x ω?=+的图象与性质 370634 例3】 例3.已知函数()sin()f x A x k ω?=++(0A >,0ω>,||2

π

?<),在同一周期内的最高点是(2,2),

最低点为(8,4)-,求f (x )的解析式.

【解析】

由题max min 2,4y y ==-

3,1A k ∴==-

又2x =是函数的最大值点,8x =是函数的最小值点

22(82)12π

ω

=?-=,6

π

ω∴=

又函数最高点为(2,2),即

26

2

π

π

??+=

6

π

?∴=

3sin()166

y x ππ

∴=+-

【总结升华】求函数sin()y A x ω?=+的解析式,?值是关键,最常用的方法是找平衡点法,即与原点相邻且处于递增部分上的与x 轴的交点(x 0,0),与正弦曲线上(0,0)点对应,即12

x k π

ω?π+=+,

选取k 值,确定符合条件的k 值.

举一反三:

【变式1】已知函数sin()y A x ω?=+(A >0,ω>0,||2

π

?<

)的图象的一个最高点为(2,,由

这个最高点到相邻最低点,图象与x 轴交于点(6,0),试求函数的解析式.

【解析】由已知条件知A =6244

T

=-=,

∴T=16,22168T πππω=

==,∴8y x π???=+ ???

∵图象过点(6,0),∴068π???

=?+ ???

, ∴

34

k π

?π+=(k ∈Z )

, 又||2

π

?<

,∴令k=1可得4

π

?=

∴8

4y x π

π??=+

???.

【变式2】如下图为正弦函数sin()y A x ω?=+||2π??

?

< ??

?

的一个周期的图象,写出函数的解析式.

【解析】由题图知,A=2,T=7―(―1)=8,

2284T πππω=

==,∴2sin 4y x π???=+ ???

将点(―1,0)代入,得02sin 4π???

=-

+ ???

. ∴4

π

?=

,∴2sin 4

4y x π

π??=+

???.

类型三:函数sin()y A x ω?=+的性质的综合运用

例4.已知函数sin(),,(0,0,0)2

y A x x R A π

ω?ω?=+∈>><<其中的图象与x 轴的交点中,

相邻两个交点之间的距离为

2

π

,且图象上的一个最低点为2(,2)3M π-.

(1)求()f x 的解析式;

(2)当,122x ππ??

∈?

???

时,求()f x 的值域. 【思路点拨】先由图象上的一个最低点A 的值,再由相邻两个交点之间的距离确定ω的值,最后由点M 在图象上求得?的值,进而得到函数的解析式;先由x 的范围,求得26

x π

+的范围,再求得()f x 的值域.

【解析】(1)由最低点为2(

,2)3

M π

-,得2A = 由x 轴上相邻两个交点之间的距离为2

π

,得122T π=,即T π=

所以222T ππ

ωπ===

由点2(,2)3M π-在图象上,得22sin(2)23π??+=-,即4sin()13π

?+=-,

故43π?+=2,2k k z ππ-∈,所以112()6

k k z π?π=-∈

又(0,

)2

π

?∈,所以6

π

?=

故()f x 的解析式为()2sin(2)6

f x x π

=+

(2)因为,122x ππ??

∈????

,所以72,636x πππ??+∈????

当26

x π+

=

2

π

,即6x π

=

时,()f x 取得最大值为2;

当26x π+=76π,即2

x π=时,()f x 取得最大值为-1.

【总结升华】利用三角函数图象与x 轴的相邻两个交点之间的距离为三角函数的

1

2

个最小正周期,去求解参数ω的值,利用图象的最低点为三角函数最值点,去求解参数A 的值等,在求函数值域时,由定义域转化成x ω?+的范围,即把x ω?+看作一个整体.

举一反三:

【变式1】已知函数sin()(0,0)y A x A ω?ω=+>>的图象过点(,0)12

P π

,图象上与点P 最近的一

个最高点是(

,5)3

Q π

(1)求函数的解析式; (2)求函数()f x 的递增区间.

【解析】(1)依题意得:5A =,周期4(

)312

T π

ππ=-

=,

22π

ωπ=

=,故5sin(2)y x ?=+,又图象过点(,0)12

P π

5sin()06π?∴+=,解得:06π?+=,即6π

?=- 5sin(2)6

y x π

∴=-.

(2)由222,2

6

2

k x k k z π

π

π

ππ-+≤-

+∈

得:,6

3

k x k k z π

π

ππ-

+≤≤

+∈

故函数()f x 的递增区间为:,,63k k k z ππππ??

-

++∈????

【变式2】设函数()sin()f x A x ω?=+(A ≠0,ω>0,||2

π

?<)的图象关于直线23

x π

=

对称,它的周期是π,则( )

A .()f x 的图象过点10,2?? ???

B .()f x 在52,123ππ??

?

???

上是减函数 C .()f x 的一个对称中心是5,012π??

???

D .()f x 的最大值是A 【答案】 C

【解析】 ∵周期T=π,∴

2||

π

πω=,又ω>0,∴ω=2. 又∵()f x 的图象关于直线23x π=对称,∴23232

ππ??+=. ∴6

π

?=

,∴()sin 26f x A x π??

=+

??

?

.∴图象过0,

2A ?? ???

. 又当512x π=

时,26x ππ+=,则5()012

f π

=, ∴5,012π??

???

是()f x 的一个对称中心.

【总结升华】 与研究其他函数的性质一样,研究函数()sin()f x A x ω?=+(A ≠0,ω>0,||2

π

?<)

的性质时,往往先画出其图象,并注意各性质之间的关系.

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

三角函数知识点及例题讲解

三角函数知识点 1.特殊角的三角函数值: (1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα == ) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβ αβαβαβααα αα αβα αβααβα αα αα =±=???→=-↓=-=-±±= ?-↓= - (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、 两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-, 2()()αβαβα=+--,22 αβαβ++=?,()( ) 222αββ ααβ+=---等), (2)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-=与升幂公 式:21cos 22cos αα+=,21cos 22sin αα-=)。如

(; (3)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=? tan sin 42 ππ=== 等),. 。 (4)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2||T π ω=。如 (5)单调性:()sin 2,222y x k k k Z ππππ? ?=-+∈??? ?在上单调递增,在 ()32,222k k k Z ππππ??++∈??? ?单调递减;cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! (6)、形如sin()y A x ω?=+的函数: 1几个物理量:A ―振幅;1 f T =―频率(周期的倒数); x ω?+― 相位;?―初相; 2函数sin()y A x ω?=+表达式的确定:A 由周 期确定;?由图象上的特殊点确()sin()(0,0f x A x A ω?ω=+>>,||)2 π?<()f x =_____(答:15()2sin()23 f x x π =+); 3函数sin()y A x ω?=+图象的画法:①“五点法”――设X x ω?=+,令X =0,3,,,222 ππ ππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。 4函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;②函数()si n y x ?=+图象的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图象;③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象;④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图象。要特别注意,若由 ()sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |? ω 个单位,如 (1)函数2sin(2)14 y x π =--的图象经过怎样的变换才能得到sin y x =的图象?

分段函数及函数的性质知识梳理

分段函数及函数的性质 分段函数 概念 在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数. 定义域 分段函数的定义域是自变量的各个不同取值范围的并集 函数值 求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后 再把0x 代入到相应的解析式中进行计算. 注意 分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过 这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示. 分段函数的作图 因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像. 例1 设函数()221, 0,,0.x x y f x x x -??==?>??… (1)求函数的定义域; (2)求()()()2,0,1f f f -的值.(3)作出函数图像. 1.设函数 ()221, 20,1,0 3.x x y f x x x +--≤+=, 0,2,0,12x x x x x f 若()2f f ????= . 4.已知? ??<+≥-=)6()2()6(5)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5 函数的性质 1 单调性

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

对数函数知识点

对数函数知识点 1 ?对数函数的概念 形如y =log a x(a . 0且a = 1)的函数叫做对数函数. 说明:(1) 一个函数为对数函数的条件是: ①系数为1 ; ②底数为大于0且不等于1的正常数; ③自变量为真数? 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数y二log a x(a ? 0,a = 1)是指数函数y=a x(a .0,a=1)的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线y=x对称。 ②若函数y = f(x)上有一点(a,b),则(b,a)必在其反函数图象上,反之若(b, a)在反函数图象上,则(a,b)必在原函数图象上。 ③利用反函数的性质,由指数函数y二a x(a .0,a")的定义域x R,值域y?0, 容易得到对数函数y"og a x(a .0,a=1)的定义域为x 0,值域为R,利用上节学过的 对数概念,也可得出这一点。 3 4

要牢记y = 2X, y =(1)x, y = 10x, y = (£)x的反函数 y =log2X, y =log! x, y =lg x, y =log ! x的图象,并由此归纳出表中结论。 2 10 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a -1为增;0 :::a :::1为减)比较。 ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较。 ③如果两对数的底数不同而真数相同,女口y = log ai x与y = log a2x的比较(a 0,印=1, a2 0,a2 = 1). 当a, a2 ? 1时,曲线y1比y的图象(在第一象限内)上升得慢,即当x 1时,m;当0:::x”:1时,y1 y2.而在第一象限内,图象越靠近x轴对数函数的底数越大(同[考题2]的含义)当0 ::: a? ::? <1时,曲线y比月2的图象(在第四象限内)下降得快,即当x 1时, y ■■■ y ;当0 ”:x ::: 1时,y1 y即在第四象限内,图象越靠近x轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定 要分类讨论。

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

1.2.2(2)分段函数知识点及例题解析

分段函数常见题型例析 所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下: 1.求分段函数的定义域、值域 例1.求函数)(x f =?????->-≤+)2(,2 )2(,42x x x x x 的值域. 解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4. 当x >-2时,y =2x , ∴y >2 2-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集. 2.作分段函数的图象 例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-??=+∈-??∈+∞? ,,,, ,,,画函数( f 解:函数图象如图1所示. 评注:分段函数有几段,其图象就由几条曲线组成, 作图的关键是根据定义域的不同,分别由表达式做出 其图象.作图时,一要注意每段自变量的取值范围; 二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值 例3.已知)(x f =?? ???<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值. 解:∵ -3<0 ∴ f (-3)=0, ∴ f (f (-3))=f (0)=π 又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值. x 图1

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象 课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数 的图象. 1.正弦曲线、余弦曲线 2.“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系 依据诱导公式cos x =sin ????x +π2,要得到y =cos x 的图象, 只需把y =sin x 的图象向________平移π 2个单位长度即可. 知识点归纳: 1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础. 2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一. 一、选择题 1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =x D .直线x =π 2 2.函数y =cos x (x ∈R )的图象向右平移π 2 个单位后,得到函数y =g (x )的图象,则g (x )的解析 式为( ) A .-sin x B .sin x C .-cos x D .cos x

3.函数y =-sin x ,x ∈[-π2,3π 2 ]的简图是( ) 4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.????π4,3π4 B.????π4,π2∪????5π4,3π2 C.????π4,π2 D.??? ?5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A .4 B .8 C .2π D .4π 6.方程sin x =lg x 的解的个数是( ) 7.函数y =sin x ,x ∈R 的图象向右平移π 2个单位后所得图象对应的函数解析式是__________. 8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________. 10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题 11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

函数有关知识点

函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) (见课本21页相关例2) 2.值域: 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C 上. (2) 画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)→B(象)”

对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实

数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 x y > O x y

相关文档
最新文档