玻璃纤维课件..
合集下载
填料总结PPT课件(2024版)

第21页/共38页
1)钠质膨润土阳离子交换总量中钠离子含量大于50% 用途广、用量大; 2)钙质膨润土阳离子交换总量中钙离子含量大于50% 用途广、用量较小; 膨润土及其加工产品具有良好的物理化学性能和工业技术特 点而用途广泛,它可做粘结剂、悬浮剂、增塑剂、增稠剂、 触变剂、稳定剂等。 例如采用33#胶衣树脂的中间体UP33作基体材料,膨润土为触 变剂制成的改性胶衣树脂的压缩强度提高,膨胀系数减小, 见图2。这主要是因为蒙脱石具有很强的吸附性和膨胀性。
第1页/共38页
表1 粒状填料对聚合物的性能影响
注:P-热塑件树脂;S-热固性树脂;O-此性能好
第2页/共38页
续表1 粒状填料对聚合物的性能影响 注:P-热塑性树脂;S-热固性树脂;O-此性能好
第3页/共38页
2 影响填充改性的因素
2.1 填料的形状 填料的形状对填充改性的影响较大。 填料形状大致可分为圆球状、粒状、片状、柱状、纤维状等 纤维状、片状填料对复合材料的机械强度有利,而成型加工不利; 圆球状填料与此相反,可提高成型加工性能,而降低材料的机械强度。 (1)圆球状 圆球状填料最单纯,其典型代表是玻璃微珠, 可用合成方法制取,也可从 粉煤灰中提取。良好的流动性、在制品表面能形成平滑面,制品内部内 应力均匀。 (2)片状 底面形状与厚度存在一定比例关系。只有当底面长径与厚度比值大于一 定值时,才能大大提高复合材料的刚性
第12页/共38页
表2 石墨聚氯乙烯的物理机械性能
项目 导热系数 线膨胀系数
抗拉强度 焊接强度
冲击强度 表面电阻
体积电阻
单位 W/(m·K) ℃-1(9~40℃ )
MPa MPa
J/m2
• CM
含石墨24% 3.72
1)钠质膨润土阳离子交换总量中钠离子含量大于50% 用途广、用量大; 2)钙质膨润土阳离子交换总量中钙离子含量大于50% 用途广、用量较小; 膨润土及其加工产品具有良好的物理化学性能和工业技术特 点而用途广泛,它可做粘结剂、悬浮剂、增塑剂、增稠剂、 触变剂、稳定剂等。 例如采用33#胶衣树脂的中间体UP33作基体材料,膨润土为触 变剂制成的改性胶衣树脂的压缩强度提高,膨胀系数减小, 见图2。这主要是因为蒙脱石具有很强的吸附性和膨胀性。
第1页/共38页
表1 粒状填料对聚合物的性能影响
注:P-热塑件树脂;S-热固性树脂;O-此性能好
第2页/共38页
续表1 粒状填料对聚合物的性能影响 注:P-热塑性树脂;S-热固性树脂;O-此性能好
第3页/共38页
2 影响填充改性的因素
2.1 填料的形状 填料的形状对填充改性的影响较大。 填料形状大致可分为圆球状、粒状、片状、柱状、纤维状等 纤维状、片状填料对复合材料的机械强度有利,而成型加工不利; 圆球状填料与此相反,可提高成型加工性能,而降低材料的机械强度。 (1)圆球状 圆球状填料最单纯,其典型代表是玻璃微珠, 可用合成方法制取,也可从 粉煤灰中提取。良好的流动性、在制品表面能形成平滑面,制品内部内 应力均匀。 (2)片状 底面形状与厚度存在一定比例关系。只有当底面长径与厚度比值大于一 定值时,才能大大提高复合材料的刚性
第12页/共38页
表2 石墨聚氯乙烯的物理机械性能
项目 导热系数 线膨胀系数
抗拉强度 焊接强度
冲击强度 表面电阻
体积电阻
单位 W/(m·K) ℃-1(9~40℃ )
MPa MPa
J/m2
• CM
含石墨24% 3.72
拉挤成型原理及其制造工艺PPT课件

第33页/共55页
模腔压力
• 模腔压力是由于树脂粘性,制品与模腔壁间的摩擦力,材料受热产 生的体积膨胀,以及部分材料受热气化产生的。因此,模腔压力使制品 在模腔内行为的一个综合反映参数。一般模腔压力在1.7~8.6MPa之 间。
第34页/共55页
(3)张力及牵引力
• 张力是指拉挤过程中玻璃纤维粗纱张紧的力。可 使浸胶后的玻璃纤维粗纱不松散。其大小与胶槽 中的调胶辊到模具的入口之间距离有关,也与拉 挤制品的形状、树脂含量要求有关。一般情况下, 要根据具体制品的几何形状、尺寸,通过实验确引设备是将固化的型材从成型模具拉出的 装置,它要根据拉挤制品种类来选择牵引力 的大小和夹紧方式。牵引机分为液压机械式 和履带式两种。牵引力一般为5O~10OkN。 牵引速度通常采用无级调速,可以根据制品 加工工艺要求而定,通常为0.l~3m/min, 若采用快速固化配方,牵引速度可大幅度提 高。
第37页/共55页
纱团数量
• 根据加工制品的结构以及要求的性能,确定所用纱团的数量和增强材料的品 种以及排布方式。一般的玻璃钢制品的玻璃纤维和织物的含量在40%-60%, 采用合理的增强材料的含量和分布对于成型工艺和制品性能是十分重要的, 要根据拉挤成型的制品要求和工艺条件来确定。
第38页/共55页
第40页/共55页
旋转芯轴,纤维从纱筒外壁引出的,这样可避免 扭转现象。如采用纤维从纱筒内壁引出的,纱筒 固定会使纱发生扭曲不利于玻璃纤维的整齐排布。
第3页/共55页
第4页/共55页
第5页/共55页
(2)树脂浸渍:
• 是将排布整齐的增强纤维均匀浸渍上已配制好的不饱和树脂的过程,一般是 采用将纤维通过装有树脂胶槽时进行的。一般分为:
第7页/共55页
模腔压力
• 模腔压力是由于树脂粘性,制品与模腔壁间的摩擦力,材料受热产 生的体积膨胀,以及部分材料受热气化产生的。因此,模腔压力使制品 在模腔内行为的一个综合反映参数。一般模腔压力在1.7~8.6MPa之 间。
第34页/共55页
(3)张力及牵引力
• 张力是指拉挤过程中玻璃纤维粗纱张紧的力。可 使浸胶后的玻璃纤维粗纱不松散。其大小与胶槽 中的调胶辊到模具的入口之间距离有关,也与拉 挤制品的形状、树脂含量要求有关。一般情况下, 要根据具体制品的几何形状、尺寸,通过实验确引设备是将固化的型材从成型模具拉出的 装置,它要根据拉挤制品种类来选择牵引力 的大小和夹紧方式。牵引机分为液压机械式 和履带式两种。牵引力一般为5O~10OkN。 牵引速度通常采用无级调速,可以根据制品 加工工艺要求而定,通常为0.l~3m/min, 若采用快速固化配方,牵引速度可大幅度提 高。
第37页/共55页
纱团数量
• 根据加工制品的结构以及要求的性能,确定所用纱团的数量和增强材料的品 种以及排布方式。一般的玻璃钢制品的玻璃纤维和织物的含量在40%-60%, 采用合理的增强材料的含量和分布对于成型工艺和制品性能是十分重要的, 要根据拉挤成型的制品要求和工艺条件来确定。
第38页/共55页
第40页/共55页
旋转芯轴,纤维从纱筒外壁引出的,这样可避免 扭转现象。如采用纤维从纱筒内壁引出的,纱筒 固定会使纱发生扭曲不利于玻璃纤维的整齐排布。
第3页/共55页
第4页/共55页
第5页/共55页
(2)树脂浸渍:
• 是将排布整齐的增强纤维均匀浸渍上已配制好的不饱和树脂的过程,一般是 采用将纤维通过装有树脂胶槽时进行的。一般分为:
第7页/共55页
玻璃纤维课件

2.1 中碱玻璃粉料C-GLASS RAW MATERIALS
a)
b)
c) d) e) f) g) h)
i)
石英砂 Quartz sand:SiO2 钠长石 Albite:AL2O3 、Na2O 白云石 Dolomite:CaO MgO 石灰石 Limestone:CaO 莹石 Fluorspar:CaF2 纯碱 Soda ash:Na2CO3 硝酸钠 Sodium nitrate:NaNO3 无水硫酸钠 Anhydrous sodium sulfate:Na2SO4 氧化铈 Ceria:CeO2
三、玻璃纤维有什么用处? III. WHAT IS FIBERGLASS FOR?
1. 2. 3. 4. 5. 6. 7.
交通运输 Transportation 建筑建材 Construction 电气工业 Electrical 机械工业 Engineering 石油化工 Petroleum & chemical 休闲文化 Leisure and sports 国防科技 Defence
1、国际发展 INTERNATIONAL DEVELOPMENT
2000多年前,古埃及手工拉制玻纤做装饰材料; Over 2000 years ago, Egyptians manually made fiberglass as ornament material
20世纪30年代,美国发明了铂坩埚拉制工艺技术; In the 1930s, Americans invented the technology of producing fiberglass with platinum crucibles 1938年美国成立OWENS CORNING,具有工业性规模,用于绝缘材料; In 1938 Owens Corning Co was established in USA which had a industrial scale of fiberglass production for insulation application. 二战后工业普及,成立了圣哥本(法)、皮尔金顿(英)、日东纺(日)等; After World War II, the industrial production of fiberglass became popular and St. Gobain(France), Pilkington (Great Britain),Nittobo(Japan) started to produce fiberglass. 1959~1960年, OWENS CORNING和PPG公司相继建成了玻璃纤维池窑。
无机非金属材料PPT课件

2021/4/8
43
2021/4/8
氧化铝陶瓷
结 构 陶 瓷
二氧化锆
44
几种典型的新型无机非金属材料
高温结构陶瓷 特点:耐高温、耐腐蚀、硬度大、 耐磨损、不怕氧化、密度小等
(1)氧化铝陶瓷
性能 熔点高
2021/4/8
硬度大 透明、耐高温
用途 坩埚、高温炉管
刚玉球磨机
高压钠灯灯管 45
高纯氧化铝透明陶瓷管
▪ 瓷器:需要纯净的粘土做原料,
温度也更高,瓷器比陶器磁体
白净质地致密。
2021/4/8
29
主要种类:
土器:砖瓦
红瓦 (自然冷却,Fe2O3含量较多) 青瓦 (淋水冷却,Fe3O4、FeO较多)
陶器: 彩陶 江苏宜兴的紫砂壶、秦汉兵马俑
瓷器: 碗盘茶具
收藏珍品
景德镇陶瓷
炻器: 水缸、砂锅
2021/4/8
模具和夹具。
2021/4/8
48
(3)碳化硅陶瓷
碳化硅(SiC--金刚砂)和氮化硅一样,是
稳定的原子晶体。具有高的热传导能力、硬度
大、熔点高、比重小,有较高的强度和较好的
热稳定性,与各种酸都不起作用,其抗氧化性
能在高达1550OC时仍很优良。
用途:制造磨料、模
具、特种耐火材料制品;
用于制造电阻发热元件。
27
3、陶瓷
主原料要 生产过程 反应条件 种类
黏土
①混合 ②成型 ③干燥 ④烧结 ⑤冷却
高温
2021/4/8
土器 陶器 炻器 瓷器
性能
抗氧化、 抗酸碱腐 蚀、耐高 温、绝缘 、易成型
28
▪ 陶瓷是由黏土在高温下烧制而成,根据
材料导论第十四章复合材料ppt课件

混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
玻璃纤维增强塑料ppt课件

玻璃纤维增强塑料简介
学习交流PPT
1
什么是“玻璃纤维增强塑料”?
玻璃纤维增强树脂基复合材料,是一种塑料, 俗称玻璃钢 。
= + 玻璃钢
树脂
玻璃纤维
学习交流PPT
2
玻璃钢发展历史
时间 1932年 1940年 1944年 1945年 1946年 1949年 1950年 60年代 1961年 1963年 70年代 1972年 80年代
学习交流PPT
16
学习交流PPT
17
学习交流PPT
18
•1.简述液晶显示工作原理?
作业
•答:将液晶置于电场中时,其分子排列将发生变化相应地也会出现光学上的变化,利用这种特性可制成 显示装置。
•2.常用的磁性材料有哪些?有什么用途?
•答:磁性材料的分类,性能特点和用途:
• 1、永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方 向的磁性。相对于软磁材料而言,它亦称为硬磁材料。
器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表
面波和静磁波器件。
•5、压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是 作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等。
学习交流PPT
事件 在美国出现树脂基复合材料 手糊成型制成了玻璃纤维增强聚酯的雷达罩 美国莱特空军发展中心利用玻璃钢制造的小型飞机试飞成功
二战期间扩展到民用 纤维缠绕成型技术在美国出现,为玻璃钢压力容器的制造提供了技术储备
玻璃纤维预混料研制成功 真空袋压成型工艺研究成功 玻璃纤维-聚酯树脂喷射成型技术得到了应用 片状模塑料(SMC)在法国问世 在美、法、日开始了玻璃纤维复合材料规模化生产 树脂反应注射成型(RIM和RRIM)技术研究成功 美国PPG公司研究成功热塑性片状模型料成型技术
学习交流PPT
1
什么是“玻璃纤维增强塑料”?
玻璃纤维增强树脂基复合材料,是一种塑料, 俗称玻璃钢 。
= + 玻璃钢
树脂
玻璃纤维
学习交流PPT
2
玻璃钢发展历史
时间 1932年 1940年 1944年 1945年 1946年 1949年 1950年 60年代 1961年 1963年 70年代 1972年 80年代
学习交流PPT
16
学习交流PPT
17
学习交流PPT
18
•1.简述液晶显示工作原理?
作业
•答:将液晶置于电场中时,其分子排列将发生变化相应地也会出现光学上的变化,利用这种特性可制成 显示装置。
•2.常用的磁性材料有哪些?有什么用途?
•答:磁性材料的分类,性能特点和用途:
• 1、永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方 向的磁性。相对于软磁材料而言,它亦称为硬磁材料。
器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表
面波和静磁波器件。
•5、压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是 作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等。
学习交流PPT
事件 在美国出现树脂基复合材料 手糊成型制成了玻璃纤维增强聚酯的雷达罩 美国莱特空军发展中心利用玻璃钢制造的小型飞机试飞成功
二战期间扩展到民用 纤维缠绕成型技术在美国出现,为玻璃钢压力容器的制造提供了技术储备
玻璃纤维预混料研制成功 真空袋压成型工艺研究成功 玻璃纤维-聚酯树脂喷射成型技术得到了应用 片状模塑料(SMC)在法国问世 在美、法、日开始了玻璃纤维复合材料规模化生产 树脂反应注射成型(RIM和RRIM)技术研究成功 美国PPG公司研究成功热塑性片状模型料成型技术
复合材料的成型工艺ppt课件
第二节 金属基复合材料(MMC)成形工艺
一、固态法
1.扩散黏结法(Diffusion Bonding) 如图9-2所示,扩散黏结是一种在较长时间、
较高温度和压力下,通过固态焊接工艺,使同类 或不同类金属在高温下互扩散而黏结在一起的工 艺方法。
2.形变法(Plastic Forming) 形变法就是利用金属具有塑性成型的工艺特点
2.复合材料的特点
(1)比强度和比刚度高 (2)抗疲劳性好 (3)高温性能好 (4)减振性能好 (5)断裂安全性高 (6)可设计性好
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
第一节 复合材料简述
四 、 复 合 材 料 的 失 效 (Failure of Composite)
复合材料的失效一般是指其疲劳破坏过程。
1.制造加工损伤
此种损伤产生初始缺陷。,它包括:纤维铺设不 均,扭结、死扣等,树脂不均;纤维切断、错排; 固化不足;有孔隙、气泡;材质污染等。
2.使用引起的损伤
此种损伤导致缺陷发展。它包括:树脂裂纹或老 化;分层;纤维断裂;振动较大导致的纤维断裂; 温度变化较大;机加工产生内应力;碰撞等。
二、复合材料用原料
1.增强材料
(1)碳纤维(Carbon Fiber) (2)硼纤维(Boron Filament) (3)芳纶(Aramid Ring) (4)玻璃纤维(Glass Fiber) (5)碳化硅纤维(Silicon Carbide Fiber) (6)晶须(Whisker)
2.基体材料
3)基体能够很好地保护纤维表面,不产生表面 损伤、不产生裂纹。
高性能纤维材料介绍PPT课件
聚苯并噁唑(PBO)纤维
• 结构:
• 特点:高耐燃性,热稳定性>芳纶,抗蠕变、 耐化学、耐磨性和耐压缩性好,不会出现 无机纤维的脆性破坏。但耐光性差。
• 应用:在消防服方面, 可以制造性能更优异的 防护服、热气体过滤介质。在抗震水泥构件中 做增强纤维、 高强度绳索及摩擦减震材料、 在宇航领域中, 可做飞机或飞行器的防护壳体 及热屏障层。
碳纤维
• 定义:化学组成中碳元素占总质量 90%以 上的纤维。其中含碳量高于99%的称石墨纤 维。
• 分类:
• 特点:碳纤维的轴向强度和模量高,又兼具纺织纤维的 柔软可加工性。无蠕变,耐疲劳性好,比热及导电性介 于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤 维的密度低,X射线透过性好。但其耐冲击性较差,容 易损伤,在强酸作用下发生氧化,与金属复合时会发生 金属碳化、渗碳及电化学腐蚀现象。
• 制备或来源:①乳液纺丝法。工业上采用的主要方法, 聚四氟乙烯乳液(浓度60%)与粘胶丝或聚乙烯醇等成 纤性载体混合后,制成纺丝液,纺丝后将载体在高温下 碳化除掉,聚合物被烧结而连续形成纤维。②糊料挤出 纺丝法。将聚四氟乙烯粉末与易挥发物调成糊料,经螺 杆挤出后通过窄缝式喷丝孔纺成条带状纤维,然后用针 辊作原纤化处理,可制得强度较高、纤度较大的纤维。 ③膜裂纺丝法。将聚四氟乙烯粉末烧结制得圆柱体,经 切割或切削后,进行热拉伸等处理,制得白色纤维,强度 较低。④熔体纺丝法。以四氟乙烯与4%~5%全氟乙烯、 全氟丙基醚的共聚物熔融后进行纺丝,制得强度较高的 纤维。
聚四氟乙烯纤维
• 结构:
• 特点:化学稳定性极好,耐腐蚀性优于其他合成纤 维品种;纤维表面有蜡感,摩擦系数小;实际使用 温度120~180℃;还具有较好的耐气候性和抗挠曲 性,但染色性与导热性差,耐磨性也不好,热膨胀系 数大,易产生静电。
玻璃纤维的成型资料PPT课件
璃纤维原丝。
12
池窑拉丝
连续玻璃纤维生产的 一种新工艺方法,是 将玻璃配合料投入溶 窑熔化后直接拉制成 各种支数连续玻璃纤 维
池窑拉丝法生产工艺流程见图
先根据产品所需玻璃的化学组成要求,精确 计算出各种矿物原料、化工原料的用量, 将各原料细粉称量混合后投人玻璃熔窑内, 经高温熔融制成玻璃,在熔窑料道底部装 有用铂铑合金制造的多孔漏板,当玻璃液 从漏板孔流出的时候,受到高速运转拉丝 机的牵引,同时涂覆浸润剂,制成纤维, 称原丝。
一次变量
这类变量由工艺参数来决定,它是由丝根 拉伸成纤维时的变形和应力方程边界条件 或起始条件,具体有玻璃熔体物性——化 学组成,分子结构、流变性能和其他物理 性能。
小组成员
玻璃 纤维 的成 型
玻璃纤维棒
一 玻璃纤维及其制 品的生产工艺流程
坩埚法拉丝
池窑漏板法拉丝
坩锅法拉丝工艺
生产工艺由制球和拉丝两部分 组成,整个拉丝过程中加球和 拉丝温度控制是由自动控制装 置来完成的
LOGO
如图2-5所为玻璃纤维坩埚拉丝示意图。 制好的玻璃球,经热水清洗、去污和挑选 后,装入料斗,由加球机送至坩埚内。坩 埚通过电流发热熔化玻璃球,并使坩埚内 的玻璃液保持所要求的温度和液面高度。 玻璃液借助自重,从埚身底部漏板上的漏 孔中稳定地流出,形成液滴。操作工用玻 璃棒将液滴引下成丝,集成一束,经过集 束轮(浸润槽),使丝束涂上浸润剂,绕 在高速旋转的绕丝筒上,然后将丝束放入 排线轮内,旋转的排线轮使丝束按照所要 求的卷绕结构,有规律地卷绕在绕丝筒上。 在卷绕过程中,排线轮逐渐后移,使原丝 布满丝筒。当丝筒绕满后取下,即成为玻
2 无捻粗砂中的纤维是平行排列的拉伸强度 很高,易被树酯浸透。故无捻粗砂多用于缠 绕高压容器及管道等,同时也用于拉挤成型 喷射成型等工艺中。
12
池窑拉丝
连续玻璃纤维生产的 一种新工艺方法,是 将玻璃配合料投入溶 窑熔化后直接拉制成 各种支数连续玻璃纤 维
池窑拉丝法生产工艺流程见图
先根据产品所需玻璃的化学组成要求,精确 计算出各种矿物原料、化工原料的用量, 将各原料细粉称量混合后投人玻璃熔窑内, 经高温熔融制成玻璃,在熔窑料道底部装 有用铂铑合金制造的多孔漏板,当玻璃液 从漏板孔流出的时候,受到高速运转拉丝 机的牵引,同时涂覆浸润剂,制成纤维, 称原丝。
一次变量
这类变量由工艺参数来决定,它是由丝根 拉伸成纤维时的变形和应力方程边界条件 或起始条件,具体有玻璃熔体物性——化 学组成,分子结构、流变性能和其他物理 性能。
小组成员
玻璃 纤维 的成 型
玻璃纤维棒
一 玻璃纤维及其制 品的生产工艺流程
坩埚法拉丝
池窑漏板法拉丝
坩锅法拉丝工艺
生产工艺由制球和拉丝两部分 组成,整个拉丝过程中加球和 拉丝温度控制是由自动控制装 置来完成的
LOGO
如图2-5所为玻璃纤维坩埚拉丝示意图。 制好的玻璃球,经热水清洗、去污和挑选 后,装入料斗,由加球机送至坩埚内。坩 埚通过电流发热熔化玻璃球,并使坩埚内 的玻璃液保持所要求的温度和液面高度。 玻璃液借助自重,从埚身底部漏板上的漏 孔中稳定地流出,形成液滴。操作工用玻 璃棒将液滴引下成丝,集成一束,经过集 束轮(浸润槽),使丝束涂上浸润剂,绕 在高速旋转的绕丝筒上,然后将丝束放入 排线轮内,旋转的排线轮使丝束按照所要 求的卷绕结构,有规律地卷绕在绕丝筒上。 在卷绕过程中,排线轮逐渐后移,使原丝 布满丝筒。当丝筒绕满后取下,即成为玻
2 无捻粗砂中的纤维是平行排列的拉伸强度 很高,易被树酯浸透。故无捻粗砂多用于缠 绕高压容器及管道等,同时也用于拉挤成型 喷射成型等工艺中。
复合材料界面教学课件PPT
2.1概述
• 复合材料的界面是指基体与增强相之间化学 成分有显著变化的、构成彼此结合的、能起 载荷传递作用的微小区域。
• 复合材料的界面是一个多层结构的过渡区域, 约几个纳米到几个微米。此区域的结构与性 质都不同于两相中的任何一相。这一界面区 由五个亚层组成,每一亚层的性能都与基体 和增强相的性质、复合材料成型方法有关。
接触角随温度、保持时间、吸附气体等而变化。
2.4 复合材料的界面理论
2.4.1界面润湿理论 : 根据力的合成:
L cos = S - SL , 粘合功可表示为:
WA = S + L - SL= L(1+ cos )。 粘合功WA最大时, cos =1,即 = 0,液体完全 平铺在固体表面。同时 = SL , S = L 。 热力学说明两个表面结合的内在因素,表示结合的 可能性;动力学反映实际产生界面结合的外界条件, 如温度、压力等的影响,表示结合过程的速度问题。
4)交换反应结合。基体与增强材料间发生化学反应,生成化合物, 且还通过扩散发生元素交换,形成固溶体而使两者结合。
5)混合结合。这种结合较普遍,是最重要的一种结合方式。是以 上几种结合方式中几个的组合。
2.2 复合材料的界面效应
• 界面是复合材料的特征,可将界面的机能归 纳为以下几种效应:
• (1)传递效应:界面可将复合材料体系中 基体承受的外力传递给增强相,起到基体和 增强相之间的桥梁作用。
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结果。由C(1s)和Si(2p)的波谱可以看出, 有 态的的地差方来存增在强界SiO面2的,结有合的力地。方不存在SiO2。利用这样的表面状
• 复合材料的界面是指基体与增强相之间化学 成分有显著变化的、构成彼此结合的、能起 载荷传递作用的微小区域。
• 复合材料的界面是一个多层结构的过渡区域, 约几个纳米到几个微米。此区域的结构与性 质都不同于两相中的任何一相。这一界面区 由五个亚层组成,每一亚层的性能都与基体 和增强相的性质、复合材料成型方法有关。
接触角随温度、保持时间、吸附气体等而变化。
2.4 复合材料的界面理论
2.4.1界面润湿理论 : 根据力的合成:
L cos = S - SL , 粘合功可表示为:
WA = S + L - SL= L(1+ cos )。 粘合功WA最大时, cos =1,即 = 0,液体完全 平铺在固体表面。同时 = SL , S = L 。 热力学说明两个表面结合的内在因素,表示结合的 可能性;动力学反映实际产生界面结合的外界条件, 如温度、压力等的影响,表示结合过程的速度问题。
4)交换反应结合。基体与增强材料间发生化学反应,生成化合物, 且还通过扩散发生元素交换,形成固溶体而使两者结合。
5)混合结合。这种结合较普遍,是最重要的一种结合方式。是以 上几种结合方式中几个的组合。
2.2 复合材料的界面效应
• 界面是复合材料的特征,可将界面的机能归 纳为以下几种效应:
• (1)传递效应:界面可将复合材料体系中 基体承受的外力传递给增强相,起到基体和 增强相之间的桥梁作用。
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结果。由C(1s)和Si(2p)的波谱可以看出, 有 态的的地差方来存增在强界SiO面2的,结有合的力地。方不存在SiO2。利用这样的表面状