2015年浙教版七下数学期末考试压轴题
浙教版七年级数学下册期末专项复习之选填压轴重难点题型

专题7.5 期末专项复习之选填压轴重难点题型【浙教版】【考点1 平行线中构造辅助线】【例1】(2021春•碑林区校级期末)如图所示,已知AB∥EF,CD⊥BC于点C,若∠D=92°,则下列成立的是()A.∠E=20°B.∠E=∠B C.∠E﹣∠B=2°D.∠E+∠B=38°【变式1-1】(2021春•新洲区期末)如图,直线k∥l,∠3﹣∠2=∠2﹣∠1=d>0.其中∠3<90°,∠1=40°,则∠4的最大整数值是()A.108°B.110°C.114°D.115°【变式1-2】(2021春•浦江县期末)如图,AD∥BE,AC与BC相交于点C,且∠1=1n∠DAB,∠2=1n∠EBA.若∠C=45°,则n=()A.2B.3C.4D.5【变式1-3】(2021春•焦作期末)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为()A.23°B.33°C.44°D.46°【考点2 平行线中的折叠问题】【例2】(2021春•嵊州市期末)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD在同一直线上,再沿BF 折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°【变式2-1】(2021春•诸暨市期末)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,且∠2=66°,则∠1的度数是()A.48°B.57°C.60°D.66°【变式2-2】(2021春•庐山市期末)如图,已知长方形纸片ABCD,点E,F在BC边上,点G,H在AD边上,分别沿EG,FH折叠,点B和点C恰好都落在点P处.若α+β=110°,则∠EPF的度数为()A.40°B.50°C.60°D.70°【变式2-3】(2021春•零陵区期末)如图(1)所示为长方形纸带,将纸带沿EF折叠成图(2);再沿BF折叠成图(3);继续沿EF折叠成图(4)按此操作,最后一次折叠后恰好完全盖住∠EFG,整个过程共折叠了9次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°【考点3 平行线中的多结论问题】【例3】(2021春•渝北区期末)如图,AB∥CD.OP⊥CD交AB于点P.交CD于点O,OF平分∠AOD,OE⊥OF,∠BAO=50°,有下列结论:①∠AOF=65°;②∠AOE=∠COE;③∠POF=∠COE;④∠AOP=2∠COE.其中正确的结论有()A.①②③④B.①②③C.①③④D.①②④【变式3-1】(2021春•北碚区校级期末)如图,AB∥CD,点E,P在直线AB上(P在E的右侧),点G在直线CD上,EF⊥FG,垂足为F,M为线段EF上的一动点,连接GP,GM,∠FGP与∠APG的角平分线交于点Q,且点Q在直线AB,CD之间的区域,下列结论:①∠AEF+∠CGF=90°②∠AEF+2∠PQG=270°③若∠MGF=2∠CGF,则3∠AEF+∠MGC=270°④若∠MGF=n∠CGF,则∠AEF+1n+1∠MGC=90°正确的个数是()A.4B.3C.2D.1【变式3-2】(2021春•荷塘区期末)①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠P =∠A﹣∠C;③如图3,AB∥CD,则∠E=∠A+∠1;④如图4,直线AB∥CD∥EF,点O在直线EF上,则∠α﹣∠β+∠γ=180°.以上结论正确的个数是()A.1个B.2个C.3个D.4个【变式3-3】(2021秋•嵩县期末)如图,AE∥CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD⊥BC,下列结论:①BC平分∠ABG;②AC∥BG;③与∠DBE互余的角有2个;④若∠A=α,则∠BDF=180°−α8.其中正确的是.(请把正确结论的序号都填上)【考点4 整式中的相关求值问题】【例4】(2021春•高新区期末)若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值.【变式4-1】(2021春•高邮市校级期末)已知(2021﹣a)2+(a﹣2019)2=7,则代数式(2021﹣a)(a﹣2019)的值为.【变式4-2】(2021秋•仁寿县期末)已知a=2021x+2020,b=2021x+2021,c=2021x+2022,那么a2+b2+c2﹣ab﹣bc﹣ac的值等于.【变式4-3】(2021春•新都区期末)已知x2﹣3x+1=0,则x3﹣x2﹣5x+2021的值为.【考点5 整式混合运算的应用】【例5】(2021春•泰兴市期末)4张长为m,宽为n(m>n)的长方形纸片,按如图的方式拼成一个边长为(m+n)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若3S1=2S2,则m,n满足的关系是()A.m=4.5n B.m=4n C.m=3.5n D.m=3n【变式5-1】7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=52b B.a=3b C.a=72b D.a=4b【变式5-2】(2021秋•邗江区期末)如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图中长方形的面积S2的比是.【变式5-3】(2021春•姜堰区期末)如图,AB=5,C为线段AB上一点(AC<BC),分别以AC、BC为边向上作正方形ACDE和正方形BCFG,S△BEF﹣S△AEC=52,则S△BEC=.【考点6 二元一次方程的应用】【例6】某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种【变式6-1】(2021春•裕华区校级期末)“新冠肺炎”期间,大伟一家所在小区施行“封闭式管理”,按照相关规定,每家每户每两天可派一人出去购物.大伟拿300元去超市购买甲、乙、丙三种生活必需品,其中甲、乙、丙三种商品的单价分别为100元,60元、20元,大伟妈妈说每种商品至少买一件且甲商品最多买两件,若300元刚好用完,则大伟的购买方案共有()A.3种B.4种C.5种D.6种【变式6-2】(2021春•姜堰区期末)工作人员从仓库领取如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒若干个,恰好使领取的纸板用完.下表是工作人员四次领取纸板数的记录:日期正方形纸板(张)长方形纸板(张)第一次562938第二次420860第三次5021000第四次9852015仓库管理员在核查时,发现一次记录有误.请问记录有误的是()A.第一次B.第二次C.第三次D.第四次【变式6-3】(2021•台州期末)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目 里程费 时长费 远途费 单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟B .13分钟C .15分钟D .19分钟【考点7 二元一次方程组的解】【例7】(2021春•昭通期末)已知关于x ,y 的方程组{x +y =−a +1x −y =3a +5,给出下列说法:①当a =0时,方程组的解也是方程2x +y =4的一个解; ②当x ﹣2y >7时,a >0;③不论a 取什么实数,2x +y 的值始终不变; ④若a =1,则x 2+4y =0.以上四种说法中正确的有( )个. A .1B .2C .3D .4【变式7-1】(2021春•裕华区校级期末)已知关于x ,y 的方程组{3x −5y =2ax −2y =a −5,则下列结论中正确的是( )①当a =5时,方程组的解是{x =10y =20;②当x ,y 的值互为相反数时,a =20;③不存在一个实数a 使得x =y ;④若22a﹣3y=27,则a =2.A .①②④B .②③C .②③④D .③④【变式7-2】(2021春•封开县期末)已知关于x ,y 的方程组{x +3y =4−ax −y =3a ,其中﹣3≤a ≤1,给出下列结论:①当a =1时,方程组的解也是方程x +y =4﹣a 的解; ②当a =﹣2时,x 、y 的值互为相反数; ③若x <1,则1≤y ≤4; ④{x =5y =−1是方程组的解.其中正确的结论有( ) A .1个B .2个C .3个D .4个【变式7-3】(2021春•奉化区校级期末)已知关于x ,y 的方程组{x +2y =k2x +3y =3k −1,有以下结论:①当k =0时,方程组的解是{x =−2y =1;②方程组的解可表示为{x =3k −2y =1−k ;③不论k 取什么实数,x +3y 的值始终不变.其中正确的有 .(填写编号) 【题型8 分式的求值问题】 【例8】(2021秋•弋江区期末)若1m−1n=5,则3m+mn−3n m+3mn−n的值为 .【变式8-1】(2020秋•淮南期末)若ab =1,a ﹣b =4,则b a+a b= . 【变式8-2】(2021春•南开区期末)已知5a =2b =10,那么aba+b的值为 .【变式8-3】(2021•宁波期末)若x 、y 、z 满足3x +7y +z =1和4x +10y +z =2001,则分式2000x+2000y+2000zx+3y的值为 .【题型9 分式方程的解及增根问题】【例9】(2021秋•鹿邑县期末)若关于x 的分式方程kx x−1−2k−11−x=2无解,则k 的值为( ) A .k =−13B .k =1C .k =13或2D .k =0【变式9-1】(2021秋•晋安区期末)若关于x 的分式方程kx x 2−4=3x+2−2x−2无解,则k 的值为( )A .1或4或﹣6B .1或﹣4或6C .﹣4或6D .4或﹣6【变式9-2】(2021秋•交城县期末)若关于x 的分式方程2x−2+mx x 2−4=3x+2会产生增根,则m 的值为 .【变式9-3】(2021秋•江华县期末)关于x 的方程5x−5+ax x 2−25=3x+5有增根,则a =( )A .﹣10或6B .﹣2或﹣10C .﹣2或6D .﹣2或﹣10或6【考点10 新定义问题】【例10】(2021秋•海淀区校级期末)定义:如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记做x =log a N .例如:因为72=49,所以log 749=2;因为53=125,所以log 5125=3.则下列说法正确的序号有( ) ①log 66=36; ②log 381=4;③若log 4(a +14)=3,则a =50; ④log 2128=log 216+log 28. A .①③B .②③C .①②③D .②③④【变式10-1】(2021春•蒙阴县期末)对于实数a ,b ,定义运算“*”:a *b ={a 2−ab(a ≥b)ab −b 2(a <b),例如:4*2,因为4>2,所以4*2=42﹣4×2=8.若x ,y 是二元一次方程组{x +y =52x −y =1的解,则x *y = .【变式10-2】(2021春•永城市期末)对于任意两个实数a ,b 定义两种运算:a ⊕b ={a(a ≥b)b(a <b),a ⊗b ={b(a ≥b)a(a <b)并且定义运算仍然是先进行括号内的.例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,[(﹣2)⊕3]⊗2=2.那么(√5⊕2)⊗√273等于 .【变式10-3】(2021春•甘孜州期末)定义运算“※”:a ※b ={2a−b ,a >b bb−a,a <b ,如果5※x =2,那么x 的值为 .。
【数学】2014-2015年浙江省杭州市开发区七年级下学期数学期末试卷和答案解析PDF(a卷)

2014-2015学年浙江省杭州市开发区七年级(下)期末数学试卷(A卷)一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x22.(3分)如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115° D.25°3.(3分)已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是()A.3.5×104米B.3.5×10﹣4米 C.3.5×10﹣5米 D.3.5×10﹣6米4.(3分)如图是初一某班全体50位同学身高情况的频数分布直方图,则身高在160﹣165厘米的人数的频率是()A.0.36 B.0.46 C.0.56 D.0.65.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.B.C .D .6.(3分)和都是方程y=kx +b 的解,则k ,b 的值分别为( ) A .6,3B .1,4C .3,2D .﹣1,37.(3分)把x 3﹣2x 2y +xy 2分解因式,结果正确的是( ) A .x (x +y )(x ﹣y )B .x (x 2﹣2xy +y 2)C .x (x +y )2D .x (x ﹣y )28.(3分)如图,在长方形ABCD 中,AB=8,BC=5,则图中四个小长方形的周长和为( )A .13B .23C .24D .269.(3分)已知x 2+y 2+4x ﹣6y +13=0,则代数式x +y 的值为( ) A .﹣1 B .1C .25D .3610.(3分)已知10m =2,10n =3,则10m +n 的值是( ) A .4 B .6C .9D .二、认真填一填(本题有6个小题,每小题4分,共24分) 11.(4分)使分式有意义的x 的取值范围是 .12.(4分)分解因式:x 3﹣4x= .13.(4分)如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是 ,身高最大值与最小值的差至多是 cm . 组别(cm )145.5~152.5152.5~159.5 159.5~166.5 166.5~173.5频数(人)91914814.(4分)若方程组的解x 、y 互为相反数,则a= .15.(4分)如图,直线AB ∥CD ∥EF ,那么∠α+∠β﹣∠γ= 度.16.(4分)已知,则代数式的值为.三、全面答一答(本题共7个小题,共66分)17.(6分)(1)(2)0﹣(﹣)﹣2+(﹣1)2015(2)2a2b•(﹣3b2c)÷(4ab3)18.(8分)(1)解方程组:(2)解方程:+1=.19.(8分)计算:(1)(2x﹣1)2+(x+3)(x﹣3)﹣(4x+3)(x﹣6)(2)(﹣).20.(10分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)九年级(1)班体育测试的人数为;(2)请把条形统计图补充完整;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为多少人?21.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.22.(12分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.23.(12分)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片张,3号卡片张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于打纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是;(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=画出拼图.2014-2015学年浙江省杭州市开发区七年级(下)期末数学试卷(A卷)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2【解答】解:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选:D.2.(3分)如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115° D.25°【解答】解:∵a∥b,∠1=65°,∴∠3=∠1=65°,∴∠2=180°﹣∠3=180°﹣65°=115°.故选:C.3.(3分)已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是()A.3.5×104米B.3.5×10﹣4米 C.3.5×10﹣5米 D.3.5×10﹣6米【解答】解:0.000 35=3.5×10﹣4.故选:B.4.(3分)如图是初一某班全体50位同学身高情况的频数分布直方图,则身高在160﹣165厘米的人数的频率是()A.0.36 B.0.46 C.0.56 D.0.6【解答】解:身高在160﹣165厘米的人数的频率==0.36.故选:A.5.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.B.C. D.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.6.(3分)和都是方程y=kx+b的解,则k,b的值分别为()A.6,3 B.1,4 C.3,2 D.﹣1,3【解答】解:把和分别代入y=kx+b得:,解得:k=﹣1,b=3,故选:D.7.(3分)把x3﹣2x2y+xy2分解因式,结果正确的是()A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2) C.x(x+y)2D.x(x﹣y)2【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选:D.8.(3分)如图,在长方形ABCD中,AB=8,BC=5,则图中四个小长方形的周长和为()A.13 B.23 C.24 D.26【解答】解:由平移的性质可知:四个小长方形的周长和=2×(AB+BC)=2×13=26.故选:D.9.(3分)已知x2+y2+4x﹣6y+13=0,则代数式x+y的值为()A.﹣1 B.1 C.25 D.36【解答】解:∵x2+y2+4x﹣6y+13=0,∴(x+2)2+(y﹣3)2=0,由非负数的性质可知,x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=﹣2+3=1,故选:B.10.(3分)已知10m=2,10n=3,则10m+n的值是()A.4 B.6 C.9 D.【解答】解:∵10m=2,10n=3,∴10m+n=10m×10n=6,故选:B.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)使分式有意义的x的取值范围是x≠1.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.12.(4分)分解因式:x3﹣4x=x(x+2)(x﹣2).【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).13.(4分)如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是7,身高最大值与最小值的差至多是27cm.组别(cm)145.5~152.5152.5~159.5159.5~166.5166.5~173.5频数(人)919148【解答】解:152.5﹣145.5=7,则组距为7,最小值可能为146cm,最大值可能为173cm,所以身高最大值与最小值的差至多是27cm.故答案为7,27.14.(4分)若方程组的解x、y互为相反数,则a=8.【解答】解:∵x、y互为相反数,∴x=﹣y.解方程组把③分别代入①、②可得解得a=8,故答案为:8.15.(4分)如图,直线AB∥CD∥EF,那么∠α+∠β﹣∠γ=180度.【解答】解:∵AB∥CD∥EF,∴∠α=∠ADC,∠CDF=180°﹣∠γ,∵∠β+∠ADC+∠CDF=360°,∴∠β+∠α+180°﹣∠γ=360°∴∠α+∠β﹣∠γ=180°故答案为:180.16.(4分)已知,则代数式的值为7.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9﹣2=7.三、全面答一答(本题共7个小题,共66分)17.(6分)(1)(2)0﹣(﹣)﹣2+(﹣1)2015(2)2a2b•(﹣3b2c)÷(4ab3)【解答】解:(1)原式=1﹣4﹣1=﹣4;(2)原式=(﹣6a2b3c)÷(4ab3)=﹣ac.18.(8分)(1)解方程组:(2)解方程:+1=.【解答】解:(1),①+②×5得:13x=13,即x=1,把x=1代入②得:y=1,则方程组的解为;(2)去分母得:5+x﹣2=1﹣x,解得:x=﹣1,经检验x=﹣1是分式方程的解.19.(8分)计算:(1)(2x﹣1)2+(x+3)(x﹣3)﹣(4x+3)(x﹣6)(2)(﹣).【解答】解:(1)(2x﹣1)2+(x+3)(x﹣3)﹣(4x+3)(x﹣6)=4x2﹣4x+1+x2﹣9﹣(4x2﹣21x﹣18),=x2+17x+10,(2)(﹣)=×,=.20.(10分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)九年级(1)班体育测试的人数为50;(2)请把条形统计图补充完整;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为多少人?【解答】解:(1)九年级(1)班体育测试的人数为10÷20%=50(人),故答案为:50.(2)D级的人数为50×(1﹣46%﹣24%﹣20%)=5(人)补充完整统计图,(3)扇形统计图中A级所在的扇形的圆心角度数是360°×20%=72°,故答案为:72°.(4)体育测试中A级和B级的学生人数500×((46%+20%)=330(人).答:体育测试中A级和B级的学生人数为300人.21.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.【解答】解:∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.22.(12分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.【解答】解:(1)设原计划每天加工x个,则现在每天加工1.5x个,由题意得,﹣2=,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:原计划每天加工20个;(2)设加工竖式纸盒m个,横式纸盒n个,由题意得,,解得:.答:加工竖式纸盒200个,横式纸盒400个恰好能将购进的纸板全部用完.23.(12分)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是(a+b)2=a2+2ab+b2;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于打纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是(a+2b)•(a+b);(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=(a+2b)(a+3b)画出拼图.【解答】解:(1)这个乘法公式是(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)由如图③可得要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;故答案为:2,3.(3)由图③可知矩形面积为(a+2b)•(a+b),所以a2+3ab+2b2=(a+2b)•(a+b),故答案为:(a+2b)•(a+b).(4)a2+5ab+6b2=(a+2b)(a+3b),如图,故答案为:(a+2b)(a+3b).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。
2015年浙江省杭州市下城区七年级下学期数学期末试卷及解析答案

2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)图中的小船通过平移后可得到的图案是()A. B. C. D.2.(3分)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况3.(3分)计算:(﹣t)6•t2=()A.t8B.﹣t8 C.﹣t12D.t124.(3分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.5.(3分)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)26.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010 B.109C.10﹣9 D.10﹣107.(3分)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加8.(3分)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或9.(3分)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣410.(3分)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A. B.x+1 C.x﹣1 D.二、认真填一填(每小题4分,共24分)11.(4分)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为.12.(4分)已知是方程mx+3y=1的一个解,则m的值是.13.(4分)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.14.(4分)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=,+=.15.(4分)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D 分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是.16.(4分)使是自然数的非负整数n的值为.三、全面答一答(本题有7个小题,共66分)17.(6分)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)18.(8分)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.19.(8分)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是;(填”普查“或”抽样调查“),一共调查了名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?20.(10分)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.21.(10分)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.(12分)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款元,乙两次共购买千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.23.(12分)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2电瓶车公交车货车小轿车合计7:50~8:005631388:00~8:1054577合计6730108(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)图中的小船通过平移后可得到的图案是()A. B. C. D.【解答】解:根据平移定义可得:图中的小船通过平移后可得到的图案是B.故选:B.2.(3分)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况【解答】解:A、了解居民对废电池的处理情况,应当采用抽样调查的方式,故本选项错误;B、为了制作校服,了解某班同学的身高情况,必须全面调查;C、检测杭州的空气质量,应当使用抽样调查,故本选项错误;D、了解某市居民的阅读情况,应当采用抽样调查的方式,故本选项错误.故选:B.3.(3分)计算:(﹣t)6•t2=()A.t8B.﹣t8 C.﹣t12D.t12【解答】解:(﹣t)6•t2=t8,故选:A.4.(3分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:根据同位角的定义可知答案是C.故选:C.5.(3分)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)2【解答】解:A、原式=(a+4b)2,正确;B、原式=(a2+4)(a+2)(a﹣2),错误;C、原式=(2a+b)2,错误;D、原式不能分解,错误,故选:A.6.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010 B.109C.10﹣9 D.10﹣10【解答】解:70÷0.00000007=10000 0000 0=109,故选:B.7.(3分)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加【解答】解:解方程组,下列四种方法中,最简便的是(1)+(2),两方程相加,故选:D.8.(3分)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或【解答】解:∵x2+2(2p﹣3)x+4是完全平方式,∴2p﹣3=±2,解得:p=或,故选:D.9.(3分)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣4【解答】解:去分母得:2(x+2)+mx=0,由分式方程有增根,得到(x+2)(x﹣2)=0,即x=2或x=﹣2,把x=2代入整式方程得:m=﹣4,把x=﹣2代入整式方程得:m=0,故选:D.10.(3分)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A. B.x+1 C.x﹣1 D.【解答】解:∵a1=x﹣1,a2=,a3==,a4==x﹣1,…∴x﹣1,,循环出现,∵2015÷3=671…2,∴a2015的值与a2的值相同,∴a2015=,故选:D.二、认真填一填(每小题4分,共24分)11.(4分)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为175.【解答】解:∵一组数据的频率是0.35,数据总数为500个,∴这组数据的频数为500×0.35=175.故答案为:175.12.(4分)已知是方程mx+3y=1的一个解,则m的值是5.【解答】解:∵是方程mx+3y=1的一个解,∴2m﹣9=1,解得:m=5,故答案为:5.13.(4分)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.【解答】解:(3﹣ax)(x2+2x﹣1)=(3﹣2a)x2+(a+6)x﹣3﹣ax3,由展开式中不含x2项,得到3﹣2a=0,解得:a=,故答案为:.14.(4分)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=58,+=.【解答】解:∵a﹣b=4,ab=21,∴(a﹣b)2=a2+b2﹣2ab=16,∴a2+b2=16+2ab=16+42=58,∴a+b====10,∴+==.故答案为:58,.15.(4分)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D 分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是70°或110°.【解答】解:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=110°,∴∠A=180°﹣(∠B+∠C)=70°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=70°;第二种情况:如图②,∵∠B+∠ACB=110°,∴∠BAC=180°﹣(∠B+∠ACB)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;第三种情况:如图③,∵∠ABC+∠C=110°,∴∠BAC=180°﹣(∠ABC+∠C)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;故答案为:70°或110°.16.(4分)使是自然数的非负整数n的值为0,4,12,28.【解答】解:∵==+=n﹣4+,要使是自然数,那么n+4是32的约数,即n+4=1、2、4、8、16,32,∴n=﹣3、﹣2、0、4、12,28,又n为非负整数,∴n=0、4、12,28.故答案为:0,4,12,28.三、全面答一答(本题有7个小题,共66分)17.(6分)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)【解答】解:(1)原式=﹣2a2﹣4a2=﹣6a2;(2)原式=4x2+4x+1﹣4(x2+x﹣2)=4x2+4x+1﹣4x2﹣4x+8=9.18.(8分)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.【解答】解:(1)原式=•﹣1=﹣1==,当a=0时,原式=﹣;(2)去分母得:x+1+2(x﹣1)=0,即x+1+2x﹣2=0,解得:x=,经检验x=是分式方程的解.19.(8分)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是抽样调查;(填”普查“或”抽样调查“),一共调查了100名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?【解答】解:(1)数学兴趣小组采取的调查方式是抽样调查.抽取的总人数:=100(人);(2)样本中喜欢B项目的人数百分比是:1﹣44%﹣28%﹣8%=20%;B类的人数是:100×20%=20(人),补图如下:;(3)扇形统计图中,C所对应扇形的圆心角的度数是:360°×8%=28.8°;(4)根据题意得:1200×44%=528(人),答:全校喜欢乒乓球的人数是528人.20.(10分)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.【解答】解:(1)延长CD交AB于点F,∵AB∥DE∥MN,CD⊥DE,∴CF⊥AB.∵AD平分∠CAB,∠DAB=15°,∴∠CAF=30°,∴∠ACD=90°﹣30°=60°;(2)延长ED交AC于点G,∵AB∥DE∥MN,∴∠CDG=∠NCD,∠GDA=∠DAB,∴∠CDA=∠NCD+∠DAB.21.(10分)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=a2﹣b2(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你【解答】解:(1)①阴影部分的面积s=a2﹣b2,故答案为:a2﹣b2;②∵图3中s=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b);(2)拼接的长方形如图所示,长为(b+2a),宽为a+b,面积为b2+3ab+2a2,所以,得到的等式为(b+2a)(a+b)=b2+3ab+2a2.22.(12分)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款10(a+b)元,乙两次共购买(+)千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.【解答】解:(1)∵两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,∴甲两次购买糖果共付款:10(a+b)元,∵两次购买糖果的价格分别是每千克a元和b元(a≠b),乙每次花10元钱购买糖果,∴乙两次共购买(+)千克糖果;(2)根据题意得:甲买糖果的平均价格为=(元);乙买糖果的平均价格为=(元),∵﹣==≥0,∴乙买糖果的平均价格低.23.(12分)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2电瓶车公交车货车小轿车合计7:50~8:005631388:00~8:1054577合计6730108(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.【解答】解:(1)63=63×=56(辆).答:7:50~8:00时段内,通过电瓶车56辆.(2)在8:00~8:10时段内通过货车56÷7×2=8×2+=16(辆);在7:50~8:00时段内通过货车30﹣16=14(辆);在8:00~8:10时段内通过电瓶车67﹣56=11(辆).通过货车56÷7×2=8×2=16辆,7:50~8:00时段内,通过电瓶车56辆,在8:00~8:10时段内通过电瓶车67﹣56=11辆.(3)设在该路口应再增加x辆公交车.63﹣8x﹣(5+x)=13,63﹣8x﹣5﹣x=13,58﹣9x=13,﹣9x=﹣45,x=5.答:在该路口应再增加5辆公交车.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
2015-2016学年浙江省杭州市开发区七年级(下)期末数学试卷(含答案)

2015-2016学年浙江省杭州市开发区七年级(下)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+46.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.147.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣38.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣310.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136=.12.分解因式:2x3﹣8xy2=.13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD 于点G.已知∠EFG=55°,那么∠BEG=度.15.已知﹣=3,则分式的值为.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共人.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)18.解方程或方程组:(1)(2)+=1.19.先化简代数式,再选择一个你喜欢的数代入求值.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=度.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.2015-2016学年浙江省杭州市开发区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:列各式从左到右的变形中,是因式分解的为x2+4x+4=(x+2)2,故选C2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°【考点】平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【解答】解:A、底数不变指数相减,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故B正确;C、底数不变指数相加,故C错误;D、负整指数幂与正整指数幂互为倒数,故D错误.故选:B.4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;12x3÷(﹣4x)=﹣3x2,﹣8x2÷(﹣4x)=2x,16x÷(4x)=﹣4.【解答】解:(12x3﹣8x2+16x)÷(﹣4x)=﹣3x2+2x﹣4;故选A.6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C7.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣3【考点】分式方程的增根.【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,列方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选C.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣3【考点】因式分解的应用.【分析】先分解因式,再将已知的a﹣b=3,b﹣c=﹣4,两式相加得:a﹣c=﹣1,整体代入即可.【解答】解:a2﹣ac﹣b(a﹣c),=a(a﹣c)﹣b(a﹣c),=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣4,∴a﹣c=﹣1,当a﹣b=3,a﹣c=﹣1时,原式=3×(﹣1)=﹣3,故选D.10.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二元一次方程组的解.【分析】①将x=5,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【解答】解:①将x=5,y=﹣1代入方程组得:,由①得a=2,由②得a=,故①不正确.②解方程①﹣②得:8y=4﹣4a解得:y=将y的值代入①得:x=,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:解此方程得:将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,,.故④正确.则正确的选项有②③④,故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= 1.36×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000136=1.36×10﹣6,故答案为:1.36×10﹣6.12.分解因式:2x3﹣8xy2=2x(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有48件.【考点】频数(率)分布直方图;频数与频率.【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.【解答】解:从左至右各长方形的高的比为2:3:4:6:1,即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;故则全班上交的作品有9÷=48.故答案为:48.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD 于点G.已知∠EFG=55°,那么∠BEG=70度.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.15.已知﹣=3,则分式的值为.【考点】分式的值.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共45或529人.【考点】分式方程的应用.【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n (m﹣1)然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人.依题意有22m+1=n(m﹣1).所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n(m﹣1)=45×1=45(人);当m=24时,n=23,n(m﹣1)=23×(24﹣1)=529(人).故答案为:45或529.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)【考点】多项式乘多项式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)首先计算负整数指数幂、零次幂、乘方,然后再计算有理数的加减即可;(2)利用完全平方公式计算)(2m﹣3)2,利用多项式乘以多项式法则计算(4m+1)(m﹣2),然后再合并同类项即可.【解答】解:(1)原式=9+1﹣8=2;(2)原式=4m2﹣12m+9﹣(4m2﹣8m+m﹣2),=4m2﹣12m+9﹣4m2+8m﹣m+2,=﹣5m+11.18.解方程或方程组:(1)(2)+=1.【考点】解分式方程;解二元一次方程组.【分析】(1)根据等式的性质把原方程组变形,利用加减消元法解方程组即可;(2)方程两边同乘以(x﹣3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:(1)原方程组变形为:,①﹣②得,﹣3n=6,解得,n=﹣2,把n=﹣2代入②得,m=,则方程组的解为:;(2)方程两边同乘以(x﹣3),得5﹣x﹣1=x﹣3,整理得,﹣2x=﹣7,解得,x=,检验:当x=时,(x﹣3)≠0,∴x=是原方程的解.19.先化简代数式,再选择一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的运算法则进行化简,再代入a的值求值即可.【解答】解:=÷(﹣)=÷=×=,取a=3,代入可得==2.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子2400个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C品牌粽子的个数除以C品牌粽子所占百分比可得商场今年端午节共销售粽子数;(2)首先利用粽子总数减去A、C品牌粽子数可算出B品牌粽子数,然后再画图即可;(3)利用A品牌粽子所占比例乘以360°即可;(4)利用样本估计总体的方法可得今年端午节期间销售B品牌粽子所占比例为,然后再乘以120000即可.【解答】解:(1)商场今年端午节共销售粽子数:1200÷50%=2400(个),故答案为:2400;(2)B品牌粽子数:2400﹣400﹣1200=800(个),如图所示;(3)A品牌粽子所对应的圆心角的度数:×360°=60°;(4)120000×=40000(个),答:估计B品牌粽子售出40000个.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=170度.【考点】平行线的性质;多边形内角与外角.【分析】(1)如图1,根据平角定义表示∠ECB=180°﹣α,由角平分线定义得:∠DCB=90°﹣α,最后根据平行线性质得结论;(2)作平行线,根据平行线的性质得:∠BAE=∠ABH=90°和∠1+∠CBH=180°,所以∠1+∠2=∠1+∠CBH+∠ABH=270°;(3)作辅助线,根据外角定理和四边形的内角和360°列式后可得结论.【解答】解:(1)如图1,∵∠ACE=α,∴∠ECB=180°﹣α,∵CD平分∠ECB,∴∠DCB=∠ECB==90°﹣α,∵FG∥CD,∴∠GFB=∠DCB=90°﹣α;(2)如图2,过B作BH∥AE,∵BA⊥AE,∴∠BAE=∠ABH=90°,∵CD∥AE,∴BH∥CD,∴∠1+∠CBH=180°,∴∠1+∠2=∠1+∠CBH+∠ABH=180°+90°=270°;(3)延长图中线段,构建如图所示的三角形和四边形,由外角定理得:∠9=∠1+∠2,∠BAC=∠9+∠8=∠1+∠2+∠8,∵∠5=50°,∠7=80°,∴∠6+∠GDH=130°,∵∠3=40°,∴∠AFE=140°,∵∠BAC+∠4+180°﹣∠GDH+140°=360°,∴∠BAC+∠4﹣∠GDH=40°,∴∠1+∠2+∠4+∠8﹣130°+∠6=40°,∴∠1+∠2+∠4+∠6+∠8=170°,故答案为为:170.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据完全平分公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.【考点】分式方程的应用;二元一次方程的应用.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.2017年4月18日。
2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷及答案

2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.考试结束后,试题卷和答题纸一并上交.一、仔细选一选(每小题3分,共30分)1.(3分)(2015春•下城区期末)图中的小船通过平移后可得到的图案是()A. B. C. D.2.(3分)(2015春•下城区期末)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况3.(3分)(2015春•下城区期末)计算:(﹣t)6•t2=()A.t8B.﹣t8C.﹣t12 D.t124.(3分)(2015春•下城区期末)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.5.(3分)(2015春•下城区期末)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2 B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)26.(3分)(2015春•下城区期末)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010B.109C.10﹣9D.10﹣107.(3分)(2015春•下城区期末)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加8.(3分)(2015春•下城区期末)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或9.(3分)(2015春•下城区期末)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣410.(3分)(2015春•下城区期末)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A.B.x+1 C.x﹣1 D.二、认真填一填(每小题4分,共24分)11.(4分)(2010•温州校级一模)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为.12.(4分)(2015春•下城区期末)已知是方程mx+3y=1的一个解,则m的值是.13.(4分)(2015春•下城区期末)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.14.(4分)(2015春•下城区期末)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=,+=.15.(4分)(2015春•下城区期末)已知D是△ABC的边BC所在直线上的一点,与B,C 不重合,过D分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是.16.(4分)(2015春•下城区期末)使是自然数的非负整数n的值为.三、全面答一答(本题有7个小题,共66分)17.(6分)(2015春•下城区期末)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)18.(8分)(2015春•下城区期末)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.19.(8分)(2015春•下城区期末)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是;(填”普查“或”抽样调查“),一共调查了名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?20.(10分)(2015春•下城区期末)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.21.(10分)(2015春•下城区期末)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.(12分)(2015春•下城区期末)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款元,乙两次共购买千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.23.(12分)(2015春•下城区期末)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)(2015春•下城区期末)图中的小船通过平移后可得到的图案是()A. B. C. D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可以选出答案.【解答】解:根据平移定义可得:图中的小船通过平移后可得到的图案是D.故选:B.【点评】此题主要考查了生活中的平移,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.2.(3分)(2015春•下城区期末)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解居民对废电池的处理情况,应当采用抽样调查的方式,故本选项错误;B、为了制作校服,了解某班同学的身高情况,必须全面调查;C、检测杭州的空气质量,应当使用抽样调查,故本选项错误;D、了解某市居民的阅读情况,应当采用抽样调查的方式,故本选项错误.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3.(3分)(2015春•下城区期末)计算:(﹣t)6•t2=()A.t8B.﹣t8C.﹣t12 D.t12【分析】根据同底数幂的乘法计算即可.【解答】解:(﹣t)6•t2=t8,故选A【点评】此题考查同底数幂的乘法,关键是根据法则底数不变,指数相加计算.4.(3分)(2015春•下城区期末)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角的定义可知答案是C.故选C.【点评】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5.(3分)(2015春•下城区期末)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2 B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)2【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、原式=(a+4b)2,正确;B、原式=(a2+4)(a+2)(a﹣2),错误;C、原式=(2a+b)2,错误;D、原式不能分解,错误,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.6.(3分)(2015春•下城区期末)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010B.109C.10﹣9D.10﹣10【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:70÷0.00000007=10000 0000 0=109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2015春•下城区期末)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加【分析】观察方程组中x与y的系数,两方程相加求出x+y的值,进而利用加减消元法求出解即可.【解答】解:解方程组,下列四种方法中,最简便的是(1)+(2),两方程相加,故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)(2015春•下城区期末)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或【分析】利用完全平方公式的结构特征判断即可确定出p的值.【解答】解:∵x2+2(2p﹣3)x+4是完全平方式,∴2p﹣3=±2,解得:p=或,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(3分)(2015春•下城区期末)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣4【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:2(x+2)+mx=0,由分式方程有增根,得到(x+2)(x﹣2)=0,即x=2或x=﹣2,把x=2代入整式方程得:m=﹣4,把x=﹣2代入整式方程得:m=0,故选D【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(3分)(2015春•下城区期末)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A.B.x+1 C.x﹣1 D.【分析】按照规定的运算方法,计算得出数值,进一步找出数字循环的规律,利用规律找出答案即可.【解答】解:∵a1=x﹣1,a2=,a3==,a4==x﹣1,…∴x﹣1,,循环出现,∵2015÷3=671…2,∴a2015的值与a2的值相同,∴a2015=,故选D.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.二、认真填一填(每小题4分,共24分)11.(4分)(2010•温州校级一模)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为175.【分析】根据频率、频数的关系:频率=频数÷数据总数可得这组数据的频数.【解答】解:∵一组数据的频率是0.35,数据总数为500个,∴这组数据的频数为500×0.35=175.故答案为:175.【点评】本题考查频率、频数、数据总数的关系:频率=频数÷数据总数.12.(4分)(2015春•下城区期末)已知是方程mx+3y=1的一个解,则m的值是5.【分析】把代入方程mx+3y=1,即可解答.【解答】解:∵是方程mx+3y=1的一个解,∴2m﹣9=1,解得:m=5,故答案为:5.【点评】本题考查了二元一次方程组的解,解决本题的关键是明确二元一次方程组的解的定义.13.(4分)(2015春•下城区期末)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.【分析】原式利用多项式乘以多项式法则计算,合并后根据展开式中不含x2项,求出a的值即可.【解答】解:(3﹣ax)(x2+2x﹣1)=(3﹣2a)x2+(a+6)x﹣3﹣ax3,由展开式中不含x2项,得到3﹣2a=0,解得:a=,故答案为:.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.14.(4分)(2015春•下城区期末)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=58,+=.【分析】先根据a﹣b=4得出(a﹣b)2及a+b的值,代入代数式进行计算即可.【解答】解:∵a﹣b=4,ab=21,∴(a﹣b)2=a2+b2﹣2ab=16,∴a2+b2=16+2ab=16+42=58,∴a+b====10,∴+==.故答案为:58,.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(4分)(2015春•下城区期末)已知D是△ABC的边BC所在直线上的一点,与B,C 不重合,过D分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是70°或110°.【分析】分为三种情况,画出图形,根据三角形的内角和定理求出∠BAC,再根据平行线的性质求出∠E,即可求出答案.【解答】解:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=110°,∴∠A=180°﹣(∠B+∠C)=70°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=70°;第二种情况:如图②,∵∠B+∠ACB=110°,∴∠BAC=180°﹣(∠B+∠ACB)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;第三种情况:如图③,∵∠ABC+∠C=110°,∴∠BAC=180°﹣(∠ABC+∠C)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;故答案为:70°或110°.【点评】本题考查了平行线的性质和三角形内角和定理的应用,能求出符合条件的所有情况是解此题的关键,用了分类讨论思想.16.(4分)(2015春•下城区期末)使是自然数的非负整数n的值为0,4,12,28.【分析】首先把变形为,然后利用分式的加减法则变为+,然后约分化简,再利用32的因数即可求解.【解答】解:∵==+=n﹣4+,要使是自然数,那么n+4是32的约数,即n+4=1、2、4、8、16,32,∴n=﹣3、﹣2、0、4、12,28,又n为非负整数,∴n=0、4、12,28.故答案为:0,4,12,28.【点评】此题主要考查了数的整除性问题,解题时首先把所给分式变为部分分式的形式,然后利用数的整除性即可解决问题.三、全面答一答(本题有7个小题,共66分)17.(6分)(2015春•下城区期末)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣2a2﹣4a2=﹣6a2;(2)原式=4x2+4x+1﹣4(x2+x﹣2)=4x2+4x+1﹣4x2﹣4x+8=9.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.(8分)(2015春•下城区期末)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,得到最简结果,把a=0代入计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•﹣1=﹣1==,当a=0时,原式=﹣;(2)去分母得:x+1+2(x﹣1)=0,即x+1+2x﹣2=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.19.(8分)(2015春•下城区期末)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是抽样调查;(填”普查“或”抽样调查“),一共调查了100名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?【分析】(1)根据普查和抽查的定义即可判断调查的类型,根据喜欢A型的有44人,所占的百分比是44%即可求得调查的总人数;(2)用整体1减去A、C、D类所占的百分比,求出B类的百分比;(3)利用360°乘以对应的百分比即可求解;(4)用喜欢乒乓球所占的百分比乘以全校的总人数,即可求出答案.【解答】解:(1)数学兴趣小组采取的调查方式是抽样调查.抽取的总人数:=100(人);(2)样本中喜欢B项目的人数百分比是:1﹣44%﹣28%﹣8%=20%;B类的人数是:100×20%=20(人),补图如下:;(3)扇形统计图中,C所对应扇形的圆心角的度数是:360°×8%=28.8°;(4)根据题意得:1200×44%=528(人),答:全校喜欢乒乓球的人数是528人.【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)(2015春•下城区期末)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.【分析】(1)延长CD交AB于点F,根据AB∥DE∥MN,CD⊥DE可知CF⊥AB,再由AD平分∠CAB,∠DAB=15°求出∠CAF的度数,根据直角三角形的性质即可得出结论;(2)延长ED交AC于点G,根据AB∥DE∥MN可知∠CDG=∠NCD,∠GDA=∠DAB,由此可得出结论.【解答】解:(1)延长CD交AB于点F,∵AB∥DE∥MN,CD⊥DE,∴CF⊥AB.∵AD平分∠CAB,∠DAB=15°,∴∠CAF=30°,∴∠ACD=90°﹣30°=60°;(2)延长ED交AC于点G,∵AB∥DE∥MN,∴∠CDG=∠NCD,∠GDA=∠DAB,∴∠CDA=∠NCD+∠DAB.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.21.(10分)(2015春•下城区期末)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=a2﹣b2(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.【分析】(1)①利用正方形的面积公式,阴影部分的面积=大正方形的面积﹣空白部分小正方形的面积;②利用长方形的面积公式得图3的面积,与①中的阴影面积建立等式即可;(2)拼成长方形的长为b+2a,宽为a+b,计算长方形的面积即可得到结论.【解答】解:(1)①阴影部分的面积s=a2﹣b2,故答案为:a2﹣b2;②∵图3中s=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b);(2)拼接的长方形如图所示,长为(b+2a),宽为a+b,面积为b2+3ab+2a2,所以,得到的等式为(b+2a)(a+b)=b2+3ab+2a2.【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示面积是解题的关键.22.(12分)(2015春•下城区期末)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款10(a+b)元,乙两次共购买(+)千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.【分析】(1)利用两次购买糖果的价格以及购买的质量与钱数得出即可;(2)根据总钱数除以总千克数求出甲乙两人买糖果的平均价格,利用作差法比较即可.【解答】解:(1)∵两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,∴甲两次购买糖果共付款:10(a+b)元,∵两次购买糖果的价格分别是每千克a元和b元(a≠b),乙每次花10元钱购买糖果,∴乙两次共购买(+)千克糖果;故答案为:10(a+b),(+);(2)根据题意得:甲买糖果的平均价格为=(元);乙买糖果的平均价格为=(元),∵﹣==≥0,∴乙买糖果的平均价格低.【点评】此题考查了分式的混合运算,弄清平均价格=是解本题的关键.23.(12分)(2015春•下城区期末)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.【分析】(1)用小轿车在7:50~8:00时段内通过的数量除以即可;(2)先根据在7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2求出在8:00~8:10时段内的货车车辆数,再根据货车车辆总数求出在7:50~8:00时段内的货车车辆数,再根据在7:50~8:00时段内的电瓶车车辆和通过电甁车车辆总数求出在8:00~8:10时段内电瓶车的车辆数.(3)设在该路口应再增加x辆公交车,根据每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,列方程求解即可.【解答】解:(1)63=63×=56(辆).答:7:50~8:00时段内,通过电瓶车56辆.(2)在8:00~8:10时段内通过货车56÷7×2=8×2+=16(辆);在7:50~8:00时段内通过货车30﹣16=14(辆);在8:00~8:10时段内通过电瓶车67﹣56=11(辆).答:在7:50~8:00时段内通过货车30﹣16=14辆,在8:00~8:10时段内通过货车56÷7×2=8×2=16辆,7:50~8:00时段内,通过电瓶车56辆,在8:00~8:10时段内通过电瓶车67﹣56=11辆.(3)设在该路口应再增加x辆公交车.63﹣8x﹣(5+x)=13,63﹣8x﹣5﹣x=13,58﹣9x=13,﹣9x=﹣45,x=5.答:在该路口应再增加5辆公交车.【点评】此题考查一元一次方程的实际运用,解答此题应认真分析题意,根据题中数量间的关系,进行解答即可.。
浙教版七年级下册期末数学试卷(含答案)

浙教版七年级下册期末数学试卷(含答案) 七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()。
A。
B。
C。
D。
2.已知空气的单位体积质量为1.24×10^-3克/厘米^3,1.24×10^-3用小数表示为()。
A。
0.B。
0.0124C。
-0.D。
0.3.下列四个多项式中,能因式分解的是()。
A。
a^2+1B。
a^2-6a+9C。
x^2+5yD。
x^2-5y4.若3x=4,9y=7,则3x-2y的值为()。
A。
4/7B。
7/4C。
-3D。
2/75.下列统计中,适合用“全面调查”的是()。
A。
某厂生产的电灯使用寿命B。
全国初中生的视力情况C。
某校七年级学生的身高情况D。
“XXX”产品的合格率6.下列分式中不管x取何值,一定有意义的是()。
A。
x^2/xB。
(x-1)/(x^2-1)C。
(x+3)/(x^2+1)D。
(x-1)/(x+1)7.能使分式(4x+7)/(2x-3)的值为整数的整数x有()个。
A。
2B。
3C。
4D。
无解8.2^2018-2^2019的值是()。
A。
1/2B。
-1/2C。
-2^2018D。
-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
A。
∠D+∠BB。
∠B-∠DC。
180°+∠D-∠BD。
180°+∠B-∠D10.XXX在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);XXX看见了,说:“我也来试一试.”结果XXX七拼八凑,拼成了XXX(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()。
A。
120mm^2B。
135mm^2C。
108mm^2D。
96mm^2二、填空题(每小题3分,共24分)11.当x=1时,分式x^2-1/(x+3)(x-1)的值是 0.12.当x^2+kx+25是一个完全平方式,则k的值是 -10.13.若关于x的方程ax^3/(x-1)^2+1无解,则a的值是 0.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 2.15.3x+2y=20的正整数解有 5 组。
七年级数学期末压轴题
1.三角形的两条边长分别是3cm 和4cm ,一个内角为40,那么满足条件,且彼此不全等的三角形共有个2.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE的外部时,则∠A 与∠1、∠2之间的数量关系是( ) A .∠A =∠1-∠2 B .2∠A =∠1-∠2 C .3∠A =2∠1-∠2 D .3∠A =2(∠1-∠2)3.CD 经过B C A ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下面的问题:①如图1,若90BCA ∠=,90α∠=,则BE CF ;EF |BE -AF |(填“>”,“<”或“=”);②如图2,将(1)中的已知条件改成∠BCA=60°,∠α=120°,其它条件不变,(1)中的结论__________。
(填“成立”、“不成立”)③若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明)____________________.10.数学课上,老师让同学们按要求折叠长方形纸片.第一步:先将长方形的四个顶点标上字母A ,B ,C ,D (如图12); 第二步:折叠纸片,使AB 与CD 重合,折出纸痕MN ,然后打开铺平;第三步:过点D 折叠纸片,使A 点落在折痕MN 上的A ’处,折痕是DL .这时,老师说:“A ’L 的长度一定等于LD 的一半.”同学们经过测量果然如此.为了解开其中的奥秘,老师设置了几个思考题,请同学们完成:(1)△ALD 与△A ’LD 关于LD 对称吗?(2)AD =A ’D 吗?∠ADL =∠A ’DL 吗?∠LA ’D 是直角吗? (3)连接AA ’,△A ’AN 与△A ’DN 对称吗? (4)A ’A =A ’D 吗?△A ’AD 是什么三角形?(5)请同学们完整地说明A ’L =21LD 的理由.1(EDCBA 2(第2题) A BC E FDDABCE F ADFC EB(图1)(图2)(图3)BC M DAA′L 图12 N11.如图2,在等边△ABC 中,取BD =CE =AF ,且D ,E ,F 非所在边中点,由图中找出3个全等三角形组成一组,这样的全等三角形的组数有( ).A.2B.3C.4D.512.若227()38x,则x = .13.图10-1是一个长为2m 、宽为2n 的长方形, 沿图中虚线用剪刀均 分成四块小长方形, 然后按图7的形状拼成一个正方形. (1)你认为图10-2中的阴影部分的正方形的边长等于多少? (2)请用两种不同的方法求图6中阴影部分的面积. (3)观察图10-2你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m -n )2,mn .(4)根据(3)题中的等量关系,解决如下问题:若a +b =7,ab =5,则(a -b )2= .14.如图11,已知在Rt △ABC 中,∠A =90°,BD 是∠B 的平分线,DE 是BC 的垂直平分线. 求∠C 的度数。
浙教版七年级数学下册 期末真题重组卷(压轴卷)
专题7.7 期末真题重组卷(压轴卷)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2021春•萧山区期末)如图,下列条件中能判断AD ∥BC 的是( ) ①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB +∠2+∠3=180°.A .①③④B .①②④C .①③D .①②③④2.(3分)(2021春•奉化区校级期末)多项式4a 2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有( ) A .2种B .3种C .4种D .多于4种3.(3分)(2021春•西湖区期末)人类的血型可分为A ,B ,AB ,O 型四样,如图是某校七年级两个班学生参加体检后的血型结果,对两个班“A 型”人数占班级总数的百分比做出判断,正确的是( )A .1班比2班大B .1班比2班小C .1班和2班一样大D .无法判断4.(3分)(2021春•奉化区校级期末)两位同学在解方程组时,甲同学由{ax +by =2cx −y =−4正确地解出{x =3y =−2,乙同学因把c 写错了解得{x =−2y =2,则a +b +c 的值为( )A .3B .0C .1D .75.(3分)(2021春•宁波期末)关于x 的方程3x−1x+1−m x+1=1有增根,则方程的增根是( )A .﹣1B .4C .﹣4D .26.(3分)(2021春•西湖区期末)已知a ,b ,c 为自然数,且满足2a ×3b ×4c =192,则a +b +c 的取值不可能是( )7.(3分)(2021春•奉化区校级期末)如图,在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是()A.96B.112C.126D.1408.(3分)(2021春•永嘉县校级期末)若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x+2023的值为()A.2020B.2021C.2022D.20239.(3分)(2021春•嵊州市期末)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD在同一直线上,再沿BF折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°10.(3分)(2021春•奉化区校级期末)已知a、b为实数且满足a≠﹣1,b≠﹣1,设M=aa+1+b b+1,N=1a+1+1b+1,则下列两个结论()①ab=1时,M=N;ab>1时,M<N.②若a+b=0,则M•N≤0.A.①②都对B.①对②错C.①错②对D.①②都错二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2021春•嵊州市期末)如图,长方形ABCD的长AD为6,宽AB为4,将这个长方形向上平移2个单位,再向右平移2个单位,得到长方形EFGH,则阴影部分的面积为.12.(3分)(2021春•宁波期末)一次统计七年级若干名学生每分钟跳绳次数的频数分布直方图如图,数据分组时,组距是,自左至右最后一组的频率是.13.(3分)(2021春•镇海区校级期末)已知1x −1y=2,则−x+xy+y2x+7xy−2y= .14.(3分)(2021春•越城区期末)已知:a +b =5,(a ﹣b )2=13,则ab 的值是 .15.(3分)(2021春•越城区期末)若方程组{2a −3b =4.73a +5b =19.4的解是{a =4.3b =1.3,则方程组{2(x −1)−3(y +1)=4.73(x −1)+5(y +1)=19.4的解为 .16.(3分)(2021春•乐清市期末)将一副三角板如图1所示摆放,直线GH ∥MN ,现将三角板ABC 绕点A 以每秒1°的速度顺时针旋转,同时三角板DEF 绕点D 以每秒2°的速度顺时针旋转,设时间为t 秒,如图2,∠BAH =t °,∠FDM =2t °,且0≤t ≤150,若边BC 与三角板的一条直角边(边DE ,DF )平行时,则所有满足条件的t 的值为 .三.解答题(共8小题,满分72分) 17.(8分)(2021春•宁波期末)因式分解:(1)﹣ab +2a 2b ﹣a 3b ; (2)(x ﹣y )2﹣x +y .18.(8分)(2021春•西湖区校级期末)解方程(组):(1){2x +3y −2=3(2x −y)3x −2y =1; (2)x+64−x 2+x x−2=1.19.(8分)(2021春•镇海区期末)先化简再求值:x2−4x2+4x+4÷(2x−4x+2−x+2),其中x可在﹣2,0,3三个数中任选一个合适的数.20.(8分)(2021春•衢江区校级期末)某校为庆祝建党100周年举行“学习党史知识竞赛”活动,全校共有1000名学生参加活动,为了了解本次知识竞赛成绩分布情况,从中随机抽取了部分学生进行统计,请你根据不完整的表格,解答下列问题:“学习党史知识竞赛”成绩频数表成绩x分频数频率75≤x<80100.0580≤x<8514n85≤x<90m0.290≤x<95560.2895≤x<100800.40(1)表中的m=,n=.(2)补全频数分布直方图;(3)若规定90分及以上为优秀,则全校有多少学生成绩是优秀的?21.(10分)(2021春•奉化区校级期末)工作人员从仓库领取如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒若干个,恰好使领取的纸板用完.(1)下表是工作人员两次领取纸板数的记录:日期正方形纸板(张)长方形纸板(张)第一次560940第二次4201002①仓库管理员在核查时,发现一次记录有误.请你判断第几次的记录有误,并说明理由;②记录正确的那一次,利用领取的纸板做了竖式与横式纸盒各多少个?(2)若工作人员某次领取的正方形纸板数与长方形纸板数之比为1:3,请你求出利用这些纸板做出的竖式纸盒与横式纸盒个数的比值.22.(10分)(2021春•北仑区期末)若x满足(9﹣x)(x﹣4)=4,求(x﹣4)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(x﹣4)2+(x﹣9)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:(1)若x满足(x﹣2018)2+(x﹣2021)2=41,求(x﹣2018)(x﹣2021)的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,分别以MF,DF为边作正方形MFRN和正方形GFDH,求阴影部分的面积.23.(10分)2021春•西湖区期末2018年,在南浔区美丽乡村建设中,甲、乙两个工程队分别承担村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的13施工任务后,通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a 米,请回答下列问题.①根据题意,填写下表;(温馨提示:请填写在答题卷相对应的表格内)乙工程队甲工程队技术改进前技术改进后施工天数(天)(用含a 的代数式表示)②若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数a 和施工的天数.24.(10分)(2021春•奉化区校级期末)已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.。
2015-2016学年杭州市七下期末数学试卷
2015-2016学年杭州市七下期末数学试卷一、选择题(共10小题;共50分)1. 要反映杭州市一天内气温的变化情况宜采用A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图2. 若分式有意义,则应满足的条件是A. B.C. 且D.3. 下列多项式中,能运用完全平方公式因式分解的是A. B. C. D.4. 下列运算正确的是A. B. C. D.5. 如图所示,直线,相交于点,于点,交于点,若,则等于A. B. C. D.6. 在样本容量为的频数直方图中,共有个小长方形,若中间一个小长方形的高与其余两个小方形高的和之比是,则中间一组的频率为A. B. C. D.7. 如图所示,在一块边长为的正方形花圃中,两纵两横的条宽度为的人行道把花圃分成块,下面是四个计算种花土地总面积的代数式:①;②;③;④.其中正确的有A. ②B. ①③C. ①④D. ④8. 已知,,则,的大小关系为A. B. C. D.9. 若多项式:的值与的取值大小无关,则,一定满足A. 且B.C.D.10. 某物流公司规定:办理托运业务,当物品的质量不超过 时,需付基础费 元和保险费元;当物品质量超过 时,除了付以上的基础费和保险费外,超过部分还需付每千克 元的超重费.下表是该公司最近承接托运的两包物品的质量和所收取的费用.物品质量 收取费用 元在物品可拆分的情况下,托运 物品的最少费用是A. 元B. 元C. 元D. 元二、填空题(共8小题;共40分)11. 已知 是方程 的一个解,则 ______.12. 分解因式: ______.13. 如图所示,将边长为 个单位的等边三角形 沿边 向右平移 个单位得到 ,则四边形 的周长为______.14. 已丧 , ,则 的值为______.15. 若方程有增根,则 的值为______.16. 已知 ,则的值为______.17. 已知 ,则 的值为______.18. 三个同学对问题“若方程组 的解是 求方程组的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以 ,通过换元替代的方法来解决.”参考他们的讨论,求出方程的解是______.三、解答题(共7小题;共91分) 19. 计算:(1) . (2) .20. 解方程(组).(1)(2).21. (1)先化简:;并从,,三个数中找出一个你喜欢的数代入求值;(2)已知为整数,且的值为整数,求所有符合条件的的值之和.22. 为丰富学生的课余生活,某校开展了学生社团活动.下面是该校对七年级学生社团活动情况进行了抽样调查后制作的统计图,根据统计图回答问题:(1)共调查了______ 名学生;在扇形统计图中,表示“艺术类”部分的扇形的圆心角是______ 度;把统计图图1补充完整.(2)调查发现,该校七年级参加文学类社团的学生中,女生人数是男生人数的倍.若该校共有学生名,请估算该校参加文学类社团的男生和女生各有多少人.23. 已知平面上有两条直线和,是该平面上两直线外一点.(1)如图1所示,若直线,,, ______.(2)若将点移至图2所示位置,且,则与的位置关系是______;请说明理由.(3)探索:如图3所示,在(1)的基础上,再增加两个折点,则,,,,的关系是______.24. 对于任意实数,,,,我们规定,如,根据这一规定,解答下列问题:(1)若,满足,,求的值.(2)对于任意的,,若存在,使恒成立,求,的值.25. 已知,两地相距,甲,乙两车分别从,两地同时出发,相向而行,其终点分别为,两地.两车均先以的速度行驶,再以的速度行驶,且甲车以两种速度行驶的路程相等,乙车以两种速度行驶的时间相等.(1)若,且甲车行驶的总时间为,求和的值.(2)若,且乙车行驶的总时间为.求:①和的值.②两车相遇时,离地多少千米.答案第一部分1. B2. A3. D4. D5. C6. C7. C8. A9. B 10. A第二部分11.12.13.14.15.16.17.18.第三部分19. (1).(2).20. (1)(2).21. (1)化简得原式若,原式;若,原式;若,原式分母为,没有意义.(2)原式.因为的值为整数,所以.所以.所以.22. (1)调查的学生总数为(名).参加艺术类社团的学生有(名),参加艺术类社团的学生所占的百分比为.表示“艺术类”部分的扇形的圆心角是.(2)由图1可知,参加文学类社团的学生有名,参加文学类社团的学生所占的百分比为.全校名学生参加文学类社团的学生为(名).因为参加文学类社团的女生人数是男生人数的倍,所以该校参加文学类社团的女生为(名),男生为(名).23. (1)(2)平行.理由:如图2 所示,过点作,,因为,所以,所以,所以.(3)24. (1)得.(2),.25. (1)甲车以两种速度行驶的路程相等,即以,分别行驶.,,,.(2)①乙车以两种速度行驶的时间相等,即为.,,,.②当乙车行驶,甲乙两车均以的速度行驶.两车分别行驶,即一共行驶了.当行驶后,甲车以行驶,乙车以行驶,乙车比甲车先到中点.说明从出发到相遇,甲车始终保持速度不变,乙车有速度变化.设相遇时两车都行了.解得两车相遇时离地距离,即为甲行驶的距离.。
数学七年级下册期末考试压轴题训练
5.定义新运算为:对于任意实数都有 a、b 都有 a b a bb 1,等式右边都是通常的加法、减法、乘法运算,
比如1 2 1 2 2 1 3 .
(1)求 3 4 的值; (2)若 x 2 5 ,求 x 的取值范围,并在数轴上表示出来.
(3)①若 M{2,x+1,2x}= min{2,x+1,2x},那么 x=
.
②根据①,你发现结论“若 M{a,b,c}=min{a,b,c},则 a,b,c 的大小关系并证明.
③运用②,填空:若 M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},求 x,y 的值.
七年级下学期压轴题训练
1.已知关于
x,y
的方程组
x y 2x
a3 y 5a
的解满足
x>y>0.
(1)求 a 的取值范围;
(2)化简 a 2 a .
班级:
姓名:
2.已知关于
x,y
的方程组
x x
2 2
y y
6 mx
0 5
0
.
(1)请直接写出方程 x 2 y 6 0 的所有正整数解.
x y
1 2
是方程
x-y = -1 的一个解,对应点M (1, 2).如下图所示,我们在平直角坐标系中
将其标出,另外方程的解还对应点(2, 3), (1,2)…将这些点连起来正是一条直线.反过来,在这条直线上任取一点,这
个点的坐标也是方程 x-y = -1 的解.所以,我们把这条直线就叫做方程x-y = -1 的图象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
A
剪
拼
B
C
D
E
F
DEBC
A
七下数学期末考试压轴题
2012.6.12
1、如图,正方形硬纸片ABCD的边长是4cm,点E、F分别是AB、BC的中点,若沿左图
中的虚线剪开,拼成右图的一栋“小别墅”,则图中阴影部分的面积和是( ).
(A)2 (B)4 (C)8 (D)10
2、如图是5×5的正方形的网络,以点D,E为两个顶点作位置不同的格点三角形,使所作
的格点三角形与△ABC全等,这样的格点三角形最多可以画出( )
A.2个 B.3个 C.4个 D.5个
3、如图,△ABC中,DE是AC的中垂线,AE=5cm,△ABC的周长为30cm,则△ABD
的周长是 ;
4、按如图所示的程序计算,若输入的值17x,则输出的结果为22;若输入的值34x,
则输出结果为22.当输出的值为24时,则输入的x的值在0至40之间的所有正整数
为 .
5、现有纸片:l张边长为a的正方形,2张边长为b的正方形,3张宽为a、长为b的长方
形,用这6张纸片重新拼出一个长方形,那么该长方形的长为:
A.a+b B.a-+2b C.2a+b D.无法确定
6.如图,正方形ABCG和正方形CDEF的边长分别为ba,,用含ba,的代数式表示阴影部分的
面积。
输入x
1
2
x
x
+5
得到y
x
为偶数
x
为奇数
y大于等于20
输出结果
y小于20
2
7、已知方程组2313359xyxy 的解是23xy , 则方程组2(1)3(2)133(1)5(2)9xyxy的解
是 ( )
A、23xy B、35xy C、15xy D、31xy
8、如图,在△ A1B1C1中,取B1C1中点D1、A1C1中点A2,并连结A1D1、A2D1称为第一
次操作;取D1C1中点D2、A2C1中点A3,并连结A2D2、D2A3称为第二次操作;取D2C1中
点D3、A3C1中点A4,并连结A3D3、D3A4称为第三次操作,依此类推……。记△A1D1A2的
面积为S1,△A2D2A3的面积为S2,△A3D3A4的面积为S3,…… △AnDnAn+1的面积为Sn.若△
A1B1C1的面积是1,则Sn= .(用含n的代数式表示)
9、(本题8分)请阅读下面的例子:
求满足x2一3x—l0=0的x值.
解:原方程可变形为:(x一5)(x+2)=0.
x—5=0或x+2=0(注①),
所以x1=5,x2= 一2.
注①:我们知道如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过
来,如果两个因式有一个等于0,它们的积就等于0.
请仿照上面例子求满足下列等式的x的值.
(1)3x2一6x=0:
(2)5x(x一2)一4(2一x)=0.
A1
B1 C1 D1 A2 D2 A3 D3
A4
S2
S3
S1
3
A
B
C
FDE
G
P
3
2
M
F
G
A
B
C
D
E
F
E
A
B
C
D
10、如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线
上,且边长分别为2和3,在BG上截取GP=2,连结AP、PF.
(1)观察猜想AP与PF之间的大小关系,并说明理由.
(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请
说明变换过程;若不存在,请说明理由.
(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出
示意图,并请求出这个大正方形的面积.
11、如图,△ABC与△ADE都是等边三角形,连结BD、CE交点记为点F.
(1)BD与CE相等吗?请说明理由.
(2)你能求出BD与CE的夹角∠BFC的度数吗?
(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点
记为点M(如图).请直接写出线段BE和DG之间的关系?
4
12、我市某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂家
在开展促销活动期间,向客户提供两种优惠方案:(A)西装和领带都按定价的90%付款;
(B)西装、领带售价不变,买一套西装可送一条领带。现某客户现要到该服装厂购买西
装x套(x为正整数),领带条数是西装套数的4倍多5.
(1)若该客户按方案(A)购买,请填写下表1,用含x的代数式表示;
若该客户按方案(B)购买,请填写下表2,用含x的代数式表示;
(2)若x=10,通过计算说明此时按哪种方案购买较为合算?
(3)求当x为何值时,两种方案的付款数相等?
表1:客户按方案(A)付款金额 表2:客户按方案(B)付款金额
西装 领带 西装 领带
数量 x 数量 x
金额(元) 金额(元)
13.正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN的上
方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方
形AEFG.
(1)如图1,当点E在线段BC上(不与点B、C重合)时:
①判断△ADG与△ABE是否全等,并说明理由;
②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明
理由;
(2)如图2,当点E在射线CN上(不与点C重合)时:
①判断△ADG与△ABE是否全等,不需说明理由;
②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.
图 2
HFGDANMBCE
图 1
HFGDAMNBCE
5
14.(本小题7分)为了有效的使用好资源,某市电业局从2002年l月起进行居民峰谷用电试
点,每天8:00~21:00用一度电位0.56元(峰电价),21:00~次日8:00用一度电
为0.35元(谷电价),而目前不使用“峰谷”’电的居民用一度电为0.53元
(1)同学小丽家某月使用“峰谷电”后,应支付电费99.4元,已知“峰电”度数占总
用电度数的70%,请你计算一下,小丽家当月使用“峰电”和“谷电”各多少度?
(2)假设小丽家该月用电210度,请你计算一下:当“峰电”用电量不超过多少度时,
使用“峰谷”电合算?
15、(10分)我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,
该企业进行试生产。他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板
材再按照裁法一或裁法二裁下A型与B型两种板材。如图1所示,(单位:cm)
(1)列出方程(组),求出图甲中a与b的值。
(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再
将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种无盖..礼品盒。
①两种裁法共产生A型板材 张,B型板材 张;
②设做成的竖式无盖..礼品盒x个,横式无盖..礼品盒的y个,根据题意完成表格:
竖式无盖(个) 横式无盖(个)
x y
A
型(张)
4x 3y
B
型(张)
x
③做成的竖式和横式两种无盖礼品盒总数..最多是 个;此时,横式..无盖礼品盒
可以做 个。(在横线上直接写出答案,无需书写过程)
b 170 a 40 A B B A A B 170 40 a b 30
10
(裁法一) (裁法二)
图甲
图乙
礼品盒
板 材
6
16.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,希望
中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写所有选购方案(利用树状图或列表方法表示);
(2)已知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示)恰好用10•万元
人民币,其中甲品牌电脑为A型电脑,求该学校购买了A型电脑几台?
17.H1N1流感侵袭北京后,全国各地积极参与防治救助工作. 某公司捐助的一批医疗必需
物资120吨打算运往北京,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费
如下表所示:(假设每辆车均满载)
车型 甲 乙 丙
汽车运载量(吨/辆) 5 8 10
汽车运费(元/辆) 400 500 600
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型
各几辆?
(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆
数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?