最新北师大版九年级上期末考试数学试题含答案7

合集下载

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列方程,是一元二次方程的是()A .2 310x x +-=B .2 51y x -=C . 210x +=D .21 1x x +=2.下面几何体的主视图是()A .B .C .D .3.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 的对应高的比为()A .23B .8116C .94D .324.若正方形的对角线长为2,则这个正方形的面积为()A .2B .4CD .5.如图,点A 为反比例函数k y x=的图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,已知△ABO 的面积为3,则k 值为()A .-3B .3C .-6D .66.如图,线段AB 两个端点的坐标分别为(2,2)(2.5,0.8)A B 、,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为()A .(3,1.6)B .(4,3.2)C .(4,4)D .(6,1.6)7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,正方形ABCD 中,E 为BC 中点,连接AE ,DF AE ⊥于点F ,连接CF ,FG CF ⊥交AD 于点G ,下列结论:①CF CD =;②G 为AD 中点;③~DCF AGF ∆∆;④23AF EF =,其中结论正确的个数有()A .1个B .2个C .3个D .4个10.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒二、填空题11.方程x2=x的解为___.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为___.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__颗.14.已知矩形ABCD,当满足条件______时,它成为正方形(填一个你认为正确的条件即可).15.反比例函数kyx=的图象经过点(1,﹣2),则k的值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=_____.三、解答题18.解方程:2x2﹣4x﹣1=0.19.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,小明站在路灯B下的A处,向前走5米到D处,发现自己在地面上的影子DC 是2米.若小明的身高DE是1.8米,则路灯B离地面的高度AB是多少米?21.如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.22.有一块长60m,宽50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中黑色部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a=(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为2430m2,则通道的宽度为多少?23.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x 轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.24.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP 沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E 为直线CD 上的一点,则在平面直角坐标系中是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.25.如图,一次函数y=x+b 和反比例函数y=xk (k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.26.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.A 【分析】根据一元二次方程的概念(只含有一个未知数,并且未知数项的最高次数是二次的整式方程叫做一元二次方程),逐一判断.【详解】A.2310x x +-=,符合一元二次方程的定义,故本选项正确;B.251y x -=,方程含有两个未知数,故本选项错误;C.210x +=,未知数项的最高次数是一次,故本选项错误;D.211x x+=,不是整式方程,故本选项错误.故答案选A.【点睛】本题重点考查了满足一元二次方程的条件:(1)该方程为整式方程.(2)该方程有且只含有一个未知数.(3)该方程中未知数的最高次数是2.2.B 【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B .【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.3.D 【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应高的比等于相似比解答即可.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94,∴△ABC 与△DEF 的相似比为32,∴△ABC 与△DEF 对应高的比为32,故选:D .【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.A 【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解.【详解】如图所示:∵四边形ABCD 是正方形,∴AO=BO=12AC=1cm ,∠AOB=90°,由勾股定理得,2,S 正=2)2=2cm2.故选A .【点睛】考查正方形的性质,解题关键是根据对角线平分、相等、垂直且平分每一组对角进行分析.5.C 【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy =﹣6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0.又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S △AOB 12=⨯|AB|×|OB|12=⨯y×|x|=3,∴﹣xy =6,∴k =﹣6.故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6.C 【分析】根据位似中心的定义可得:2:1OC OA =,由此即可得出答案.【详解】解:由题意得::2:1OC OA =,则端点C 的坐标为(22,22)C ⨯⨯,即为(4,4)C ,故选:C .【点睛】本题考查了位似图形的性质,理解定义是解题关键.7.D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.D 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方,∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2.故选:D .9.D 【分析】如图(见解析),过点C 作CM DF ⊥于点M ,先根据三角形全等的判定定理证出ADF DCM ≅ ,根据全等三角形的性质可得AF DM =,再利用正切三角函数可得1tan 1tan 42BE AB ∠=∠==,从而可得AF FM DM ==,然后根据线段垂直平分线的判定与性质即可判断①;先根据等腰三角形的性质可得25∠=∠,从而可得17∠=∠,再根据等腰三角形的判定可得DG FG =,然后根据角的和差可得36∠=∠,最后根据等腰三角形的判定可得AG FG =,由此即可判断②;先根据上面过程可知3256=∠∠∠=∠=,再根据相似三角形的判定即可判断③;设(0)AF x x =>,从而可得2DF x =,先利用勾股定理可得5,2AD AB BC AE x ====,再根据线段的和差可得32EF x =,由此即可判断④.【详解】解:如图,过点C 作CM DF ⊥于点M ,四边形ABCD 是正方形,,90AB BC CD AD B BAD ADC ∴===∠=∠=∠=︒,2190∴∠+∠=︒,DF AE ⊥ ,90,1390AFD DMC ∴∠=∠=︒∠+∠=︒,32∴∠=∠,在ADF 和DCM △中,9032AFD DMC AD DC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DCM AAS ∴≅ ,AF DM ∴=,点E 是BC 的中点,1122BE BC AB ∴==,349031∠+∠=︒=∠+∠ ,41∴∠=∠,1tan 1tan 42BE AB ∴∠=∠==,12AFDF ∴=,即2DF AF =,DF DM FM AF FM =+=+ ,2AF AF FM ∴=+,即AF FM =,DM FM ∴=,又CM DF ⊥ ,CF CD ∴=,结论①正确;25∴∠=∠,FG CF ⊥ ,90CFG ADC ∴∠=︒=∠,17∴∠=∠,DG FG ∴=,又139076∠+∠=︒=∠+∠ ,36∴∠=∠,AG FG ∴=,AG DG ∴=,即G 为AD 中点,结论②正确;由上已得:32536,2,∠=∠∠∠∠=∠=,56∴∠=∠,在DCF 和AGF 中,2356∠=∠⎧⎨∠=∠⎩,DCF AGF ∴ ,结论③正确;设(0)AF x x =>,则2DF x =,BC AB AD ∴====,122BE BC ∴==,52AE x ∴==,32EF AE AF x ∴=-=,3223AF x EF x ∴==,结论④正确;综上,结论正确的个数有4个,故选:D .10.B 【分析】连接BF ,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF ,根据等边对等角可得∠FBA=∠FAB ,再根据菱形的邻角互补求出∠ABC ,然后求出∠CBF ,最后根据菱形的对称性可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×100°=50°,∵EF 是AB 的垂直平分线,∴AF=BF ,∴∠FBA=∠FAB=50°,∵菱形ABCD 的对边AD ∥BC ,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B .11.0x =或1x =【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.12.2a ≥-且0a ≠##a≠0且a≥-2【分析】根据题意可知0∆≥,代入求解即可.【详解】解:一元二次方程ax 2+4x ﹣2=0,,4,2a a b c ===-,∵关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,∴0∆≥且0a ≠,即244(2)0a -⨯-≥,0a ≠解得:2a ≥-且0a ≠故答案为:2a ≥-且0a ≠.13.14【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,60.36n=+,解得n=14.经检验n=14是原方程的解故估计盒子中黑珠子大约有14个.故答案为:14.14.AB=BC【详解】解:∵四边形ABCD是矩形,∴(1)当AB=BC时,矩形ABCD是正方形;(2)当AC⊥BD时,矩形ABCD是正方形.故答案为:AB=CD(或AC⊥BD).15.﹣2.【分析】将点(1,﹣2)代入kyx=,即可求解.【详解】∵反比例函数kyx=的图象经过点(1,﹣2),∴k21-=,解得k=﹣2.故答案为-2.16.16924【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【详解】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,5=,∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90∘,∵FG⊥AD,∴∠GEF+∠EFG=90∘,∴∠DAA′=∠GFE,在△GEF 和△DA′A 中,90EGF D FG AD DAA GFE ∠=∠=︒⎧⎪=⎨⎪∠'=∠⎩,∴△GEF ≌△DA′A ,∴DA′=EG=5,设AE=x,由翻折的性质可知EA′=x ,则DE=12−x ,在Rt △EDA′中,由勾股定理得:A′E 2=DE 2+A′D 2,即x 2=(12−x)2+52,解得:x=16924,故答案为16924,【点睛】本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.17.4.8【分析】根据菱形的性质得到AC ⊥BD ,求出OA ,OB ,由勾股定理求出AB ,再利用菱形的面积公式得到12AC•BD=AB•DH ,由此求出答案.【详解】解:在菱形ABCD 中,AC ⊥BD ,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt △AOB 中,==5,∵DH ⊥AB ,∴菱形ABCD 的面积=12AC•BD=AB•DH ,即12×6×8=5DH ,解得DH=4.8.故答案为:4.8.【点睛】此题考查了菱形的性质,勾股定理,熟记菱形的性质并熟练应用解决问题是解题的关键.18.【分析】用配方法解一元二次方程即可.【详解】解:∵2x2﹣4x ﹣1=0,∴2x2﹣4x=1,则x2﹣2x=12,∴x2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣,∴.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.19.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .又∵CE ⊥AB ,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.20.路灯B 离地面的高度 6.3AB =米【分析】根据ED ∥AB ,得出△ECD ∽△BCA ,进而得出比例式求出即可.【详解】解:由题图知,2DC =米, 1.8=ED 米,5AD =米,∴527=+=+=AC AD DC (米).∵ED AB ∥,∴ECD BCA ∽△△.∴ED DC AB AC =,即1.827AB =.∴路灯B 离地面的高度 1.87 6.32AB ⨯==(米).【点睛】此题主要考查了相似三角形的应用,得出△ECD ∽△EBA 是解决问题的关键.21.(1)4AC =,60AOB ∠=︒;(2)菱形OBEC 的面积是【分析】(1)根据AB 的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC 的长度,根据矩形的对角线互相平分可得出OBC 为等腰三角形,从而利用外角的知识可得出∠AOB 的度数;(2)先求出△OBC 和的面积,从而可求出菱形OBEC 的面积.(1)解:在矩形ABCD 中,90ABC ∠=︒,在Rt ABC 中,30ACB ∠=︒.∴24AC AB ==.∴2AO OB ==.又∵2AB =,∴AOB 是等边三角形.∴60AOB ∠=︒.(2)解:在Rt ABC 中,由勾股定理,得BC ==.∴122ABC S =⨯⨯= .∴12BOC ABC S S ==△△.∴菱形OBEC 的面积是【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.22.(1)6032x-(2)通道的宽度为2m .【分析】(1)结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,可得方程等式,化简即可得;(2)结合图形,利用大面积减去黑色部分的面积可得方向,求解即可得.(1)解:结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,∴2360a x +=,6032x a -=,故答案为:6032x -;(2)解:根据题意得:(502)(603)2430---⋅=x x x a ,∵6032x a -=,∴603(502)(603)24302x x x x ----⋅=,解得122,38x x ==(不合题意,舍去).∴通道的宽度为2m .【点睛】题目主要考查列代数式及一元二次方程的应用,理解题意,找准面积之间的关系是解题关键.23.(1)6y x =,23y x =;(2)03x <<;(3)理由见解析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.【详解】解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点睛】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.24.(1)直线l 的函数解析式为43233y x =-+(2)点P '到直线CD 的距离为2(3)存在点1(8F +或2(8F --或3(6,14)F -或4(33,25)F ,使以点A ,D ,E ,F 为顶点的四边形为菱形.【分析】(1)用待定系数法即可求解;(2)由△PBD 的面积求出点P 的坐标,进而求出点P'(5,4),构建△P'DN 用解直角三角形的方法即可求解;(3)分AD 是菱形的边、AD 是菱形的对角线两种情况,利用图像平移和中点公式,分别求解即可.(1)解:∵14,(6,0)=-AC C ,点A 在点C 右侧,∴(8,0)A .∵直线l 与直线CD 相交于点(2,8)D ,∴80,28,k b k b +=⎧⎨+=⎩解得4,332.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l 的函数解析式为43233y x =-+.(2)解:如图1,过点P 作PN y ⊥轴于点N ,作'∥PP y 轴,交AB 于点P ',过点P '作'⊥P M CD 于点M ,过点D 作DE y ⊥轴于点E ,设CD 与y 轴交于点F,0设直线CD 的解析式为y mx n =+,∵(6,0),(2,8)-C D ,∴60,28,m n m n -+=⎧⎨+=⎩解得 1.6.m n =⎧⎨=⎩∴直线CD 的解析式为6y x =+.(0,6)F ∴∴6OC OF ==.∴OCF OFC∠=∠∵OC OF ⊥,∴45OCF OFC ∠=∠=︒∵直线l 的解析式为43233y x =-+,∴320,3B ⎛⎫⎪⎝⎭.∴323OB =.∴3214633=-=-=BF OB OF .设(,6)+P a a ,∵7=-= PBD PBF DBF S S S ,∴11722⋅-⋅=BF PN BF DE ,即114(2)723⨯-=a ,解得5a =.∴(5,11)P .∵将线段BP 沿着y 轴方向平移,使得点P 落在直线AB 上的P '处,∴4325433-⨯+=.∴(5,4)'P .∴1147='-=PP .∵45PCA OCF ∠=∠=︒,PP AC '⊥∴45'︒∠=MPP .∵'⊥P M CD ,∴45PP M P PM ''∠=∠=︒∴PMP ' 是等腰直角三角形.∴==''P M ,即点P '到直线CD 的距离为2.(3)解:①如图2,当AD 、AF 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADEF 是菱形,∴,10==∥DE AF AD AF .∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =+.∵(8,0)A ,∴80b +=,解得8b =-.∴直线AF 的解析式为8y x =-.设(,8)-F c c ,∴10===AF AD ,解得8=±c∴12(8(8+--F F .当AD 、AE 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADFE 是菱形,∴,10∥DF AE AD AE ==.∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =-+.∵(8,0)A ,∴-80b +=,解得8b =.∴直线AF 的解析式为8y x =-+.设(,8)F d d -+,∴10DF AD ===,解得6d =-或8d =(舍去),∴3(6,14),F -.②如图3,当AD 为对角线时,则,=∥DF AF AF DE .由①得直线AF 的解析式为8y x =-.设(,8)-F t t ,∵(2,8),(8,0)D A ,2222(2)(88)(8)(8)t t t t -+--=-+-解得33t =.∴4(33,25)F .综上所述,存在点1(852,52)F +或2(852,52)F --或3(6,14)F -或4(33,25)F 使以点A ,D ,E ,F 为顶点的四边形为菱形.【点睛】本题考查的是二次函数综合运用,涉及到二次函数的性质、平行四边形的性质、图形的平移、面积的计算等,分类求解解题的关键.25.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.26.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∴CDE CGH ∠=∠.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .2.若一元二次方程20ax bx c ++=有一个根为1,则下列等式成立的是()A .1a b c ++=B .0a b c -+=C .1a b c -+=D .0a b c ++=3.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起.则其颜色搭配一致的概率是()A .14B .12C .34D .14.ABC 中,90C ∠=,且3c b =,则cos (A =)A .3B .3C .13D .35.若234a b c ==,则a b c a+-的值为()A .2B .19C .12D .96.点()11,x y 、()22,x y 、()33,x y 在反比例函数2y x=-的图象上,且1230x x x <<<,则有()A .123y y y <<B .231y y y <<C .132y y y <<D .321y y y <<7.如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=()A .1:4B .1:3C .1:2D .1:18.如图,在坡角为α的山坡上A 、B 、C 处栽树,要求相邻两树之间的水平距离为5米,那么这两树的坡面上的距离BC 为()A .5cos αB .5cos αC .5sin αD .5sin α9.如图,在矩形ABCD 中,AB=4,BC=3,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是()A .2B .52C D .25810.已知一次函数y=mx+n 与反比例函数y=n mx-其中m 、n 为常数,且mn <0,则它们在同一坐标系中的图象可能是()A .B .C .D .二、填空题11.若k 为整数,关于x 的一元二次方程2(1)2(1)50k x k x k --+++=有实数根,则整数k 的最大值为__________.12.若点()3,1A -、(),2B m 都在反比例函数()0ky k x=≠的图象上,则m 的值是___________.13.如图,矩形ABCD 中,E 是AD 的中点,4AB =,6AD =,M 是线段CE 上的动点,则BM 的最小值是___________.14.从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为___.15.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,OD DA =23,则△DEF 与△ABC 的面积比是______.16.如图,大坝的横截面是一个梯形,坝顶宽10m DC =,坝高15m ,斜坡AD 的坡度11:2l =,斜坡BC 的坡度23:4l =,则坡底宽AB =__________m .17.如图,已知矩形OABC 的面积为1003,它的对角线OB 与双曲线k y x =相交于点D ,且OB :OD =5:3,则k =____.三、解答题18.解方程:3(1)22x x x +=+19.如图:一次函数的图象与反比例函数ky x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值.20.据某市车管部门统计,2013年底全市汽车拥有量为150万辆,而截至到2015年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2017年底汽车拥有量将达多少万辆?21.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=23,AD=4.(1)求BC 的长;(2)求tan ∠DAE 的值.22.已知,在矩形ABCD 中,AB a =,BC b =,动点M 从点A 出发沿边AD 向点D 运动.(1)如图1,当2b a =,点M 运动到边AD 的中点时,请证明90BMC ∠=︒;(2)如图2,当2b a >时,点M 在运动的过程中,是否存在90BMC ∠=︒,若存在,请给与证明;若不存在,请说明理由.23.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.24.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值;(2)写出S 关于m 的函数关系式;(3)当3S =时,求点P 的坐标.25.如图,在矩形ABCD 中,8AB cm =,16BC cm =,点P 从点D 出发向点A 运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1/scm.连接PQ、AQ、CP.设点P、Q运动的时间为s t.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.参考答案1.C2.D3.B4.C5.C6.B7.C8.B9.D10.B11.312.3 213.24 514.1215.4:2516.6017.1218.122,13x x ==-【详解】3x (x+1)-(2x+2)=0,3x (x+1)-2(x+1)=0,(x+1)(3x-2)=0,∴x+1=0,3x-2=0,∴x 1=-1,x 2=23;19.(1)()4,3B -;(2)2x <-或04x <<.【分析】(1)先根据点A 的坐标可得反比例函数的解析式,再将点B 的坐标代入计算即可得;(2)结合点,A B 的坐标,根据一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方即可得.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.20.(1)年平均增长率为20%.(2)如果不加控制,该市2017年底汽车拥有量将达311.04万辆.【分析】(1)假设出平均增长率为x ,可以得出2013年该市汽车拥有量为150(1+x ),2015年为150(1+x )(1+x )=216,即150(1+x )2=216,进而求出具体的值;(2)结合上面的数据2017应该在2015年的基础上增长,而且增长率相同,同理,即为216(1+20%)2.【详解】解:设该市汽车拥有量的年平均增长率为x .根据题意,得150(1+x )2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)216(1+20%)2=311.04(万辆).答:如果不加控制,该市2017年底汽车拥有量将达311.04万辆.21.(1)(2【详解】试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt △ADC ,得出DC=4;解Rt △ADB ,得出AB=6,根据勾股定理求出然后根据BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE 的值,则DE=CE-CD ,然后在Rt △ADE 中根据正切函数的定义即可求解.试题解析:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=4,∴DC=AD=4.在△ADB 中,∵∠ADB=90°,sinB=23,AD=4,∴AB=6sin ADB=∴=,∴BC=BD+DC=4+(2)∵AE 是BC 边上的中线,∴CE=122,∴2,∴tan ∠DAE=24DE AD =.考点:解直角三角形.22.(1)见解析;(2)存在,理由见解析【分析】(1)根据b=2a ,点M 是AD 的中点,可得AB=AM=MD=DC=a ,再由矩形的性质,即可求证;(2)假设∠BMC=90°,则∠AMB+∠DMC=90°,可先证得△ABM ∽△DMC ,从而得到AM ABCD DM =,然后设AM=x ,则x a a b x=-,可得到220x bx a +=-,再由2,0,0b a a b >>>,可得到2240b a ∆=->,进而得到方程220x bx a +=-有两个不相等的实数根,且两根均大于0,即可求解.【详解】解:(1)证明:在矩形ABCD 中,AB=CD ,AD=BC ,∵AB a =,BC b =,b=2a ,点M 是AD 的中点,∴AB=AM=MD=DC=a ,又∵在矩形ABCD 中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°;(2)存在,理由:若∠BMC=90°,则∠AMB+∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC ,又∵∠A=∠D=90°,∴△ABM ∽△DMC ,∴AM ABCD DM=,设AM=x ,则x a a b x=-,整理得:220x bx a +=-,∵2,0,0b a a b >>>,∴224b a >,∴2240b a ∆=->,∴方程220x bx a +=-有两个不相等的实数根,且两根均大于0,符合题意,∴当2b a >时,点M 在运动的过程中,存在90BMC ∠=︒.23.(1)见解析(2)见解析(3)AC 7AF 4=【分析】(1)由AC 平分∠DAB ,∠ADC=∠ACB=90°,可证得△ADC ∽△ACB ,然后由相似三角形的对应边成比例,证得AC 2=AB•AD .(2)由E 为AB 的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=12AB=AE ,从而可证得∠DAC=∠ECA ,得到CE ∥AD .(3)易证得△AFD ∽△CFE ,然后由相似三角形的对应边成比例,求得AFCF的值,从而得到ACAF的值.【详解】(1)证明:∵AC 平分∠DAB ∴∠DAC=∠CAB .∵∠ADC=∠ACB=90°∴△ADC ∽△ACB .∴AD ACAC AB=即AC 2=AB•AD .(2)证明:∵E 为AB 的中点∴CE=12AB=AE ∴∠EAC=∠ECA .∵∠DAC=∠CAB ∴∠DAC=∠ECA ∴CE ∥AD .(3)解:∵CE ∥AD ∴△AFD ∽△CFE ∴AD AFCE CF=.∵CE=12AB ∴CE=12×6=3.∵AD=4∴4AF 3CF =∴AC 7AF 4=.24.(1)(3,3)B ,9k =;(2)93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩;(3)(92,2)或9(,2)2.【分析】(1)先根据正方形的面积公式可得3OA AB ==,从而可得点B 的坐标,再利用待定系数法即可得k 的值;(2)先将点(,)P m n 代入反比例函数的解析式可得9n m=,再分①点P 在点B 的右侧,②点P 在点B 的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出3S =时,m 的值,由此即可得出答案.【详解】解:(1) 正方形OABC 的面积为9,3OA AB ∴==,(3,3)B ∴,将点(3,3)B 代入k y x=得:339k =⨯=;(2)由(1)得:反比例函数的解析式为9y x =,将点(,)P m n 代入9y x=得:9n m =,由题意,分以下两种情况:①如图,当点P 在点B 的右侧,即3m ≥时,则9,OE m PE n m===,3AE OE OA m ∴=-=-,927(3)9S AE PE m m m∴=⋅=-⋅=-;②如图,当点P 在点B 的左侧,即03m <<时,则9,PF OE m OF PE n m =====,93CF OF OC OF AB m ∴=-=-=-,9(3)93S PF CF m m m∴=⋅=⋅-=-,综上,S 关于m 的函数关系式为93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩;(3)①当03m <<时,933S m =-=,解得2m =,则92n =,即此时点P 的坐标为9(2,)2P ;②当3m ≥时,2793S m =-=,解得92m =,则9292n ==,即此时点P 的坐标为9(,2)2P ;综上,点P 的坐标为(92,2)或9(,2)2.【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键.25.(1)t=8s ;(2)t=6s ;(3)40cm ,80cm 2【分析】(1)根据题中已知,当四边形ABQP 是矩形时,AP=BQ ,据此列出t 的方程,解之即可;(2)易证四边形AQCP 是平行四边形,当AQ=CQ 时,四边形AQCP 是菱形,在Rt △ABQ 中利用勾股定理列t 的方程,解之即可;(3)由(2)求得CQ ,根据菱形的周长和面积公式即可求解.【详解】解:(1) 在矩形ABCD 中,8AB cm =,16BC cm =16BC AD cm ∴==,8AB CD cm==由已知可得,BQ DP tcm ==,()16AP CQ t cm ==-在矩形ABCD 中,90B ∠=︒,//AD BC 当BQ AP =时,四边形ABQP 为矩形16t t ∴=-,得8t =故当8s t =时,四边形ABQP 为矩形(2)AP CQ = ,//AP CQ∴四边形AQCP 为平行四边形∴当AQ CQ =时,四边形AQCP 为菱形16t =-时,四边形AQCP 为菱形,解得6t =故当6s t =时,四边形AQCP 为菱形(3)当6s t =时,()16610AQ CQ CP AP cm ====-=则周长为()41040cm ⨯=;面积为()210880cm ⨯=。

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。

北师大版九年级上册数学期末考试试卷附答案

北师大版九年级上册数学期末考试试卷附答案

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.如图的几何体,它的主视图是()A .B .C .D .2.如图,已知△ABC ,则下列4个三角形中,与△ABC 相似的是()A .B .C .D .3.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =4,cos ∠ABC =12,则BD 的长为()A .2B .4C .D .4.sin45°的值等于()A .12B .2C .2D .15.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A .12B .13C .23D .146.已知反比例函数的图象经过点(1,2),则它的图象也一定经过()A .(1,﹣2)B .(﹣1,2)C .(﹣2,1)D .(﹣1,﹣2)7.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6B.6C.﹣2D.28.已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是()A.k>98B.k<98C.k<﹣98D.k<899.函数y=kx﹣k(k≠0)和y=﹣kx(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②AM ANAB AC;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN PC.其中正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题11.方程x2﹣9x=0的根是_____.12.在阳光下,高6m的旗杆在水平地面上的影子长为4m,此时测得附近一个建筑物的影子长为16m,则该建筑物的高度是_____m.13.已知A(x1,y1)B(x2,y2)为反比例函数3y=-x图象上的两点,且x1<x2<0,则:y1_____y2(填“>”或“<”).14.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.15.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为________.16.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.17.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=35,则线段DE=_____.三、解答题18.解方程:x2+x﹣1=0.19.在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;(3)在(2)的条件下,S△OAB:S四边形AA′B′B=.20.在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.()1如果从袋中任意摸出一个球是红球的概率为23,那么袋中有黄球多少个?()2在()1的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.21.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.22.小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.(1)求∠ACB的度数;(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,sin48°≈710,cos48°≈711,tan48°≈1110)23.如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.24.如图,已知直线y=kx+b与反比例函数y=mx(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=mx(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=12S△CAO时,求点P的坐标.25.如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG 的值.参考答案1.A【解析】从正面看所得到的图形,进行判断即可.【详解】解:主视图就是从正面看到的图形,因此A图形符合题意,故选:A.【点睛】此题主要考查三视图,解题的关键是熟知三视图的定义.2.C【分析】根据等腰三角形性质和三角形内角和定理分别求出各个选项中三角形的每个角的度数,然后与题干中的三角形的度数相比较即可得出答案.【详解】∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A选项中三角形各角的度数分别为75°,52.5°,52.5°,B选项中三角形各角的度数都是60°,C选项中三角形各角的度数分别为75°,30°,75°,D选项中三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C .【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理和相似三角形的判定,此题难度不大.3.D 【分析】由锐角三角函数可求∠ABC =60°,由菱形的性质可得AB =BC =4,∠ABD =∠CBD =30°,AC ⊥BD ,由直角三角形的性质可求BO =【详解】解:∵cos ∠ABC =12,∴∠ABC =60°,∵四边形ABCD 是菱形,∴AB =BC =4,∠ABD =∠CBD =30°,AC ⊥BD ,∴OC =12BC =2,BO =∴BD =2BO =故选:D 【点睛】此题主要考查三角函数的应用,解题的关键是熟知菱形的性质及解直角三角形的方法.4.B 【分析】根据特殊角的三角函数值即可求解.【详解】故选B .【点睛】错因分析:容易题.失分的原因是没有掌握特殊角的三角函数值.5.D 【详解】试题分析:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=1 4.考点:概率的计算.6.D【分析】根据反比例函数图象和性质即可解答.先判断出反比例函数图象的一分支所在象限,即可得到另一分支所在象限.【详解】解:由于点(1,2)在第一象限,则反比例函数的一支在第一象限,另一支必过第三象限.第三象限内点的坐标符号为(﹣,﹣)故选:D.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数图像的对称性.7.C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a是方程x2﹣5x+k=0的另一个根,则a+3=1,即a=﹣2.故选:C.【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.8.B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<9 8.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.9.D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣kx(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣kx(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.10.B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN PB PC,判断④正确.【详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AN AC AM AB=,∴AN AMAC AB=,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN PB PC,故④正确.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.11.x1=0,x2=9【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣9x=0即x(x﹣9)=0,解得x1=0,x2=9.故答案为x1=0,x2=9.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.12.24【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】解:设建筑物的高为h米,则h16=64,解得h=24.故答案为:24.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.13.<【分析】先根据反比例函数的解析式判断出该函数图象所在的象限及在每一象限内的增减性,再由x1<x2<0可判断出A(x1,y1)B(x2,y2)所在的象限,故可得出结论.【详解】∵反比例函数y=−3x中k=-3<0,∴其函数图象在二、四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0,∴A、B两点均在第二象限,∴y1<y2.故答案为<.【点睛】本题考查的是反比例函数图象上点的坐标特点,根据题意判断出A、B所在的象限是解答此题的关键.14.10%【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键. 15.【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC,即可得AC2=CD•BC=4×8=32,解得16.5.【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:=考点:1.正方形的性质;2.三角形的面积;3.勾股定理.17.【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出AD BE=DFEF=2,求出BE=12AD=2,由平行线的性质和三角函数定义求出AB=53C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴ADBE=DFEF=2,∴BE=12AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC=ACAB=sin∠DAB=35,∴AB=53AC=53×6=10,∴BC8,∴EG =BC ﹣BE ﹣CG =8﹣2﹣4=2,∴DE =;故答案为:.【点睛】本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.18.x 1=12-+,x 2=12--.【分析】直接用公式法求解即可,首先确定a ,b ,c ,再判断方程的解是否存在,若存在代入公式即可求解.【详解】解:a =1,b =1,c =﹣1,b 2﹣4ac =1+4=5>0,x∴x 1=12-,x 2=12-.【点睛】此题主要考查一元二次方程的解法,主要有:因式分解法、公式法、配方法、直接开平方法等,要针对不同的题型选用合适的方法.19.(1)3;(2)见解析;(3)3【分析】(1)根据正切的定义求解可得;(2)利用位似图形的概念作出点A 、B 的对应点,再与点O 首尾顺次连接即可得;(3)利用位似变换的性质求解可得.【详解】解:(1)如图,过点B作BC⊥OA于点C,则AC=1、BC=3,∴tan∠OAB=BCAC=3,故答案为:3;(2)如图所示,△OA'B'即为所求.(3)∵△OA'B'与△OAB关于点O位似,相似比为2:1,∴S△OA'B'=4S△OAB,则S四边形AA′B′B=3S△OAB,即S△OAB:S四边形AA′B′B=1:3,故答案为:3.【点睛】本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质.20.(1)袋中有黄球有2个(2)4 9【解析】【分析】()1设袋中黄球有x个,根据任意摸出一个球是红球的概率为23列出关于x的方程,解之可得;()2列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】()1设袋中黄球有x个,根据题意,得:42 4x3=+,解得x2=,经检验x2=是原分式方程的解,x2∴=,即袋中有黄球有2个;()2列表如下:红红红红黄黄红(红,红)(红,红)(红,红)(红,红)(红,黄)(红,黄)红(红,红)(红,红)(红,红)(红,红)(红,黄)(红,黄)红(红,红)(红,红)(红,红)(红,红)(红,黄)(红,黄)红(红,红)(红,红)(红,红)(红,红)(红,黄)(红,黄)黄(黄,红)(黄,红)(黄,红)(黄,红)(黄,黄)(黄,黄)黄(黄,红)(黄,红)(黄,红)(黄,红)(黄,黄)(黄,黄)由表知共有36种等可能结果,其中两次摸出不同颜色球的有16种结果,所以两次摸出不同颜色球的概率为164 369=.【点睛】本题考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明见解析;(2)【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.22.(1)85°;(2)小明家所在居民楼与大厦的距离CD的长度是40米.【分析】(1)结合图形即可得出答案;(2)利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=74米,即可求得居民楼与大厦的距离.【详解】解:(1)由图知∠ACB=37°+48°=85°;(2)设CD=x米.在Rt△ACD中,tan37°=AD CD,则34=ADx,∴AD=34 x;在Rt△BCD中,tan48°=BDCD,则1110=BDx,∴BD=11 10 x.∵AD+BD=AB,∴34x+1110x=74,解得:x=40,答:小明家所在居民楼与大厦的距离CD的长度是40米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(1)12cm;(2)300cm 37【分析】(1)由勾股定理求出BC=25cm,再由三角形面积即可得出答案;(2)设正方形边长为x,证出△AEH∽△ABC,得出比例式,进而得出答案.【详解】解:(1)作AD⊥BC于D,交EH于O,如图所示:∵在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,∴BC25(cm),∵12BC×AD=12AB×AC,∴AD=AB ACBC⨯=201525⨯=12(cm);即BC边上的高为12cm;(2)设正方形EFGH的边长为xcm,∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.∴AOAD=EHBC,即1212x-=25x,解得:x=300 37,即正方形EFGH的边长为30037cm.【点睛】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.24.(1)y=﹣x+5;(2)当1<x<4时,一次函数值大于反比例函数值;(3)1014,75 P⎛⎫ ⎪⎝⎭【分析】(1)根据待定系数法求得即可;(2)由两个函数图象即可得出答案;(3)设P(m,4m),先求得△AOC的面积,即可求得△CPQ的面积,根据面积公式即可得到12|5﹣m|•4m=5,解得即可.【详解】解:(1)把A(1,4)代入y=mx(x>0),得m=1×4=4,∴反比例函数为y=4 x;把A(1,4)和B(4,1)代入y=kx+b得4 41 k bk b+=⎧⎨+=⎩,解得:k1 b5=-⎧⎨=⎩,∴一次函数为y=﹣x+5.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,4 m),由一次函数y =﹣x +5可知C (5,0),∴S △CAO =1542⨯⨯=10,∵S △CPQ =12S △CAO ,∴S △CPQ =5,∴12|5﹣m |•4m =5,解得m =107或m =﹣103(舍去),∴P (107,145).【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式是解决问题的关键.25.(1;(2)(3)67或35.【分析】(1)平行四边形DEFG 对角线DF 的长就是Rt △DCF 的斜边的长,由勾股定理求解;(2)平行四边形DEFG 周长的最小值就是求邻边2(DE +EF )最小值,DE +EF 的最小值就是以AB 为对称轴,作点F 的对称点M ,连接DM 交AB 于点N ,点E 与N 点重合时即DE +EF =DM 时有最小值,在Rt △DMC 中由勾股定理求DM 的长;(3)平行四边形DEFG 为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD,∴NF+DN=MD=,=2(NF+DF)=;∴l平行四边形DEFG(3)设AE =x ,则BE =3﹣x ,∵平行四边形DEFG 为矩形,∴∠DEF =90°,∵∠AED +∠BEF =90°,∠BEF +∠BFE =90°,∴∠AED =∠BFE ,又∵∠A =∠EBF =90°,∴△DAE ∽△EBF ,∴AEBF =ADBE ,∴1x =23x -,解得:x =1,或x =2①当AE =1,BE =2时,过点B 作BH ⊥EF ,如图3(甲)所示:∵平行四边形DEFG 为矩形,∴∠A =∠ABF =90°,又∵BF =1,AD =2,∴在△ADE 和△BEF 中,AD BEA ABF AE BF=⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BEF 中(SAS ),∴DE =EF ,∴矩形DEFG 是正方形;在Rt △EBF 中,由勾股定理得:EF∴BH =BE BFEF ⋅,又∵△BEF ~△HBF ,∴BH BE =HFBF ,HF =BH BF BE ⋅=52在△BPH 和△GPF 中有:∠BPH =∠GPF ,∠BHP =∠GFP ,∴△BPH ∽△GPF ,∴BHGF =HP FP25,∴PF =57•HF =7,又∵EP +PF =EF ,∴EP 7又∵AB ∥BC ,EF ∥DG ,∴∠EBP =∠DQG ,∠EPB =∠DGQ ,∴△EBP ∽△DQG (AA ),∴BP QG =EPDG=67,②当AE =2,BE =1时,过点G 作GH ⊥DC ,如图3(乙)所示:∵▱DEFG 为矩形,∴∠A =∠EBF =90°,∵AD =AE =2,BE =BF =1,∴在Rt △ADE 和Rt △EFB 中,由勾股定理得:∴ED ,EF,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∠GHQ=∠BCQ,∠HQG=∠CQB,∴△HGQ∽△BCQ,∴HGBC=HQCQ=12,∵HC=HQ+CQ=2,∴HQ=2 3,又∵DQ=DH+HQ,∴DQ=1+23=53,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴BPQG=35,综合所述,BP:QG的值为67或35.【点睛】本题考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质;重点掌握相似三角形的判定与性质,难点是作辅助线和分类求值.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.如图所示的几何体的俯视图是()A .B .C .D .2.已知反比例函数ky x的图象经过点(﹣3,6),则k 的值是()A .﹣18B .﹣2C .2D .183.方程x 2=3x 的解为()A .x =3B .x =0C .x 1=0,x 2=﹣3D .x 1=0,x 2=34.如图,△ABO ∽△CDO ,若BO =8,DO =4,CD =3,则AB 的长是()A .2B .3C .4D .65.如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F ,若AB :AC=2:5,DE =6,则EF 的长是()A .15B .10C .9D .26.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数ky x=(x >0)的图象经过顶点B ,则k 的值为()A .12B .16C .20D .327.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A .3.2米B .4.8米C .5.2米D .5.6米8.关于x 的方程230x x n -+=有两个不相等的实数根,则n 的取值范围是()A .n <94B .n ≤94C .n >94-D .n >949.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是()A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)10.已知反比例函数y =abx的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题11.若32b a =,则a b b +的值等于__.12.若两个相似三角形的相似比是1:2,则它们的周长比是________.13.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外都相同.搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中.不断重复实验多次后,摸到黑球的频率逐渐稳定在0.2左右.则据此估计盒子中大约有白球___________个.14.已知关于x 的一元二次方程20x x k -+=的一个根是2,则k 的值是______.15.如图,已知 ABC ∽ AMN ,点M 是AC 的中点,AB =6,AC =8,则AN =_____.16.端午节期间,某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x 元,可列方程________.17.已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.解方程:2450x x --=.20.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.21.如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择一个条件填空(写序号),并加以证明.22.2016年,某楼盘以每平方米8000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米6480元()1求平均每年下调的百分率;()2假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款40万元,张强的愿望能否实现?为什么?(房价每平方米按照均价计算)23.如图,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的1 3?(2)经过几秒,△PCQ与△ACB相似?24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图是一矩形广告牌ACGE,2AE 米,为测量其高度,某同学在B处测得A点仰角为45︒,该同学沿GB 方向后退6米到F 处,此时测得广告牌上部灯杆顶端P 点仰角为37︒.若该同学眼睛离地面的垂直距离为1.7米,灯杆PE 的高为2.25米,求广告牌的高度(AC 或EG 的长).(精确到1米,参考数据:sin 370.6︒≈,tan370.75︒≈)26.如图,在▱ABCD 中过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D .(1)求证:△ABF ∽△BEC ;(2)若AD=5,AB=8,sinD=45,求AF 的长.27.已知C 、D 是双曲线()0ky k x=>上的两点,过点C 作CA ⊥x 轴点A ,过点D 作DE ⊥x 轴点E ,交OC 于点F .(1)如图1,若点D 坐标为(1,1),OE :OA=1:3,则DOF S =(2)如图2,延长OD ,AC 相交于点B ,若点D 为OB 的中点.①当6OBCS = ,求k 的值;②若点C 的坐标是(6,1),试求四边形DFCB 的面积.参考答案1.A2.A3.D4.D5.C6.D7.B8.A9.D 10.C11.53或者5:312.1:2 13.16 14.-215.16316.()()503001016000x x -+=17.(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.60.19.125,1x x ==-【详解】解:2450x x --=(5)(1)0x x -+=50x ∴-=或10x +=解得:125,1x x ==-.20.见解析【分析】根据垂直的性质可得90QPC ∠=︒,利用各角之间的等量关系可得90B ∠=︒,再由矩形的判定定理即可证明.【详解】证明:∵PQ CP ⊥,∴90QPC ∠=︒,∴1809090QPA BPC ∠+∠=︒-︒=︒,∵QPA PCB ∠=∠,∴90BPC PCB ∠+∠=︒,∴()18090B BPC PCB ∠=︒-∠+∠=︒,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.21.(1)见解析;(2)②或③,见解析【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB ∵//DE AF ∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC ∠∵AE 平分BAC ∠∴DAE FAE ∠=∠又∵平行四边形ADEF ∴//EF DA ∴=∠∠FAE AEF ∴AF EF=∴平行四边形ADEF 是菱形选③AB AC =∵//EF AB 且12EF AB =//DE AC 且12DE AC =又∵AB AC =∴EF DE=∴平行四边形ADEF 为菱形故答案为:②或③【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.22.(1)平均每年下调的百分率为10%;(2)能,理由见解析【分析】(1)根据增长率问题的列式方法列出一元二次方程,解方程;(2)根据第一问求出的增长率算出2019年的房价,看张强的钱是否足够.【详解】解:()1设平均每年下调的百分率为x ,()2800016480x -=,解得:120.110%, 1.9x x ===(不合题意舍去),答:平均每年下调的百分率为10%;()()26480110%10058320058.32-⨯==,由于20406058.32+=>,所以张强的愿望能实现.【点睛】本题考查一元二次方程的应用题,解题的关键是掌握增长率问题的列式方法.23.(1)2秒或4秒;(2)125秒或1811秒【分析】(1)分别表示出线段PC 和线段CQ 的长后利用S △PCQ =13S △ABC 列出方程求解;(2)设运动时间为ts ,△PCQ 与△ACB 相似,当△PCQ 与△ACB 相似时,则有CP CQ=CA CB或CP CQ=CB CA,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒△PCQ 的面积为△ACB 的面积的13,由题意得:PC=2xm ,CQ=(6﹣x )m ,则12×2x (6﹣x )=13×12×8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ 的面积为△ACB 的面积的13;(2)设运动时间为ts ,△PCQ 与△ACB 相似.当△PCQ 与△ACB 相似时,则有CP CQ =CA CB 或CP CQ=CB CA,所以2686t t -=,或2668t t -=,解得t=125,或t=1811.因此,经过125秒或1811秒,△OCQ 与△ACB 相似;24.(1)见解析(2)四边形CEFG 的面积为203.【分析】(1)根据题意和翻折的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,进而求得EF 和DF 的值,从而可以得到四边形CEFG 的面积.(1)证明:由题意可得,△BCE ≌△BFE ,∴∠BEC=∠BEF ,FE=CE ,∵FG ∥CE ,∴∠FGE=∠CEB ,∴∠FGE=∠FEG ,∴FG=FE ,∴FG=EC ,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.广告牌的高度为17米【分析】首先延长DH 交EG 于M ,交AC 于N ,构造直角三角形,可得到EM AN =,设AN x =,表示出PM,在Rt AND ∆中得到AN ND x ==,628MH x x =++=+,在Rt PHM ∆中运用勾股定理求解即可.【详解】依题意:6DH BF ==米, 1.7DB HF ==米, 2.25PE =米,如图设直线DH 交EG 于M ,交AC 于N ,则EM AN =.设AN x =m 则 2.25PM x =+,在Rt AND ∆中,∵45ADN ∠=︒,∴AN ND x ==,∵2AE MN ==,则628MH x x =++=+,在Rt PHM ∆中,∵tan 37PM MH ︒=,∴ 2.250.758x x +≈+,解得15x ≈,∴15 1.717AC AN NC =+=+≈(米),∴广告牌的高度为17米.【点睛】本题考查了解直角三角形的应用仰角俯角的问题,准确构造直角三角形和找准角度是解题的关键.26.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB ∥CD ,AD ∥BC ,AD=BC ,得出∠D+∠C=180°,∠ABF=∠BEC ,证出∠C=∠AFB ,即可得出结论;(2)由勾股定理求出BE ,由三角函数求出AE ,再由相似三角形的性质求出AF 的长.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD=BC ,∴∠D+∠C=180°,∠ABF=∠BEC ,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:==在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.27.(1)49;(2)①4;②274【分析】(1)将D 代入双曲线解析式中求出k ,根据反比例函数k 的几何意义和相似三角形的性质求解即可;(2)①设D (m ,k m),则可求得点B 、C 的坐标,根据反比例函数k 的几何意义和OBC ABC OAC S S S =- 列出k 的方程求解即可;②根据点C 坐标可得出OA ,进而可求得OE 和点B 、D 的坐标,根据相似三角形的性质可求得EF 和DF ,利用梯形的面积公式求解即可.【详解】解(1)将D (1,1)代入k y x =,得k=1,∴11||22ODE OAC S S k === ,∵CA ⊥x 轴,DE ⊥x 轴,∴DE ∥AC ,∵OE :OA=1:3,∴△OEF ∽△OAC ,∴19OEF OAC S S = ,∴1112918OEF S =⨯= ,∴1142189DOF S =-= ;(2)①设D (m ,km ),∵点D 为OB 的中点,∴B (2m ,2k m ),C (2m ,2km ),∵6OBC ABC OAC S S S -== ,∴2112622k m k m ⨯⨯-=,∴4k =;②∵点C (6,1),∴OA =6,AC=1,∵点D 是OB 的中点,DE ∥AC ,D 在反比例函数6y x =上,∴OE =12OA =3,点D (3,2),∴点B (6,4),DE=2,又∵△OEF ∽△OAC ,∴12EFAC =,∴EF=12,∴DF =2-12=32,BC =3,EA =3∴四边形DFCB 的面积=312733224+⨯⨯=().。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列长度的各组线段中,能构成比例的是()A .2,5,6,8B .3,6,9,18C .1,2,3,4D .3,6,7,92.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象都经过点A (2,﹣1),若y 1>y 2,则x 的取值范围是()A .﹣1<x <0B .x >2C .﹣2<x <0或x >2D .x <﹣2或0<x <23.关于反比例函数y =﹣3x,下列说法错误的是()A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点4.如图,在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,DE 是ABC 的中位线,若6DE =,则BF =()A .6B .4C .3D .55.已知1x =是关于x 的方程22(1)10k x k x -+-=的根,则常数k 的值为()A .0B .1C .0或1D .0或-18.6.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是A .14k <B .14k >C .14k <且0k ≠D .14k >且0k ≠7.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则2月份的产值是()A .(1﹣10%)x 万元B .(1﹣10%x )万元C .(x ﹣10%)万元D .(1+10%)x 万元8.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .矩形的对角线互相垂直C .一组对边平行的四边形是平行四边形D .四边相等的四边形是菱形9.如图,在正方形OABC 中,OA =6,点E 、F 分别在边BC ,BA 上,OE =,若∠EOF=45°,则点F 的纵坐标为()A .2B .53C D 1-10.如图,在△ABC 中,DE ∥BC ,AD =9,DB =3,CE =2,则AC 的长为()A .6B .7C .8D .9二、填空题11.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30 角时,AE 的长为__________厘米.12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=﹣2时,y=______.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=__.14.如图,在平面直角坐标系中,边长为4的等边△OAB 的OA 边在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过AB 边的中点C ,且与OB 边交于点D ,则点D 的坐标为_____.15.如图,已知在ABC 中,90ACB ∠=︒,2AC =,4BC =.D 为ABC 所在平面内的一个动点,且满足90BDC ∠=︒,E 为线段AD 的中点,连结CE ,则线段CE 长的最大值为______.16.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.17.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.三、解答题18.解方程(1)3x 2+8x +4=0(配方法)(2)2310x x --=(公式法)(3)4x (2x +1)=3(2x +1)(4)3x 2-x -2=019.设一元二次方程260x x k -+=的两根分别为1x 、2x .(1)若12x =,求2x 的值;(2)若5k =,且1x 、2x 分别是Rt ABC ∆的两条直角边的长,试求Rt ABC ∆的面积.20.如图,在平行四边形ABCD 中,ABD ∠的平分线BE 交AD 于点E ,CDB ∠的平分线DF 交BC 于点F .求证:四边形DEBF 是平行四边形.21.如图,E 是矩形ABCD 的边BC 延长线上的一点,连接AE ,交CD 于F ,把ABE ∆沿CB 向左平移,使点E 与点C 重合,ADF CBG ∆≅∆吗?请说明理由.22.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF =BE .(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若∠AED =90°,AB =4,BE =2,求四边形AEFD 的面积.23.如图,A 是反比例函数k y x=()0k <图象上的一点,过点A 作AB x ⊥轴于点B ,连0A ,AOB 的面积为2,点A 的坐标为()1,m -.(1)求反比例函数的解析式.(2)若一次函数3y ax =+的图象经过点A ,交双曲线的另一支于点()4,C n ,交y 轴于点D ,若y 轴上存在点P ,使PAC △的面积为5,求点P 的坐标.24.在抗击“新冠病毒”期间,某路口利用探测仪对过往的物体进行检查,探测仪A 测得某物体的仰角∠BAD =35°,俯角∠DAC =45°,探测仪到货物表面的距离AD =3米,求货物高BC 的长.(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1)25.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =PB ,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系.(2)①如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由.②图2,试用等式来表示PB 、BC 、CE 之间的数量关系,并证明.参考答案1.B【解析】分析:分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断.详解:∵3×18=6×9,∴3,6,9,18成比例.故选B .点睛:本题考查了比例线段:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.2.D【解析】如图,∵点A 坐标(2,﹣1),又∵正比例函数y 1=k 1x 和反比例函数y 2=2k x都是关于原点对称,∴它们的交点A 、B 关于原点对称,∴点B坐标(﹣2,1),∴由图象可知,y1>y2时,x<﹣2,或0<x<2,故选D.3.B【解析】【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.A【分析】由DE是ABC的中位线,可得AC=12,在Rt ABC中,点F为AC中点,可得BF=6即可.【详解】解:∵DE是ABC的中位线,∴AC=2DE=2×6=12,∵在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,∴BF =1112622AC =⨯=,故选择A .【点睛】本题考查三角形中位线与三角形中线性质,掌握三角形中位线与三角形中线性质是解题关键.5.C【详解】试题分析:①当1k =时,方程22(1)10k x k x -+-=为一元一次方程,解为1x =;②1k ≠时,方程22(1)10k x k x -+-=为一元二次方程,把1x =代入方程22(1)10k x k x -+-=可得:2110k k -+-=,即20k k -=0,可得(1)0k k -=,即k=0或1(舍去);故选C .考点:一元二次方程的解.6.C【分析】根据一元二次方程kx 2-x+1=0有两个不相等的实数根,知△=b 2-4ac >0,然后据此列出关于k 的方程,解方程即可.【详解】解:∵kx 2-x+1=0有两个不相等的实数根,∴△=1-4k >0,且k≠0,解得,k <14且k≠0;故答案是:k <14且k≠0.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解题时,注意一元二次方程的“二次项系数不为0”这一条件.7.A【分析】1、本题属于列代数式的题目,解答此类题目首先要弄清楚语句中各个量之间的关系;2、细查题意,由2月份比1月份减少了10%先表示出2月份的产值为(1-10%)x 万元.【详解】由2月份比1月份减少了10%得2月份的产值是(1-10%)x 万元.故答案选A.【点睛】本题考查了列代数式,解题的关键是弄清楚题目中各个量之间的关系.8.D【详解】选项A ,菱形的对角线互相垂直,当对角线互相垂直的四边形不一定是菱形;选项B ,矩形的对角线相等但不一定垂直;选项C ,一组对边平行且相等的四边形是平行四边形;选项D ,四边相等的四边形是菱形.故选D.9.A【分析】延长BA 到点M ,使AM =CE ,连接OM ,由题意易得△OCE ≌△OAM ,则有OE =OM ,∠COE =∠AOM ,然后可得∠EOF =∠MOF ,进而可得△EOF ≌△MOF ,则有FM =EF ,根据勾股定理可得CE =3,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,最后根据勾股定理建立方程求解即可.【详解】解:延长BA 到点M ,使AM =CE ,连接OM ,如图所示:∵四边形OABC 是正方形,OA =6,∴6,90OA OC AB BC OCE OAM OAF B COA ====∠=∠=∠=∠=∠=︒,∴△OCE ≌△OAM ,∴OE =OM ,∠COE =∠AOM ,∵∠EOF =45°,∴45COE AOF ∠+∠=︒,∴45AOM AOF ∠+∠=︒,∴∠EOF =∠MOF ,∵OF =OF ,OE =OM ,∴△EOF ≌△MOF (SAS ),∴EF FM AF AM AF CE ==+=+,∵OE =∴在Rt △OEC 中,3CE ==,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,∴在Rt △EBF 中,222BE BF EF +=,∴()()222363x x +-=+,解得:2x =,∴点F 的纵坐标为2;故选A .【点睛】本题主要考查正方形的性质、勾股定理及图形与坐标,熟练掌握正方形的性质、勾股定理及图形与坐标是解题的关键.10.C【分析】利用平行线分线段成比例定理得到=AD AE DB EC ,利用比例性质求出AE ,然后计算AE +EC 即可.【详解】解:∵DE ∥BC ,∴=AD AE DB EC ,即9=32AE ,∴AE =6,∴AC =AE +EC =6+2=8.故选:C .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.3或8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∵AB=4cm ,∠A=90°,∴AE=AB·tan30°=3cm ;当∠AEB=30°时,则∠ABE=60°,∵AB=4cm ,∠A=90°,∴AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 603x EF ==︒,∵AF=AE+EF=ABtan30°=3,∴x +,∴8x =-∴8AE =-cm .故答案为:3或8-【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.12.-2【解析】试题分析:设反比例函数的解析式为:y=2r1,根据题意可得y=62r1,当x=-2时,y=-2.考点:待定系数法求反比例函数解析式.【详解】试题分析:随机从口袋中摸出一个恰好是黄球的概率为13,说明黄球的数目是口袋中所有球的数目的13,则可列方程:1623n n =++,解得:n=4.考点:概率的定义.14.3)【分析】由等边三角形的性质可求出B (2,,然后由中点坐标公式求出C (3,从而可求出反比例函数解析式,再求出直线OB 的解析式,然后与反比例函数解析式联立可求出点D 的坐标.【详解】∵△AOB 是等边三角形,边长为4,∴B (2,,∵BC =CA ,∴C (3),把点C 坐标代入k y x=上,得到k∵直线OB 的解析式为y,由y y x ⎧=⎪⎨=⎪⎩,解得3x y ⎧=⎪⎨=⎪⎩或3x y ⎧=⎪⎨=-⎪⎩∴D3),3).【点睛】本题考查了等边三角形的性质,待定系数法求函数关系式,反比例函数与一次函数的交点,求出反比例函数与直线OB 的解析式是解答本题的关键.15.1+取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM ,根据三角形斜边上的中线性质得出122OD BC ==,再根据三角形中位线性质得出112EM OD ==,然后根据勾股定理及角形斜边上的中线性质得出12CM OA ==最后根据两点之间线段最短即可得出答案.【详解】解:取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM在Rt △CDB 中,O 为斜边BC 的中点122OD BC ∴==在△AOD 中,AE =DE ,AM =OM 112EM OD ∴==在Rt △ACO 中,AC =OC =2AO ∴==∴12CM OA ==在△CME 中,1CE CM EM ≤+即CE 1.1.【点睛】本题考查了直角三角形斜边上的中线性质、三角形中位线性质、勾股定理、两点之间线段最短等知识点,熟练掌握性质定理和添加合适的辅助线是解题的关键.16.-3【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3.又∵点A 在第二象限,∴k<0,∴k=−3.故答案为−3.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.17.2m ≠【分析】根据一元二次方程的定义ax 2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18.(1)x 1=23-,x 2=2-;(2)x 1=32+,x 2=32;(3)x 1=34,x 2=12-;(4)x 1=1,x 2=23-【分析】(1)将方程常数项移到右边,未知项移到方程左边,方程两边同时除以3将二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)化成一般形式后用公式法解比较方便;(3)把右边的项移到左边,用提公因式的方法因式分解解方程;(4)化成一般形式后用公式法解比较方便;【详解】解:(1)23840x x ++=,∴2384x x +=-,∴28433x x +=-,∴28164163939x x ++=-+,∴24439x ⎛⎫+= ⎪⎝⎭,∴4233x +=±,解得:x 1=23-,x 2=2-;(2)2310x x --=,则a =1,b =-3,c =-1,∵b 2-4ac =9+4=13>0,∴x解得:x 1,x 2(3)()()421321x x x +=+,∴()()4213210x x x +-+=,∴()()04321x x -+=,∴4x -3=0或2x +1=0,解得:x 1=34,x 2=12-;(4)2320x x --=,则a =3,b =-1,c =-2,∵b 2-4ac =1+24=25>0,∴x ,解得:x 1=1,x 2=23-.【点睛】此题考查了解一元二次方程-配方法、公式法及因式分解法,利用因式分解法解方程时,首先将方程右边化为0,左边的多项式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.19.解:(1)24x =(2)2.5.【分析】(1)利用根与系数的关系12b x x a +=-求解;(2)解一元二次方程,然后利用三角形面积公式进行计算求解.【详解】解:∵一元二次方程260x x k -+=的两根分别为1x 、2x ∴12b x x a +=-,即226x +=∴24x =;(2)当5k =时,2650x x -+=解得:121,5x x ==∵1x 、2x 分别是Rt ABC ∆的两条直角边的长∴115 2.52Rt ABC S ∆=⨯⨯=【点睛】本题考查一元二次方程根与系数的关系及解一元二次方程,掌握公式和解方程的一般步骤正确计算是本题的解题关键.20.详见解析【分析】根据平行四边形性质得出AB=CD ,∠A=∠C .求出∠ABD=∠CDB .推出∠ABE=∠CDF ,根据ASA 推出△ABE ≌△CDF 即可证得DE=BF ;再又DE ∥BF 可得.【详解】证明:在□ABCD 中,AB=CD ,∠A=∠C,AD=BC .∵AB ∥CD ,∴∠ABD=∠CDB .∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE=12∠ABD ,∠CDF=12∠CDB .∴∠ABE=∠CDF .∵在△ABE 和△CDF 中,A C AB DC ABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ).∴AE=CF∴AD-AE=BC-CF,即DE=BF又AD ∥BC∴四边形DEBF 是平行四边形【点睛】本题考查了平行线的性质,平行四边形的性质和判定,全等三角形的性质和判定,角平分线定义等知识点的应用,熟练运用平行四边形的判定和性质是关键.21.见解析【解析】【分析】根据平移的性质得到∠GCB=∠DAF ,然后利用ASA 证得两三角形全等即可.【详解】解:△ADF ≌△CBG ;理由:∵把△ABE 沿CB 向左平移,使点E 与点C 重合,∴∠GCB=∠E ,∵四边形ABCD 是矩形,∴∠E=∠DAF ,∴∠GCB=∠DAF ,在△ADF 与△CBG 中,90D GBC GCB DAF BC AD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBG (ASA ).【点睛】本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.22.(1)见解析;(2)40【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD 是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD =2=10,∵AB =4,∴四边形AEFD 的面积=AB ×AD =4×10=40.【点睛】本题考查了矩形的性质,平行四边形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.23.(1)4y x=-;(2)点P 的坐标为()0,1或()0,5.【分析】(1)根据反比例函数系数的几何意义,利用△AOB 的面积即可求出m 值,然后把点A 的坐标代入反比例函数解析式,计算即可得到k 的值.(2)先一次函数的解析式,再求出点C 坐标为(4,−1),设P 点坐标为(0,c ),根据题意有:113134522c c ⨯-⨯+⨯-⨯=,解方程即可求得.【详解】解:(1)依题意得1122m ⨯⨯=,∴4m =,∴()1,4A -,把点()1,4A -代入k y x=得41k =-,∴4k =-,∴反比例函数解析式为4y x =-;(2)∵()1,4A -,代入一次函数3y ax =+,得4=-a +3,解得a =-1∴3y x =-+令x =0,y =3,∴D (0,3)将点()4,C n 代入4y x=-,得:1n =-,则点C 坐标为()41-,,设点P 坐标为()0,c ,∴PD =3c -PAC △的面积为5,∴113134522c c ⨯-⨯+⨯-⨯=,解得:1c =或5c =,则点P 的坐标为()0,1或()0,5.【点睛】本题考查了反比例函数和一次函数图象的交点问题,反比例函数系数的几何意义,反比例函数图象上点的坐标特征,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,三角形的面积是12|k |.24.这件货物高约5.1米.【分析】根据解直角三角形的解法得出BD ,CD 的长即可.【详解】解:∵tan ∠BAD =BD AD ,tan ∠CAD =CD AD ,∴BD =AD tan ∠BAD =3×tan35°≈2.1,CD =AD tan ∠CAD =3×1=3,∴BC =BD +CD =2.1+3=5.1(米)答:这件货物高约5.1米.【点睛】本题主要考查了解直角三角形的应用,关键是根据题意作出辅助线,构造直角三角形.25.(1)PD =PE 且PD ⊥PE ,理由见详解;(2)①(1)中猜想成立,理由见详解;②2222BC CE PB +=,证明见详解.【分析】(1)根据点P 在线段AO 上,利用三角形的全等判定可以得出问题;(2)①利用三角形全等得出BP =PD ,由PB =PE 可得PE =PD ,要证PE ⊥PD 可从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可求解;②连接DE ,由①知PE =PD ,PE ⊥PD ,由勾股定理可得22222DE PD PE PE =+=,由四边形ABCD 是正方形可得BC =DC ,∠BCD =∠DCE =90°,根据222DC CE DE +=知22222BC CE DE PE +==,然后结合PE =PB 可求解.【详解】解:(1)PD=PE且PD⊥PE,理由如下:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°,∵PC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∠PBC=∠PDC,∵PE=PB,∴PD=PE,∠PBC=∠PEB,∴∠PDC=∠PEB,∴∠PDC+∠PEC=180°,由四边形PECD内角和为360°,∴∠DPE+∠DCE=180°,∵∠DCE=90°,∴∠DPE=90°,∴PD=PE且PD⊥PE;(2)①(1)中结论仍成立,理由如下:∵四边形ABCD是正方形,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,∵PE=PB,∴PD=PE,a、当点E与点C重合时,点P恰好在AC中点处,此时PE⊥PD;b、当点E在BC的延长线上时,如图所示:∵△BAP ≌△DAP ,∴∠ABP =∠ADP ,∴∠CDP =∠CBP ,∵BP =PE ,∴∠CBP =∠PEC ,∴∠PDC =∠PEC ,∵∠1=∠2,∴∠DPE =∠DCE =90°,∴PE ⊥PD ,综上所述:PD =PE 且PD ⊥PE 仍成立;②数量关系:2222BC CE PB +=,证明如下:如图2,连接DE ,由①可得PD =PE 且PD ⊥PE ,∴22222DE PD PE PE =+=,∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =∠DCE =90°,∴在Rt △DCE 中,222DC CE DE +=,∴22222BC CE DE PE +==,∵PE =PB ,∴2222BC CE PB +=.【点睛】本题主要考查正方形的性质、勾股定理及全等三角形的性质与判定,熟练掌握正方形的性质、勾股定理及全等三角形的性质与判定是解题的关键.。

北师大版九年级上册数学期末考试试卷附答案详解

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .2.如图,Rt △ABC 中,∠C=90°,AB=2,BC=1,则sinA 等于()A .2BC .12D 3.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=4.如果两个相似三角形的相似比是1:4,那么这两个相似三角形的周长比是()A .2:1B .1:16C .1:4D .1:25.要使菱形ABCD 成为正方形,需要添加的条件是()A .AB=CDB .AD=BCC .AB=BCD .AC=BD 6.已知点A (3,a )与点B (5,b )都在反比例函数y=﹣2x的图象上,则a 与b 之间的关系是()A .a >bB .a <bC .a≥bD .a=b7.某池塘中放养了鲫鱼1000条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼200条,鲮鱼400条,估计池塘中原来放养了鲮鱼()A .500条B .1000条C .2000条D .3000条8.一元二次方程x 2﹣2x+3=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9.已知反比例函数ky x=的图象经过点(﹣1,5),则此反比例函数的图象位于()A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限10.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2my x=(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式mkx b x+>的解集是()A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x >二、填空题11.方程22x x =的根是________.12.如图,已知DE ∥BC ,AE=3,AC=5,AB=6,则AD=_____.13.如图,过反比例函数y=6x(x >0)图象上的一点A ,作x 轴的垂线,垂足为B 点,连接OA ,则S △AOB =_____14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=_____.15.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.已知矩形的长是3,宽是2,另一个矩形的周长和面积分别是已知矩形周长和面积的2倍,那么新矩形的长是_____.三、解答题17.计算:2sin30°+4cos30°·tan60°-cos245°18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆,求该品牌自行车销售量的月平均增长率.19.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的格点上.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1:2;(2)连接(1)中的BB′,CC′,求四边形BB′C′C的周长.(结果保留根号)20.如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A 处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C 的仰角为45°.(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.(.732,计算结果保留一位小数)21.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为12.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.22.某超市服装专柜在销售中发现:某男装上衣的进价为每件30元,当售价为每件50元时,每周可卖出200件,现需降价处理,经过市场调查,发现每降价1元,每周可多卖出20件.(1)为占有更大的市场份额,当降价为多少元时,每周盈利为4420元?(2)当降价为多少元时,每周盈利额最大?最大盈利多少元?23.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.24.如图,以△ABC 的各边,在边BC 的同侧分别作三个正方形ABDI ,BCFE ,ACHG .(1)求证:△BDE ≌△BAC ;(2)求证:四边形ADEG 是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC 满足条件_____________________时,四边形ADEG 是矩形.②当△ABC 满足条件_____________________时,四边形ADEG 是正方形?25.如图,直线y=﹣23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y=﹣43x 2+bx+c 经过点A ,B ,M (m ,0)为x 轴上一动点,点M 在线段OA 上运动且不与O ,A 重合,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标和抛物线的解析式;(2)在运动过程中,若点P 为线段MN 的中点,求m 的值;(3)在运动过程中,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;参考答案1.D【详解】试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.因此,A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选D.考点:简单几何体的三视图.2.C【解析】【分析】结合图形运用三角函数定义求解.【详解】∵AB=2、BC=1,∴sinA=1=2 BC AB,故选C.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4.C【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【详解】∵两个相似三角形的相似比是1:4,∴这两个相似三角形的周长比是1:4.故选C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.5.D【分析】根据有一个角是直角的菱形是正方形即可解答.【详解】如图,∵四边形ABCD是菱形,∴要使菱形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:∠ABC=90°或AC=BD.故选D.【点睛】本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.6.B【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵点A(3,a)与点B(5,b)都在反比例函数y=﹣2x的图象上,∴每个象限内y随x的增大而增大,则a<b.故选B.【点睛】此题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题关键.7.C【分析】先根据题意可得到鲫鱼与鲮鱼之比为1:2,再根据鲫鱼的总条数计算出鲮鱼的条数即可.【详解】由题意得:鲫鱼与鲮鱼之比为:200:400=1:2,∵鲫鱼1000条,∴鲮鱼条数是:1000×2=2000.故答案选:C.【点睛】本题主要考查了用样本估计总体,关键是知道样本的鲫鱼与鲮鱼之比就是池塘内鲫鱼与鲮鱼之比.8.C【分析】直接利用根的判别式进而判断,即可得出答案.【详解】∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选C.【点睛】此题主要考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.C 【分析】把点(-1,5)代入反比例函数ky x=得到关于k 的一元一次方程,解之,即可得到反比例函数的解析式,根据反比例函数的图象和性质,即可得到答案.【详解】解:把点(﹣1,5)代入反比例函数ky x=得:1k-=5,解得:k =﹣5,即反比例函数的解析式为:y =5x-,此反比例函数的图象位于第二、第四象限,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象,反比例函数的性质,正确掌握代入法,反比例函数的图象和性质是解题的关键.10.C 【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式mkx b x+>的解集.【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2my x=(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式mkx b x+>的解集是1x <-或02x <<.故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.x 1=0,x 2=2【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.3.6.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.相似三角形的判定推出【详解】解:∵DE ∥BC ,∴AE ADAC AB=,∴356AD =,解得:AD =3.6,故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,能根据平行线得出比例式是解此题的关键.13.3【分析】设A (x ,6x ),则有OB=x ,AB=6x,根据三角形面积公式可得答案.【详解】设A (x ,6x )则有,OB=x ,AB=6x∴S△AOB =162xx⨯⨯=3,故答案为:3,【点睛】本题考查反比例函数系数k的几何意义,记住:反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.4.8.【详解】试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=12AC•BD=AB•DH,即12×6×8=5•DH,解得DH=4.8.考点:菱形的性质.15.8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】设新矩形的长为x,则新矩形的宽为(10-x),根据新矩形的面积为12,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设新矩形的长为x,则新矩形的宽为(10﹣x),根据题意得:x(10﹣x)=2×3×2,整理得:x2﹣10x+12=0,解得:x1=5x2∵x≥10﹣x,∴x≥5,∴故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.132【解析】分析:将sin30°=12,详解:原式=2×12+2=1+6-12=132点睛:考查了特殊角的三角函数值,解答本题的关键是掌握一些特殊角的三角函数值,请牢记以下特殊三角函数值:18.月平均增长率为30%.【分析】设该品牌自行车销售量的月平均增长率为x ,根据4月、6月份的销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设该品牌自行车销售量的月平均增长率为x ,根据题意得:200(1+x )2=338,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意,舍去).答:该品牌自行车销售量的月平均增长率为30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(1)见解析;(2)【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用勾股定理得出各线段长,进而得出答案.【详解】(1)如图所示:△A′B′C′,即为所求;(2)四边形BB′C′C 的周长为:.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(1)楼高DH 为27.9米;(2)广告牌CD 的高度为4.0米.【解析】【分析】在Rt △DME 与Rt △CNE ;应利用ME-NE=AB=15构造方程关系式,进而可解即可求出答案.【详解】解:(1)在Rt △DME 中,ME=AH=45;由tan 30°=DE ME ,得DE=45×3≈15×1.732=25.98;又因为EH=MA=1.89,故大楼DH=DE+EH=25.98+1.89=27.87≈27.9.(2)在Rt △CNE 中,NE=45-15=30,由tan 45°=CE NE,得CE=NE=30,因而广告牌CD=CE-DE=30-25.98≈4.0.答:楼高DH 为27.9米,广告牌CD 的高度为4.0米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)袋中黄球的个数1个;(2)两次摸到球的颜色是红色与黄色这种组合的概率为1 3 .【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】(1)设袋中的黄球个数为x个,∴21= 212x++,解得:x=1,经检验,x=1是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:,∴一共有12种情况,两次摸到球的颜色是红色与黄色这种组合的有4种,∴两次摸到球的颜色是红色与黄色这种组合的概率为:4 12 =13【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22.(1)当降价为7元时,每周盈利为4420元;(2)当降价为5元时,每周盈利额最大,最大盈利4500元.【分析】(1)设降价为x元,根据“总利润=每件利润×销售量”列出关于x的方程,解之得出x的值,再根据要占有更大的市场份额,即销量尽可能的大取舍即可得;(2)设每周盈利为y,根据以上所列相等关系列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】(1)设降价为x元,根据题意,可得:(50﹣x ﹣30)(200+20x )=4420,整理,得:x 2﹣10x+21=0,解得:x 1=3,x 2=7,因为要占有更大的市场份额,即销量尽可能的大,所以x=7,答:当降价为7元时,每周盈利为4420元;(2)设每周盈利为y ,则y=(50﹣x ﹣30)(200+20x )=﹣20x 2+200x+4000=﹣20(x ﹣5)2+4500,所以当x=5时,y 取得最大值,最大值为4500,答:当降价为5元时,每周盈利额最大,最大盈利4500元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x 的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB =S△AOD+S△BOD=12×3×4+12×3×1=152;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.24.(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:AC=.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵BD BADBE ABCBE BC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD.又∵四边形ACHG是正方形,∴AC=AG,∴AC=,∴当∠BAC=135°且AC=时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25.(1)B(0,2),抛物线解析式为y=﹣43x2+103x+2;(2)m的值为1 2;(3)当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5.0)或(118,0).【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m 的方程,可求得m的值.(3)由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值,从而得到点M的坐标.【详解】(1)∵y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣43x2+bx+c经过点A,B,∴12302b cc-++=⎧⎨=⎩,解得1032bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣43x2+103x+2;(2)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∵P为线段MN的中点时,∴有2(﹣23m+2)=﹣43m2+103m+2,解得m=3(三点重合,舍去)或m=1 2.故m的值为1 2.(3)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∴PM=﹣23m+2,AM=3﹣m,PN=﹣43m2+103m+2﹣(﹣23m+2)=﹣43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m ,BC=﹣43m 2+103m+2﹣2=﹣43m 2+103m ,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC ,∴Rt △NCB ∽Rt △BOA ,∴NC CB =OB OA,∴2π=2410333m m -+,解得m=0(舍去)或m=118,∴M (118,0);综上可知,当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0).【点睛】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中得到m 的方程是解题的关键,在(3)中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

北师大版九年级上册数学期末考试试卷含答案

北师大版九年级上册数学期末考试试题一、单选题1.同时投掷两个骰子,点数和为5的概率是()A .112B .19C .16D .142.反比例函数3y x=的图像所在的象限是()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限3.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为()A .13-B .1-C .5D .134.抛物线y=x 2﹣2x+2的顶点坐标为()A .(1,1)B .(﹣1,1)C .(1,3)D .(﹣1,3)5.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为()A .3:1B .4:1C .5:1D .6:16.某中学组织初三学生足球比赛,以班为单位,每两班之间都比赛一场,计划安排10场比赛,则参加比赛的班级有()A .3个B .4个C .5个D .6个7.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是()A .3B .C D .48.已知,△ABC ∽△A′B′C′,且△A′B′C′的面积为6,△A′B′C′周长是△ABC 的周长的12,AB =8,则AB 边上的高等于()A .3B .6C .9D .129.如图,竖直放置的杆AB ,在某一时刻形成的影子恰好落在斜坡CD 的D 处,而此时1米的杆影长恰好为1米,现量得BC 为10米,CD 为8米,斜坡CD 与地面成30°角,则杆AB 的高度为()A .(6+米B .(10+米C .8米D .10米10.如图,在△ABC 中,∠ABC =90°,AB =8cm ,BC =6cm .动点P ,Q 分别从点A ,B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是()A .2秒钟B .3秒钟C .3秒钟或5秒钟D .5秒钟二、填空题11.若345a b c ==,则2332a b c a b c-++-=__________.12.计算:222304560sin tan ︒︒+︒=__________.13.已知一次函数1y x =+的图象与反比例函数ky x=的图象相交,其中有一个交点的横坐标是2,则k 的值为_____.14.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.15.如图,点A 是反比例函数3y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC //AD ,则四边形ABCD 的面积为______.16.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.17.如图,直线y =12x+4与x 轴、y 轴交于A 、B 两点,AC ⊥AB ,交双曲线()0ky x x=<于C 点,且BC 交x 轴于M 点,BM =2CM ,则k =_____.三、解答题18.用适当的方法解下列一元二次方程.(1)()()32521x x x -=-+;(2)()()()112313x x x +-++=.19.已知关于x 的一元二次方程x2﹣4x+m ﹣1=0有两个相等的实数根,求m 的值及方程的根.20.某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A 转盘被分成三个面积相等的扇形,B 转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A 转盘,记下指针所指区域内的数字,再转动B 转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?21.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.如图,一次函数y=kx+b与反比例函数ayx的图像在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数()16x ay x=≤≤的图像记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,则C 1平移至C 2处所扫过的面积是_____.23.如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米)..sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.如图,在ABC 中,AB AC =,点E 在边BC 上移动(点E 不与点B 、C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.25.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.点A(﹣3,1),B(﹣2,2),反比例函数y=kx(k<0,x<0)的图象记为L.(1)若L经过点A.①图象L的解析式为.②点B在图象L上,还是在图象L的上方或下方?为什么?(2)如图在(1)的条件下,L上纵坐标为3的点P与点C关于原点O对称,PQ⊥x轴于点Q,CD⊥x轴于点D.求△QCD的面积.(3)若L与线段AB有公共点,直接写出k的取值范围.参考答案1.B2.A3.C4.A5.C6.C 7.C 8.B 9.A 10.B 11.56【分析】设345a b c===k ,可得a=3k ,b=4k ,c=5k ,代入所求代数式即可得答案.【详解】设345a b c===k ,∴a=3k ,b=4k ,c=5k ,∴2332a b c a b c -++-=3815985k k k k k k -++-=56,故答案为:5612【分析】代入特殊角的三角函数值,根据实数的运算法则计算即可.【详解】原式=2×(12)22+2=12-2+3=72.13.6.【分析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k 的值.【详解】在y=x+1中,令x=2,解得y=3,则交点坐标是:(2,3),代入y=kx得:k=6.故答案是:6.14.6【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案是:6.15.3【分析】如图,过点A作AE⊥x轴于点E,易证四边形AEOB是矩形,根据反比例函数系数k的几何意义可得S矩形AEOB =AB·OB=3k=,然后证明四边形ABCD是平行四边形,根据平行四边形面积的求法计算即可.【详解】解:如图,过点A作AE⊥x轴于点E,∵AB⊥OB,BO⊥EO,∴四边形AEOB是矩形,AB∥EC,∵点A是反比例函数3yx=-的图象上一点,∴S矩形AEOB =AB·OB=3k=,又∵BC//AD,∴四边形ABCD是平行四边形,∴S平行四边形ABCD=AB·OB=3,故答案为:3.16.10【分析】由菱形的性质和勾股定理求出CD=20,证出平行四边形OCED为矩形,得OE=CD=10即可.【详解】解:∵DE//AC,CE//BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90︒,CD=10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.17.14【分析】作CD⊥OA于D,先确定A点坐标为(﹣8,0),B点坐标为(0,4),得到OB=4,OA=8,易证得Rt△BMO∽Rt△CMD,则OB BMCD MC=,而BM=2CM,OB=4,则可计算出CD=2,然后再证明Rt△BAO∽Rt△ACD,利用相似比可计算出AD,于是可确定C 点坐标,然后把C点坐标代入反比例函数解析式中即可得到k的值.【详解】解:作CD⊥OA于D,如图,把x=0代入y=12x+4得y=4,把y=0代入y=12x+4得12x+4=0,解得x=﹣8,∴B点坐标为(0,4),A点坐标为(﹣8,0),即OB=4,OA=8,∵CD⊥OA,∴∠CDM=∠BOM=90°,而∠CMD=∠BMO,∴Rt△BMO∽Rt△CMD,∴OB BM CD MC=,而BM=2CM,OB=4,∴CD=2,∵AC ⊥AB ,∴∠BAO+∠CAD =90°,而∠CAD+∠ACD =90°,∴∠BAO =∠ACD ,∴Rt △BAO ∽Rt △ACD ,∴OB OA AD CD =,即482AD =,∴AD =1,∴OD =OA ﹣DA =8﹣1=7,∴C 点坐标为(﹣7,﹣2),把C (﹣7,﹣2)代入y =kx得k =14.故答案为14.18.(1)1x =2x =(2)14x =-,22x =.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可.【详解】(1)()()32521x x x -=-+整理得:251370x x -+=,∵5,13,7a b c ==-=,∴()2241345729b ac -=--⨯⨯=,∴1325x ±=⨯,∴11310x =,21310x =.(2)()()()112313x x x +-++=整理得:2280x x +-=,∴()()420x x +-=,∴x+4=0或x-2=0,解得:14x =-,22x =.19.m =5,x 1=x 2=2.【分析】首先根据原方程根的情况,利用根的判别式求出m 的值,即可确定原一元二次方程,进而可求出方程的根.【详解】由题意可知△=0,即(﹣4)2﹣4(m ﹣1)=0,解得:m =5.当m =5时,原方程化为x 2﹣4x+4=0.解得:x 1=x 2=2.所以原方程的根为x 1=x 2=2.20.(1)见解析;(2)16.【分析】(1)列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;本题用列表法得出所有等可能的情况,进而可得转转盘可能出现的所有结果;(2)无理数是无限不循环小数,找出乘积为无理数的情况数,再除以所有等可能出现的结果数,即可求出一等奖的概率.【详解】(1)由题意列表如下,由列表得知:当A 转盘出现0,1,-1时,B 转盘分别可能有4种等可能情况,所以共有4×3=12种等可能情况.即(0,12)、(0,1.5)、(0,-3)、(0,)、(1,12)、(1,1.5)、(1,-3)、(1,、(-1,12)、(-1,1.5)、(-1,-3)、(-1,.(2)无理数是无限不循环小数,由列表得知:乘积是无理数的情况有2种,即(1,)、(-1,),∴P(乘积为无理数)=212=16.即P(获得一等奖)=16.考点:用列表法或树状图法求随机事件的概率.21.(1)详见解析;(2)26.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD =CE =BC ,∴BE =2BC =10,∵BD =8,∴DE =6,∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)一次函数解析式为y=2x-5,反比例函数解析式为12y x=(2)C(12,0)或(92,0)(3)20【分析】(1)将A(4,3)代入a y x=,求出a 的值,即可求出反比例函数解析式;根据勾股定理可求出OA 的长,即得出OB 的长,从而得出B 点坐标,再将A ,B 两点坐标代入y=kx+b ,求出k 和b 的值即可;(2)设AB 与x 轴交于点D ,由一次函数解析式即可求出D 点坐标.设C(t ,0),再根据ABC ADC BDC S S S =+ ,即可列出关于t 的等式,解出t 即可;(3)如图,根据反比例函数解析式求出函数图像两端点M ,N 的坐标,再根据平移的性质可求出其对应点P ,Q 的坐标.再由1C 平移至2C 处所扫过的面积正好为平行四边形MNQP 的面积求解即可.(1)将A(4,3)代入a y x =,得:34a =,解得:12a =,∴反比例函数解析式为12y x=;∵A(4,3),OA=OB∴5OB OA ===,∴B(0,-5).将A(4,3),B(0,-5)代入y=kx+b ,得:345k b b=+⎧⎨-=⎩,解得:25k b =⎧⎨=-⎩,∴一次函数解析式为:y=2x-5;(2)如图,设AB 与x 轴交于点D ,对于y=2x+5,令y=0,则2x+5=0,解得:52x =,∴D(52,0).设C(t ,0),则52C D CD x x t =-=-,∵ABC ADC BDC S S S =+ ,∴11822A B CD y y =⋅+⋅,即151********t t =⨯-⨯+-⨯,解得:12t =或92t =,∴C(12,0)或(92,0);(3)对于12y x=,令x=1,则12y =;令x=6,则2y =.设其所对应的点分别为M ,N ,如图,∴M(1,12),N(6,2).由平移的性质可知点M 平移后所对应的点P 的坐标(-1,12),点N 平移后所对应的点Q 的坐标为(4,2),且四边形MNQP 为平行四边形,如图.∴1C 平移至2C 处所扫过的面积正好为平行四边形MNQP 的面积.∵()()(64)(122)20MNQP N Q M N S x x y y =-⋅-=-⋅-= ,∴1C 平移至2C 处所扫过的面积为20.故答案为:20.【点睛】本题考查坐标与图形,一次函数与反比例函数的综合,一次函数与几何的综合,反比例函数与几何的综合,勾股定理,平行四边形的判定等知识.利用数形结合的思想是解题关键.23.(1)10米;(2)11.4米【分析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在Rt △ADH 中求出AH 即可解决问题.【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,,∴DH=15,在Rt △ADH 中,AH=tan 37DH ︒≈150.75=20,∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24.(1)证明见解析;(2)证明见解析【分析】(1)根据等腰三角形的性质可得∠B=∠C ,再由∠DEF+∠CEF=∠B+∠BDE ,DEF B ∠=∠,即可判定CEF BDE ∠=∠,根据相似三角形的判定方法即可得△BDE ∽△CEF ;(2)由相似三角形的性质可得BE DE CF EF=,再由点E 是BC 的中点,可得BE=CE ,即可得CE DE CF EF=,又因C DEF ∠=∠,即可判定△CEF ∽△EDF ,根据相似三角形的性质可得CFE EFD ∠=∠,即可证得即FE 平分∠DFC .【详解】解:(1)∵AB=AC ,∴∠B=∠C ,∵∠DEF+∠CEF=∠B+∠BDE ,DEF B∠=∠∴CEF BDE ∠=∠,∴△BDE ∽△CEF ;(2)∵△BDE ∽△CEF ,∴BE DE CF EF=,∵点E 是BC 的中点,∴BE=CE,即CE DE CF EF =,∴CE CF DE EF=,又∵C DEF ∠=∠,∴△CEF ∽△EDF,∴CFE EFD ∠=∠,即FE 平分∠DFC .25.(1)W 1=﹣x 2+32x ﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W 2至少为88万元.【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W 1=(x ﹣6)(﹣x+26)﹣80=﹣x 2+32x ﹣236.(2)由题意:20=﹣x 2+32x ﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:14≤x≤16,W 2=(x ﹣5)(﹣x+26)﹣20=﹣x 2+31x ﹣150,∵14≤x≤16,∴抛物线的对称轴x=15.5,又14≤x≤16.x=14时,W 2有最小值,最小值=88(万元),答:该公司第二年的利润W 2至少为88万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.26.(1)①3(0)y x x=-<;②点B 在图象L 的上方,理由见解析;(2)3QCD S ∆=;(3)43k -≤≤-【分析】(1)①将点A 坐标代入图象L 的解析式,即可求出结果;②将2x =-代入解析式,求出y ,再与2比较大小,即可得出结果;(2)先求出点P 坐标,根据对称关系得到点C 坐标,再由点D 和点Q 坐标得到三角形的边长,即可求出面积(3)求出图象L 经过点A 和点B 时的k 值,再求出图象L 与线段AB 相切时的k 值,即可得出结果.【详解】解:(1)①∵L 经过点A ,∴13k =-,解得3k =-,∴图象L 的解析式为:()30y x x=-<;②当2x =-时,32y =,∵322<,∴点B 在图象L 的上方;(2)当3y =时,1x =-,∴()1,3P -,∵点P 与点C 关于原点O 对称,∴()1,3C -,∵()1,0Q -,()1,0D ,∴2QD =,3CD =,∴132QCD S QD CD =⋅= ;(3)当图象L 过点A 时,由(1)知,3k =-,当图象L 过点B 时,将点B 坐标代入解析式ky x =,得22k=-,解得4k =-,当线段AB 与图象L 相切时,设直线AB 的解析式为y kx b =+,由待定系数法得,3122k b k b -+=⎧⎨-+=⎩,解得14k b =⎧⎨=⎩,∴直线AB 的解析式为4y x =+,联立直线AB 的解析式和图象L 的解析式,得4y x ky x=+⎧⎪⎨=⎪⎩,化为关于x 的一元二次方程240x x k +-=,∴1640k ∆=+=,解得4k =-,综上,43k -≤≤-.。

北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A .B .C .D .2.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是()A .B .C .∠B=∠D D .∠C=∠AED3.下列说法正确的是()A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形4.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是()A .13B .14C .15D .165.关于x 的一元二次方程9x2-6x+k=0有两个不相等的实根,则k 的范围是()A .k 1<B .k 1>C .k 1≤D .k 1≥6.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=97.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A .8米B .4.5米C .8厘米D .4.5厘米8.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为().A .14B .12C .34D .19.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2∶1,把△EFO 缩小,则点E 的对应点E′的坐标是A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)10.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是()A .(-8,0)B .(0,8)C .(0,)D .(0,16)二、填空题11.一元二次方程﹣3x2=5(x ﹣3)的二次项系数是_____,常数项是_____.12.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AE=4,EC=2,则AD :AB 的值为.13.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是.14.已知:方程||7(9)810a a x x -+++=是一元二次方程,则a 的值为______.15.已知:如图,矩形ABCD 中,E ,F 是CD 的两个点,EG ⊥AC ,FH ⊥AC ,垂足分别为G ,H ,若AD=2,DE=1,CF=2,且AG=CH ,则EG+FH=_____.16.如图,a ∥b ∥c ,BC=1,DE=4.5,EF=1.5,则AC=______.三、解答题17.解方程:x2-2x-3=018.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.19.随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.20.如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.21.先阅读,再回答问题:如果x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=,x,例如:若x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=﹣=,x1x2=.若x1、x2是方程2x2+x﹣3=0的两个根.(1)求x1+x2,x1x2;(2)求的值.22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,﹣1),B(﹣1,1),C(0,﹣2).(1)写出点B关于坐标原点O对称的点B1的坐标;(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C;(3)求过点B1的正比例函数的解析式.23.如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD、EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.24.如图,已知点A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=m x图象的两个交点(1)求此反比例函数的解析式和点B的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.25.一个不透明的口袋中装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制成如下不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.参考答案1.A【解析】试题分析:找到从上面看所得到的图形即可.解:此几何体的俯视图有2列,从左往右小正方形的个数分别是2,2,故选A.考点:简单组合体的三视图.2.B【解析】试题分析:由∠1=∠2易证得∠DAE=∠BAC,添加选项A,利用两边对应成比例且夹角相等的两个三角形相似可判定△ABC∽△ADE;添加选项C、D,利用两角对应相等的两个三角形相似即可判定△ABC∽△ADE;只有添加选项B,不能判定△ABC∽△ADE,故答案选B.考点:相似三角形的判定.3.D【详解】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.4.C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.考点:多边形内角与外角.5.A【解析】试题分析:根据判别式的意义得到△=(﹣6)2﹣4×9k>0,然后解不等式即可.解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选A.考点:根的判别式.6.D【解析】试题分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.考点:解一元二次方程-配方法.7.A【解析】试题分析:设树的高度是x米,然后根据树与小芳的高度的比等于照片上高度的比列出比例式计算即可得解.解:设树的高度是x米,根据题意得,=,解得x=8米.故选A.考点:相似三角形的应用.8.B【解析】试题解析:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是24=12;故选B .考点:1.概率公式;2.中心对称图形.9.D【详解】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换10.D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,可求出从A 到A3变化后的坐标,再求出A1、A2、A3、A4、A5,继而得出A8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,∵从A 到3A 经过了3次变化,∵45°×3=135°,1×3=,∴点3A 所在的正方形的边长为,点3A 位置在第四象限,∴点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.11.3-15【详解】试题分析:方程整理为一般形式,找出二次项系数,常数项即可.解:方程整理得:3x2+5x﹣15=0,则方程的二次项系数为3,常数项为﹣15,故答案为3;﹣15考点:一元二次方程的一般形式.12.2:3【解析】试题分析:根据DE∥BC,由平行线分线段成比例定理可得AD:AB=AE:AC,将已知条件代入即可求解.解:∵AE=4,EC=2,∴AC=AE+EC=4+2=6;又∵DE∥BC,AE=4,∴AD:AB=AE:AC=4:6=2:3.故答案为:2:3.考点:平行线分线段成比例.13.cm【解析】试题分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE==cm.故答案为:cm.考点:菱形的性质.14.9【分析】由一元二次方程的定义即可求出答案;【详解】由题意可知||72 a-=,9a∴=±,90a+≠ ,9a∴≠-,9a∴=,故答案为:9.【点睛】本题主要考查了一元二次方程的定义,结合绝对值的计算是解题的关键.15【解析】试题解析:如图所示,过E 点作EM ⊥AB 交AB 于点M ,延长EG 交AB 于点Q,在△AQG 和△CFH 中,GAQ HCF AG CH AGQ CHF ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以△AQG ≌△CFH (ASA ),FH=QG ,AQ=CF=2.∴在△AQG 中,MQ=1,EM=2,16.4【分析】已知a ∥b ∥c ,由平行线分线段成比例定理可得AB DE BC EF =,代入数据求得AB 的值,即可求得AC 的值.【详解】∵a ∥b ∥c ,∴AB DE BC EF =,即4.51 3.5AB =,解得,AB=3,∴AC=AB+BC=4,故答案为4.【点睛】本题主要考查了平行线分线段成比例定理,熟知定理的内容是解决本题的关键.17.11x =-,23x =【解析】试题分析:用因式分解法解一元二次方程即可.试题解析:()()130x x +-=,10x +=或30x -=,11x =-,23x =.点睛:解一元二次方程的常用方法:直接开方法,配方法,公式法,因式分解法.18.15 4【分析】先求出AD、DE的长度,再证明∆ADC~∆BDE,列出比例式,即可解决问题.【详解】∵AD:DE=3:5,AE=8,∴AD=3,DE=5;∵∠C=∠E,∠ADC=∠BDE∴∆ADC~∆BDE,∴AD CD BD ED∵BD=4,∴DC=.19.咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.【详解】试题分析:先设咸宁市2011年到2013年烟花爆竹年销售量的平均下降率是x,那么把2011年的烟花爆竹销售量看做单位1,在此基础上可求2012年的年销售量,以此类推可求2013年的年销售量,而2013年的年销售量为9.8万箱,据此可列方程,解即可.解:设咸宁市2011年到2013年烟花爆竹年销售量的平均下降率是x,依题意得20(1﹣x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.考点:一元二次方程的应用.20.证明见解析【分析】由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.【详解】解:∵四边形ABCD为正方形,∴DA=AB,∠DAE=∠ABF=90°,又∵AE=BF,∴△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF⊥DE.【点睛】本题考查正方形的性质;全等三角形的判定与性质.21.(1)x1+x2=﹣,x1•x2=﹣;(2)﹣.【详解】试题分析:(1)直接利用根与系数的关系解答即可;(2)通分变形后,整体代入(1)中的数值得出答案即可.解:(1)∵x1、x2是方程2x2+x﹣3=0的两个根,∴x1+x2=﹣,x1•x2=﹣;(2)原式===﹣.考点:根与系数的关系.22.(1)B1(1,﹣1);(2)见解析;(3)正比例函数解析式为y=﹣x.【详解】试题分析:(1)根据关于原点对称的点的坐标特征写出B1的坐标;(2)利用网格特点和旋转的性质画出点A、B的对应点A1、B1,从而得到△A1B1C;(3)由(2)的画法得到B1点的坐标,然后利用待定系数法求过点B1的正比例函数的解析式.解:(1)B1(1,﹣1);(2)如图,△A1B1C为所作;(3)由(2)得B1点坐标为(3,﹣1),设过点B1的正比例函数解析式为y=kx,把点B1(3,﹣1)代入y=kx 得3k=﹣1,解得k=﹣,所以正比例函数解析式为y=﹣x .考点:作图-旋转变换;待定系数法求正比例函数解析式;关于原点对称的点的坐标.23.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS 可以证得△ADC ≌△ECD ;(2)利用等腰三角形的“三合一”性质推知AD ⊥BC ,即∠ADC =90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE 是平行四边形,所以有一个角是直角的平行四边形是矩形.【详解】证明:(1)∵四边形ABDE 是平行四边形(已知),∴AB ∥DE ,AB =DE (平行四边形的对边平行且相等);∴∠B =∠EDC (两直线平行,同位角相等);又∵AB =AC (已知),∴AC =DE (等量代换),∠B =∠ACB (等边对等角),∴∠EDC =∠ACD (等量代换);∵在△ADC 和△ECD 中,AC ED ACD EDC DC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ECD (SAS );(2)∵四边形ABDE 是平行四边形(已知),∴BD ∥AE ,BD =AE (平行四边形的对边平行且相等),∴AE ∥CD ;又∵BD =CD ,∴AE =CD (等量代换),∴四边形ADCE 是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC (等腰三角形的“三合一”性质),∴∠ADC =90°,∴▱ADCE 是矩形.【点睛】本题主要考查了矩形的判定和全等三角形的性质与判定,准确分析是解题的关键,24.(1)8 y x =-,2y x =--;(2)40x -<<或2x >.【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x 的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.试题解析:(1)把A(﹣4,2)代入y=mx得:m=﹣8,则反比例函数的解析式是:y=﹣8 x;把y=﹣4代入y=﹣8x,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:42 24k bk b-+=⎧⎨+=-⎩,解得:12kb=-⎧⎨=-⎩,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x>2.25.(1)200次,见解析;(2)144°;(3)口袋中绿球有2个.【解析】试题分析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.考点:条形统计图;扇形统计图;模拟实验.。

北师大版数学九年级上册期末考试试题及答案

FDCHABE QG北师大版数学九年级上册期末考试试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.方程x 2=3x 的解是.2.正方形网格中,∠AOB 如图放置,则tan ∠AOB=.3.已知643x y z ==(x 、y 、z 均不为零),则332x y y z+=-.4.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是.5.如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是cm .6.生物工作者为了估计小山上山雀数量,先捕20只做上标记后放还,一星期后,又捕捉40只山雀,发现带标记的只有2只,可估计小山上有山雀只.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A .B .C .D .得分评卷人得分评卷人AO BCE D BA20米30米150°y P B8.若关于x 的一元二次方程kx 2 -6x +9 =0有两个不相等的实数根,则k 的取值范围是()A .k <1B .k <1且k ≠0C .k ≠0D .k >19.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为()cmA .12.36B .13.6C .32.36D .7.6410.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是为()A .1:1B .1:2C .1:3D .1:411.下列命题中,不正确的是()A .对角线相等的平行四边形是矩形B .有一个角为60°的等腰三角形是等边三角形C .直角三角形斜边上的高等于斜边的一半D .正方形的两条对角线相等且互相垂直平分12.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为a 元,则购买这种草皮至少需要()A .450a 元B .225a 元C .150a 元D .300a 元13.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,随着自变量x 的增大,矩形OAPB的面积()A.增大B.减小C.不变D.无法确定14.如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影的示意图.已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米三、解答题(本大题共有9个小题,满分70分)15.(本小题5分)计算:201720201(1)2sin603tan3022----+++-(16.(本小题5分)解方程:(3)(+2)=6x x-得分评卷人432B·342A1·17.(本小题7分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.18.(本小题7分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.(1)请用树状图或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x 2-5x +6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x 2-5x +6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.xyAOBC19.(本小题7分)为倡导“低碳生活”,人们现在常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732).图1图2 20.(本小题8分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?21.(本小题10分)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,BD 与AE 、AF 交于G 、H .(1)求证:△ABE ∽△ADF ;(2)若AG=AH ,求证:四边形ABCD 是菱形.22.(本小题9分)如图,一次函数y kx b =+与反比例函数my x=的图象交于A (2,3),B (-3,n )两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx b +<mx的解集;(3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .D B ①AF AGF E②D C EBC23.(本小题12分)一块直角三角形木板,它的一条直角边AB 长1.5m ,面积为1.5m 2.甲、乙两位木匠分别按图①、②把它加工成一个正方形桌面.请说明哪个正方形面积较大(加工损耗不计).参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.x 1=0,x 2=32.23.34.10%5.126.400二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.A8.B9.A10.D11.C12.C13.C14.B三、解答题(本大题共有10个小题,满分75分)15.(本小题5分)201720201(1)2sin 603tan 302214122----+++-=--+++--解:()16.(本小题5分)解方程:(3)(+2)=6x x -解:方程可变形为:x 2-x -12=0得(3)(4)=0x x +-解得x 1=-3,x 2=417.(本小题7分)解:(1)、(2)如图(2)【解法一】如图,在R t△A 2EC 2中,A 2E=1,C 2E=3所以,22A C 所以,sin ∠A 2C 2B 2=222A E 10A C 10=【解法二】因为,A (2,2),B (4,0),C (4,-4)xyA O BCD A 2B 2C 2ExyAOBC A 1B 1C 1所以,直线AC 的关系式为y=-3x +8,与x 轴的交点为D (38,0)又因为,∠CBD=90°所以,所以,84BD 3sin DCB=4CD 10-∠==又因为,∠A 2C 2B 2=∠ACB所以,sin ∠A 2C 2B 2=sin ∠DCB=101018.(本小题7分)解:(1)列表如下:(画树状图略)12342(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)(2)因为,方程x 2-5x +6=0的解是:x 1=2,x 2=3,所以,从上表中可看出,指针所指的两个数字有12种等可能的结果,其中两个数字都是方程x 2-5x +6=0的解有2次,两个数字都不是方程x 2-5x +6=0的解有10次,所以,P(甲胜)=61122=,P(乙胜)=651210=所以,此游戏乙获胜的概率更大.19.(本小题7分)解:(1)∵在Rt △ACD 中,AC=45,CD=60∴AD=75604522=+(cm )答:车架档AD 的长为75cm(2)过点E 作EF ⊥AB ,垂足为点F ,EF 即为所求∵AC=45,CE=20∴AE=AC+CE=45+20=65又∵∠CAB=75°∴在Rt △AEF 中,EF =AEsin ∠EAF =AEsin 75°=65sin75°=65×0.966=62.7835≈63(cm )答:车座点E 到车架档AB 的距离是63cm20.(本小题8分)解:设每箱售价为x 元,根据题意得:F(x -40)[30+3(70-x )]=900化简得:x ²-120x +3500=0解得:x 1=50或x 2=70(不合题意,舍去)∴x =50答:当每箱牛奶售价为50元时,平均每天的利润为900元21.(本小题10分)解:(1)证明:∵AE ⊥BC ,AF ⊥CD ,∴∠AEB=∠AFD=90°,∵四边形ABCD 是平行四边形,∴∠ABE=∠ADF ,∴△ABE ∽△ADF (有两角相等的三角形是相似三角形)(2)∵△ABE ∽△ADF ,∴∠BAG=∠DAH ,∵AG=AH ,∴∠AGH=∠AHG ,从而∠AGB=∠AHD ,∴△ABG ≌△ADH (ASA ),∴AB=AD ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形(一组邻边相等的平行四边形是菱形)22.(本小题9分)解:(1)将点A (2,3)代入反比例函数my x=,可得:m =6,∴反比例函数关系式为:6y x=将点B (-3,n )代入反比例函数my x=,可得:n =-2∴点B 的坐标为(-3,-2),分别将点A (2,3),B (-3,-2)的坐标代入一次函数y=x +1,可得:231321k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩,解得∴一次函数解析式为:y=x +1(2)∵kx b +<m x∴x +1<6x,即x 2+x -6<0,即(x +3)(x -2)<0第11页共11页DB ①AF AG F E②D C EBCHP ∴303<0,2<020x x x x ++⎧⎧⎨⎨--⎩⎩f f 或∴x <-3或0<x <2(3)设直线AB 与x 轴的交点为D ,由一次函数解析式为y=x +1,可得点D 的坐标为(-1,0),则OD=1,CD=OC -OD=2,∴S △ABC =S △BCD +S △ACD =B A 1111CD y +CD y 222352222=⨯⨯+⨯⨯=g g 23.(本小题12分)解:由AB=1.5m ,S △ABC =1.5m 2,可得BC=2m ,由图①,过点B 作Rt △ABC 斜边AC 上的高,BH 交DE 于P ,交AC 于H .由AB=1.5m ,BC=2m ,得AC=5.225.1BC AB 2222=+=+(m ),由AC·BH=AB·BC 可得:BH=ACBCAB ⋅=1.2(m ),设甲设计的桌面的边长为x m ,∵DE ∥AC ,∴Rt △BDE ∽Rt △BAC ,∴AC DE BH BP =,即5.22.12.1x x =-,解得3730=x (m ),由图②,若设乙设计的正方形桌面边长为ym ,由DE ∥AB ,得Rt △CDE ∽Rt △CBA ,∴BC CDAB DE =,即225.1y y -=,解得76=y (m ),∵3730=x ,353076==y ,∴x <y ,即x 2<y 2,∴S 正方形①<S 正方形②,∴第二个正方形面积大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若反比例函数y =-2x 的图象上有两点A(-1,m),B(-23,n),则m ,n 的关系是( B ) A .m >n B .m <n C .m =n D .无法确定2.一元二次方程x(x -3)=4的解是( C )A .1B .4C .-1或4D .1或-43.(2016·安徽)如图,一个放置在水平桌面上的圆柱体,它的主(正)视图是( C )4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,矩形ABCD内的一个动点P 落在阴影部分的概率是( B )A.15B.14C.13D.3105.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( B )A.13B.23C.16D.566.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( A )A .10米B .12米C .15米D .22.5米7.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则k 的取值范围是( D )A .k <-2B .k <2C .k >2D .k <2且k ≠18.如图,已知矩形ABCD 的周长为20 cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于点E ,F(不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为( B )A .△CDE 与△ABF 的周长都等于10 cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10 cmC .△CDE 与△ABF 全等,且周长都为5 cmD .△CDE 与△ABF 全等,但它们的周长和面积都不能确定,第6题图) ,第8题图),第9题图) ,第10题图)9.如图,两个反比例函数y =1x 和y =-2x的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为点C ,交l 2于点A ,PD ⊥y 轴,垂足为点D ,交l 2于点B ,则三角形PAB 的面积为( C )A .3B .4 C.92D .5 10.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF ,下列结论:①点G 是BC 的中点;②FG =FC ;③S △FGC =910.其中正确的是( B ) A .①② B .①③ C .②③ D .①②③二、填空题(每小题3分,共18分)11.写出一个两实根之和为-5的一元二次方程,它可以是__x 2+5x -1=0__.12.如图,小明在打网球时,使球恰好能打过网,且落在离网4米的位置上,则球拍击球的高度h 为__1.5_m __.13.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于点E ,则AE 的长是__3.4__.,第12题图) ,第13题图),第14题图) ,第15题图)14.如图,在Rt △ABC 中,∠ACB =90°,直线EF ∥BD 交AB 于点E ,交AC 于点G ,交AD 于点F.若S △AEG =13S 四边形EBCG ,则CF AD =__12__. 15.如图,已知一次函数y =kx -4的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =8x在第一象限内的图象交于点C ,且A 为BC 的中点,则k =__4__.16.如图,在矩形ABCD 中,AB =3,AD =4,点P 是AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为__2.4__.三、解答题(共72分)17.(8分)如图,画出下图中物体的三视图.18.(10分)如图,直线y =-x +2与反比例函数y =k x的图象只有一个交点,求反比例函数的表达式.∵直线y =-x +2与y =k x 只有一个交点,∴k x=-x +2,其中Δ=0,解得k =1.∴反比例函数的表达式为y =1x19.(10分)春秋旅行社为吸引市民组团去玉龙雪山风景区旅游,推出了如下的收费标准:某单位组织员工去玉龙雪山风景区旅游,共支付给春秋旅行社旅游费用27 000元,请问该单位这次共有多少员工去玉龙雪山风景区旅游?设该单位这次共有x 名员工去玉龙雪山风景区旅游.因为1 000×25=25 000<27 000,所以员工人数一定超过25人,可得方程[1 000-20(x -25)]x =27 000,整理得x 2-75x +1 350=0,解得x 1=45,x 2=30.当x 1=45时,1 000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1 000-20(x -25)=900>700,符合题意.答:该单位这次共有30名员工去玉龙雪山风景区旅游20.(10分)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.(1)∵EF 垂直平分BC ,∴CF =BF ,BE =CE ,∠BDE =90°,BD =CD ,又∵∠ACB=90°,∴EF ∥AC ,∴BE ∶AB =DB ∶BC =1∶2,∴点E 为AB 的中点,即BE =AE.∵CF =AE ,∴CF =BE.∴CF =FB =BE =CE ,∴四边形BECF 是菱形 (2)∵四边形BECF 是正方形,∴∠CBA =45°.∵∠ACB =90°,∴∠A =45°21.(10分)如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴的正半轴上,OA=4,AB =5.点D 在反比例函数y =k x(k>0)的图象上,DA ⊥OA ,点P 在y 轴负半轴上,OP =7.(1)求点B 的坐标和线段PB 的长;(2)当∠PDB =90°时,求反比例函数的表达式.(1)在Rt △OAB 中,OA =4,AB =5,∴OB =AB 2-OA 2=52-42=3,∴点B 的坐标是(0,3).∵OP =7,∴PB =OB +OP =3+7=10(2)过点D 作DE ⊥OB ,垂足为点E ,由DA ⊥OA 可得矩形OADE ,∴DE =OA =4,∠BED =90°,∴∠BDE +∠EBD =90°,又∵∠BDP =90°,∴∠BDE +∠EDP =90°,∴∠EBD =∠EDP ,∴△BED ∽△DEP ,∴BE DE =DE EP,设D 的坐标是(4,m ),由k >0,得m>0,则有OE =AD =m ,BE =3-m ,EP =m +7,∴3-m 4=4m +7,解得m 1=1,m 2=-5(不合题意,舍去).∴m =1,点D 的坐标为(4,1),∴k =4,反比例函数的表达式为y =4x22.(12分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x ,y 确定的点(x ,y)在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy>6,则小明胜;若x ,y 满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.(1)画树状图:∵共有12种等可能的结果,在函数y =-x +5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x ,y )在函数y =-x +5的图象上的概率为412=13(2)∵x ,y 满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况;x ,y 满足xy<6有:(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P (小明胜)=412=13,P (小红胜)=612=12.∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy<6,则小红胜23.(12分)如图,在Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,动点P 从点B 出发,在BA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4 cm 的速度向点B 匀速运动,运动时间为t 秒(0<t<2),连接PQ.(1)若△BPQ 和△ABC 相似,求t 的值;(2)连接AQ ,CP ,若AQ ⊥CP ,求t 的值.(1)由题知,BP =5t ,CQ =4t ,∴BQ =8-4t ,在Rt △ABC 中,由勾股定理得AB =10,当△ABC ∽△PBQ 时,有BP AB =BQ BC ,∴5t 10=8-4t 8,解得t =1;当△ABC ∽△QBP 时,有BQ AB=BP BC ,8-4t 10=5t 8,解得t =3241,∴若△ABC 与△PBQ 相似,t =1秒或3241秒(2)如图,过点P 作PD ⊥BC 于点D ,∵∠ACB =90°,∴PD ∥AC ,∴△BPD ≌△BAC ,∴BP BA =PD AC ,即5t 10=PD 6,∴PD =3t ,∴BD =4t ,∴CD =8-4t ,∵AQ ⊥CP ,∠ACB =90°,∴∠CAQ =∠DCP ,∴△CPD ∽△AQC ,∴CD AC =PD CQ ,∴8-4t 6=3t 4t,∴t =错误!。

相关文档
最新文档