一次函数的应用专项练习30题有答案

合集下载

一次函数实际应用题_含答案

一次函数实际应用题_含答案

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。

要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。

2甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。

初中数学一次函数的图像专项练习30题(有标准答案)ok

初中数学一次函数的图像专项练习30题(有标准答案)ok

① k v 0 :②a > 0;③当x > 2时,y 2> y i ,其中正确的3.—次函数y=kx+b , y 随x 的增大而减小,且 kb > 0,则在直角坐标系内它的大致图象是(1 3 16.如图,直线11: y=x+1与直线12: y= - x -卫把平面直角坐标系分成四个部分,则点( 一P ,二)在()A .第一部分B .第二部分C .第三部分D .第四部分 7.已知正比例函数 y= - kx 和一次函数y=kx - 2(x 为自变量),它们在同一坐标系内的图象大致是(一次函数(图像题)专项练习一C . 2D .32.—次函数y 仁kx+b 与y 2=x+a 的图象如图,则下列结论:&函数y=2x+3的图象是()11.已知直线 y 1=k 1x+b 1, y 2=k 2x+b 2,满足 b 1v b 2,且 k 1k 2v 0, A .13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升. 的关系如图所示,则下列说法正确的是( ) 若该水库的蓄水量 V (万米3)与降雨的时间t (天)过点(0, 3) , (0,-上)的直线 2 C . 过点(-1 ,- 1),二0)的直线D 2 过点(1 , 5), (0,-丄)的直线 2 过点(0, 3),(-空,0)的直线 2 9•下列图象中,与关系式 y= - x - 1表示的是同一个一次函数的图象是( ) A . 10.函数kx - y=2中,y 随x 的增大而减小,则它的图象是下图中的() A.LB 0 \\12.如图所示,表示一次函数 y=ax+b 与正比例函数 y=abx (a ,C .的图象是(b 是常数,且ab 用) DViV*两直线的图象是(①k v 0;② a>0;③当x=3 时,y i=y2;④当x > 3 时,y i v y2 中, 正确的判断是 _________________ .A •降雨后,蓄水量每天减少5万米3B .C . 降雨开始时,蓄水量为20万米3D .降雨后,蓄水量每天增加降雨第6天,蓄水量增加5万米40万米0.5升,那么油箱中余油y (升)与它工作的时间t(时)14 .拖拉机开始行驶时,油箱中有油4升,如果每小时耗油时,有y v 0.20. ____________________________________________________________________________ 如图,已知函数y i=ax+b和y2=kx的图象交于点P,则根据图象可得,当x __________________________________ 时,y i >y2.21. 已知一次函数y=kx+b的图象如图所示,当y v 0时,x的取值范围是22.在平面直角坐标系中画出函数(1) 在图象上标出横坐标为- 4的点A,并写出它的坐标;(2) 在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.65-23•作函数y=2x - 4的图象,并根据图象回答下列问题.(1)当-2$詔,求函数y的取值范围.(2)当x 取何值时,y v 0 ? y=0 ? y> 0 ?24•如图是一次函数y= --x+5图象的一部分,禾U用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.1k5«2.5I■1■!;4i¥■i14214 ......O24■■y1 = -Ax+二和y2=2x- 1.■if—a(1) 在同一个平面直角坐标系中画出这两个函数的图象;(2) 根据图象,写出它们的交点坐标;(3) 根据图象,试说明当x取什么值时,y1> y2 ?26•作出函数y=3 - 3x的图象,并根据图象回答下列问题: (1) y的值随x的增大而______________ ; _ :25.已知函数(2) _________________________________ 图象与x轴的交点坐标是 ____________ ;与y轴的交点坐标是(3) 当x __________ 时,y%;(4) 函数y=3 - 3x的图象与坐标轴所围成的三角形的面积是多少?□i27. 已知函数y=2x - 1.(1)在直角坐标系中画出这函数的图象;(2)判断点 A (- 2.5 , - 4) , B (2.5, 4)是否在函数y=2x - 1的图象上;(3)当x取什么值时,y切.$0_ X28 .已知函数y= - 2x- 6.(1)求当x= - 4时,y的值,当y= - 2时,x的值.(2)画出函数图象.(3)如果y的取值范围-4弓€,求x的取值范围.29.已知一次函数的图象经过点 A (- 3, 0), B (- 1, 1)两点.(1)画出图象;(2)x 为何值时,y> 0, y=0, y v 0?f ¥+21. L ,-3V 1 '=1屛1-230 .已知一次函数y= - 2x+2 ,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:① 图象与x轴的交点坐标是 _______________ ,与y轴的交点坐标是--- ---- ?②当x _ 时,y> 0.参考答案:k v 0, a v 0,当x > 2时,y 2>y i ,①③ 正确.故选 C 3. •••—次函数y=kx+b , y 随x 的增大而减小, ••• k v 0, 又••• kb > 0, • b v 0,•函数的图象经过第二、三、四象限.故选 C 4. 根据图象知:A 、 a >0,-( a -2)> 0.解得 0v a v 2,所以有可能;B 、 a v 0,-( a - 2)v 0.解得两不等式没有公共部分,所以不可能;C 、 a v 0,-( a - 2)> 0.解得a v 0,所以有可能;D 、 a >0,-( a -2)v 0.解得a > 2,所以有可能. 故选B5. •/ k?b v 0,且k v 0, ••• b > 0, k v 0,•函数y=kx+b 的图象经过第一、二、四象限,故选 D'尸 x+1— 6. 由题意可得{1,一,丄)应在交点的上方,即第二部分.故选 B .1 [2 7.分两种情况:(1)当k >0时,正比例函数 y= - kx 的图象过原点、第一、三象限,一次函数 y=kx - 2的图象经过第一、三、四象限,选项 A 符合;(2)当k v 0时,正比例函数 y= - kx 的图象过原点、第二、四象限,一次函数 y=kx - 2的图象经过第二、三、四象限,无选项符合. 故选A .8 A 、把x=0代入函数关系式得 2>0+3=3,故函数图象过点(0, 3),不过(0,-弓),故错误; B 、 由A 知函数图象不过点(0,-于),故错误;C 、 把x= - 1代入函数关系式得,2>( - 1) +3=1,故(-1,- 1)不在函数图象上,故错误;D 、 分别令x=0 , y=0,此函数成立,故正确.故选 D9. 函数y= - x - 1是一次函数,其图象是一条直线. 当x=0时,y= - 1,所以直线与y 轴的交点坐标是(0,- 1); 当y=0时,x= - 1,所以直线与x 轴的交点坐标是(-1, 0). 由两点确定一条直线,连接这两点就可得到 y= - x - 1的图象.故选 D10. 整理为y=kx - 2v y 随x 的增大而减小• k v 0又因为图象过 2, 4, 3象限故选D .11. k 1k 2v 0,贝U k 1 与 k 2 异号,因而两个函数一个 y 随x 的增大而增大,另一个 y 随x 的增大而减小,因而 A 是错误的; b 1v b 2,则y 1与y 轴的交点在y 2与y 轴的交点的下边,因而 B 、C 都是错误的.故选D .1分四种情况:① 当 a >0, b >0 时,y=ax+b ② 当 a >0, b v 0 时,y=ax+b ③ 当 a v 0, b >0 时,y=ax+b④ 当 a v 0, b v 0 时,y=ax+b 故选C的图象经过第一、二、三象限, 的图象经过第一、三、四象限; 的图象经过第一、二、四象限;的图象经过第二、三、四象限; y=bx+a 的图象经过第一、二、三象限,无选项符合; y=bx+a 的图象经过第一、二、四象限,C 选项符合;y=bx+a 的图象经过第一、三、四象限,无选项符合; y=bx+a 的图象经过第二、三、四象限,无选项符合.2.由一次函数 y i =kx+b 与y 2=x+a 的图象可知12. ①当ab >0,正比例函数 y=abx 过第一、三象限;a 与b 同号,同正时y=ax+b 过第一、二、三象限,故 D 错 误;同负时过第二、三、四象限,故 B 错误;② 当ab v 0时,正比例函数 y=abx 过第二、四象限;a 与b 异号,a > 0, b v 0时y=ax+b 过第一、三、四象限,故 C 错误;a v 0, b >0时过第一、二、四象限. 故选A13. A 、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误; B 、 本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是( 40- 10) %=5;故本选项正确;C 、 根据图示知,降雨开始时,蓄水量为 10万米3,故本选项错误;D 、 根据图示知,降雨第 6天,蓄水量增加了 40万米3 - 30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为: y =40 - 5t ,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与 y 轴交于点(0, 40),如果每小时耗油 0.5升,且8小时,耗完油,故函数图象为一条线段.故选 D15. v 正比例函数y=kx 的图象经过第一、三象限, ••• k >0,二-k v 0, ••• y=kx - k 的大致图象经过一、三、四象限,故选: B .2-016.由图形可知,该函数过点( ------- 0, 2), (3, 0),故斜率k =0 一 3所以解析式为y= 解之得:x v 018 .根据题意,观察图象,可得直线 I 过点(2, 0),且y 随x 的增大而增大,分析可得,当x > 2时,有y > 019.根据图示及数据可知: ①一次函数y 仁kx+b 的图象经过第二、四象限,则k v 0正确;② y 2=x+a 的图象经与y 轴交与负半轴,则 a >0错误;③ 一次函数y 仁kx+b 与y 2=x+a 的图象交点的横坐标是 3,所以当x=3时,y 仁y 2正确; ④ 当x > 3时,y 1v y 2正确; 故正确的判断是①,③,④20. 根据图示可知点 P 的坐标是(-4, 2),所以y 1> y 2即直线1在直线2的上方,贝U x v- 4. 21 .根据图象和数据可知,当y v 0即图象在x 轴下侧,x v 1 .故答案为x v 122. 函数 尸一 *好汁坐标轴的交点的坐标为(0, 3), (6, 0). (1) 点A 的坐标(-4, 5);(2) 和y 轴的距离是2个单位长度的点的坐标 M (2, 2), N (- 2, 4)23 .当 x=0 时,y= - 4;当 y=0 时,2x - 4=0,解得 x=2 , •函数图象与两坐标轴的交点为( 0,- 4) (2, 0). 图象如下:(1) x= - 2 时,y=2 X( - 2)- 4= - 8, x=4 时,y=2 >4 - 4=4,v k=2 > 0, • y 随x 的增大而增大, • - 8今詔; (2) x v 2 时,y v 0; x=2 时,y=0 ; x >2 时,y > 0.17.根据题意,要求y v 0时,x 的范围,即: 解可得: x v - 2,故答案为x v- 2一=令y >2即> 2,24. (1 )由图象可看出当y=2.5时,x=5,因此x的取值范围应该是O v x老(y轴上的点是空心圆,因此x和);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525. (1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为( 1,1);(3)由(1)中两函数图象可知,当x > 1时,y1>y2.26. 如图.(1)因为一次项系数是-3v 0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1 , 0);当x=0时,y=3,所以图象与y轴的交点坐标是(0, 3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0 .所以x屯时,y%.(4)■/ OA=1 , OB=3,二函数y=3 - 3x的图象与坐标轴所围成的三角形的面积是S^AOB」X1 .2 227. (1)函数y=2x - 1与坐标轴的坐标为(0,- 1)(寺0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x - 1的图象上,B 点在直线y=2x - 1的图象上,A代入函数后发现-2.5X2-仁-6工-4,因此A点不在函数y=2x - 1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y切时,2x- 1切,因此x台.11 / 928. (1 )当 x= - 4 时,y=2 ;当 y= - 2 时,x= - 2;(2)由(1)可知函数图象过(-4, 2)、(- 2,- 2),由此可画出函数的图象,如下图所示:-4^x <- 1y > 0 ;当 x= - 3 时,y=0 ;当 x <- 3 时,y v 0.0 2 …(也可以写成过点(0, 2)和(1, 0)画直线) (0, 2)2 W 2x 宅②< 130. (1)列表:xy描点,连线(如图)(2)①(1 ,。

初中数学一次函数的图像专项练习30题(有答案)ok之欧阳史创编

初中数学一次函数的图像专项练习30题(有答案)ok之欧阳史创编

一次函数的图像专项练习30题(有答案)时间:2021.02.10 创作:欧阳史1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()5.如图所示,如果k•b<0,且k <0,那么函数y=kx+b 的图象大致是( )A .B .C .D .6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在( ) A . 第一部分 B . 第二部分 C . 第三部分D . 第四部分 7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( )A .B .C .D .8.函数y=2x+3的图象是( )A . 过点(0,3),(0,﹣)的直线B . 过点(1,5),(0,﹣)的直线C . 过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线 9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( )10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,满足b1<b2,且k1k2<0,两直线的图象是()A.B.C.D.12.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3 B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3 D.降雨第6天,蓄水量增加40万米3 14.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x _________ 时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________ 时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x _________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________ .20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x _________ 时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x 的取值范围是_________ .22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________ ;(2)图象与x轴的交点坐标是_________ ;与y轴的交点坐标是_________ ;(3)当x _________ 时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x ﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________ ;②当x _________ 时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b 同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b 异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N (﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.5 25.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x ﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案类型 1 方案选取型问题角度1 图象类1.甲、乙两家樱桃采摘园的樱桃品质相同,售价也相同.“五一”假期期间,两家采摘园推出如下优惠方案:甲园:每名游客进园需购买20元的门票,采摘的樱桃六折优惠;乙园:游客进园不需购买门票,采摘的樱桃不超过6 kg时,按原价销售,超过6 kg 时,超过的部分五折优惠.设当游客的采摘量是x kg时,在甲园所需总费用为y1元,在乙园所需总费用为y2元,如图所示是y1,y2与x之间的函数关系图象.(1)优惠前,甲、乙两家采摘园的樱桃的售价是元/kg.(2)求y1,y2关于x的函数解析式.(3)若某游客计划采摘m kg樱桃,则选择哪个采摘园更省钱?角度2 文字类2.某家具厂生产一种餐桌和椅子,每张餐桌的售价为400元,每把椅子的售价为80元,为促进销售,该家具厂制定了如下两种优惠方案:方案一:买一张餐桌送一把椅子;方案二:餐桌和椅子均打九折销售.某饭店准备在该家具厂购买餐桌50张,购买椅子x(x>50)把.设按方案一购买需要花费y1元,按方案二购买需要花费y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)当x取何值时,两种方案所需费用相同?(3)当x=100时,选择方案比较合算;请你设计出一种更省钱的购买方式,并通过计算说明理由.类型 2 方案设计型问题角度1 费用问题3.[2022福建]在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.角度2 利润问题4.[2022江苏苏州]某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量/千克乙种水果质量/千克总费用/元第一次6040 1 520第二次3050 1 360(1)求甲、乙两种水果的进价.(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3 360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.类型 3 图象型问题角度1 行程问题5.[2022浙江湖州]某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2 其他问题6.[2022商丘二模]近年来随着科技的发展,药物制剂正朝着三效(高效、速效、长效)及三小(毒性小、副作用小、剂量小)的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,使药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时起每毫升血液中含药量达到最高12微克,并维持这一最高值至第4小时结束,接着开始衰退,每毫升血液中含药量y(微克)与时间x(小时)的函数关系如图,并发现衰退时y与x成反比例函数关系.(1)填空:①当0.5≤x≤2时,y与x之间的函数关系式为;②当x>4时,y与x之间的函数关系式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.7.现有甲、乙两个底面积不同的圆柱形水槽,如图(1).将甲槽中的水匀速注入乙槽,甲、乙水槽中水的深度y甲(cm),y乙(cm)与注水时间x(min)之间的函数关系图象如图(2)所示(图象不完整).(1)乙槽的底面积是甲槽底面积的倍.(2)求y甲与x之间的函数关系式.(3)小文说:“注水3 min时,甲槽中的水比乙槽中的水深5 cm.”睿睿说:“注水4 min时,两个水槽中的水深度相等.”他们的说法对吗?请说明理由.图(1)图(2)类型 4 物资调运问题8.[2022山东济宁]某运输公司安排甲、乙两种货车24辆恰好一次性将328 t的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如下表:货车类型载重量/(t/辆)运往A地的成本/(元/辆)运往B地的成本/(元/辆)甲种16 1 200900乙种12 1 000750(1)求甲、乙两种货车分别用了多少辆.(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160 t,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A 地的甲种货车为t辆.①写出w与t之间的函数解析式.②当t为何值时,w最小?最小值是多少?答案:1.(1)10解法提示:由题图可知,当x=6时,y2=60,故优惠前,甲、乙两家采摘园的樱桃的售价是60÷6=10(元/kg).(2)由题意得,y1=20+10×0.6x=6x+20.当x≤6时,y2=10x,当x>6时,y2=10×6+(x-6)×10×0.5=5x+30,故y2={10x,5x+30.(3)当x ≤6时,令6x+20=10x ,解得x=5; 当x>6时,令6x+20=5x+30,解得x=10.结合图象分析可知,当m<5或m>10时,选择乙园更省钱; 当5<m<10时,选择甲园更省钱;当m=5或m=10时,选择甲园和选择乙园所需总费用相同. 2.(1)根据题意,得y 1=50×400+(x-50)×80=80x+16 000,y 2=50×400×0.9+80x ×0.9=72x+18 000. (2)令y 1=y 2,则80x+16 000=72x+18 000, 解得x=250.答:当x=250时,两种方案所需费用相同. (3)一先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子. 理由:所设计的购买方式需要花费50×400+50×80×0.9=23 600(元), 只选择方案一需要花费24 000元. 23 600<24 000,故先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子更省钱. 3.(1)设购买绿萝x 盆,吊兰y 盆. 根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8. 因为38>2×8,所以答案符合题意. 答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,吊兰(46-m )盆,购买两种绿植的总费用为W 元, 则W=9m+6(46-m )=3m+276.根据题意,得m ≥2(46-m ),解得m ≥923. 因为3>0,所以W 随m 的增大而增大.又m 为整数,所以m 取最小值31时,W 的值最小. 当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.4. (1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得{60a +40b =1520,30a +50b =1360,解得{a =12,b =20.答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元. (2)设水果店第三次购进x 千克甲种水果,则购进(200-x )千克乙种水果. 根据题意,得12x+20(200-x )≤3 360, 解得x ≥80.设获得的利润为w 元.根据题意,得w=(17-12)×(x-m )+(30-20)×(200-x-3m )=-5x-35m+2 000.∵-5<0,∴w 随x 的增大而减小,∴当x=80时,w 的最大值为-35m+1 600. 根据题意,得-35m+1 600≥800, 解得m ≤1607, ∴正整数m 的最大值为22.5.(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1),解得x=2, 则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时, ∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b ,则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60. (3)由题意,得40(a+1.5)=60×1.5,解得a=34,∴a 的值为34. 6.(1)①y=8x-4 ②y=48x解法提示:①当0.5≤x ≤2时,设y=kx+b ,将(0.5,0),(2,12)分别代入,得{0.5k +b =0,2k +b =12,解得{k =8,b =−4.故当0.5≤x ≤2时,y 与x 之间的函数关系式为y=8x-4.②当x>4时,设y=m x, 把(4,12)代入,得12=m 4,解得m=48. 故当x>4时,y 与x 之间的函数关系式为y=48x . (2)把y=4代入y=8x-4,得4=8x-4, 解得x=1.把y=4代入y=48x,得x=12.故一次服药后的有效时间为12-1=11(小时). 7. (1)2解法提示:由题图(2)可知,甲槽中水面下降的速度为20÷(6-2)=5(cm/min ), 乙槽中水面上升的速度为5÷2=2.5(cm/min ). 设甲槽的底面积为m ,乙槽的底面积为n ,则5m=2.5n , 故n=2m ,即乙槽的底面积是甲槽底面积的2倍. (2)设y 甲=kx+b ,将A (2,20),B (6,0)分别代入,得{2k +b =20,6k +b =0,解得{k =−5,b =30,故y 甲=-5x+30.(3)小文的说法不对,睿睿的说法对. 理由:设y 乙=cx , 将C (2,5)代入,可得c=52, 故y 乙=52x. 当x=3时,y 甲=-5×3+30=15, y 乙=52×3=7.5. 15-7.5=7.5≠5,故小文的说法不对. 令y 甲=y 乙,即-5x+30=52x ,解得x=4, 故睿睿的说法对.8.(1)设甲种货车用了x 辆,则乙种货车用了(24-x )辆, 根据题意,得16x+12(24-x )=328, 解得x=10,则24-x=14.答:甲种货车用了10辆,乙种货车用了14辆.(2)①由题意,得w=1 200t+1 000(12-t )+900(10-t )+750×[14-(12-t )]=50t+22 500.②∵16t+12(12-t )≥160,t ≥0,12-t ≥0,10-t ≥0,14-(12-t )≥0,∴4≤t ≤10. ∵50>0,∴w 随着t 的增大而增大,∴当t=4时,w 最小,最小值为50×4+22 500=22 700.。

初中一次函数的图像专项练习30题(有答案)11页.doc

初中一次函数的图像专项练习30题(有答案)11页.doc

一次函数的图像专项练习30题2.―次函数y)=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>yi,其屮正确则在直角坐标系内它的大致图象是(的个数是()第-1-页共12页7.己知正比例函数y=-kx 和一次函数y=kx-2 (x 为自变量),它们在同一坐标系内的图象大致是( )11. 已知直线yi=kix+b 「y2=k2X+b2,满足bi<b2>且kik2<0,两直线的图象是(■込把平面直角坐标系分成四个部分,则点(遗肖在(8.函数y=2x+3的图象是( )A , 过点(0, 3), (0, -卫)的直线 2 ° 过点(- 1, - 1),(-仝,0)的直2线过点(1, 5), (0, -卫)的直线2过点(0, 3), (0)的直线2则它的图象是下图中的( )C 第三部分D 第四部分9.下列图象中,与关系式y 二-X- 1表示的是同一个一次函数的图象是( )A. 降雨后,蓄水量每天减少5万米'B.C. 降雨开始时,蓄水量为20万米彳D.14.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y (升)与它工作的时I'可t (时)之间的函数关系的图象是()A' B、cD■斗■斗•4'■斗s00-480-4815.已知正比例函数尸kx的图象经过第一、三象限,则y=kx - k的大致图象可能是下图的()16. 一次函数y=kx+b的图象如图所示,当x ___________ 时,y>2.,b是常数,且ab^O)的图彖是()13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升. 若该水库的蓄水量V (万米彳)与降雨的时间t (天)的关系如图所示,则下列说法正确的是()降雨后,蓄水量每天增加5万米3 降雨第6天,蓄水量增加40万米318. ______________________________________________ 如图,直线I是一次函数y二kx+b的图象,当x ________________________ 时,y>0.19.一次函数yi=kx+b与y2二x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3 时,yi=y2;④当x>3 时,yi<y2 中,,当X吋,有y<0.当x21.已知一次函数y二kx+b的图象如图所示,当y<0时,x的取值范围是时,yi>y2-22.在平面直角坐标系屮I田i出函数尸-gx+3的图象.乙(1)在图象上标出横坐标为・4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.123456、111111、6-5-4-3-2-10JL_ 1 2 3 4 5 6x-2-3-4-523.作函数y=2x・4的图象,并根据图象回答下列问题.(1)当・2<x<4,求函数y的取值范围.(2)当x 取何值吋,y<0? y=0? y>0?24.如图是一次函数y=-gx+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数yi= - —x+—^0 y2=2x1.(1)在同一个平面直角坐标系屮画岀这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,yi>y2?26.作出函数y=3-3x的图象,并根据图象回答下列问题:(Dy的值随x的增大而_____________ ;(2)图象与x轴的交点坐标是 __________ ;与y轴的交点坐标是(3)当x ________ 时,y>0;(4)函数y=3・3x的图象与坐标轴所围成的三角形的面积是多少?VA27-已知函数y=2x - 1 -(1)在直角坐标系中画出这函数的图象;(2)判断点A ( -2.5, -4), B (2.5, 4)是否在函数y=2x - 1的图象上;(3)当x取什么值时,y<0.$个28.已知函数y= - 2x - 6.(1)求当x=-4时,y的值,当y= - 2时,x的值.(2)画出函数图象.(3)如果y的取值范围・4<y<2,求x的取值范围.29.已知一次函数的图象经过点A ( -3, 0), B (- 1, 1)两点.(1)画出图彖;(2)x 为何值时,y>0, y=0, y<0?+2-J——>——»——7—H-3 -1 0 +1-23().已知一次函数y= - 2x+2,(1)在所给的平面直角坐标系中画出它的图彖;(2)根据图象回答问题:①图象与x轴的交点坐标是 _________ ,与y轴的交点坐标是②当x _________ 时,y>0.一次函数的图像30题参考答案:1. 分四种情况: 故选C2. 由一次函数yj=kx+b 与y2=x+a 的图彖可知k<0, a<0,当x>2时,y2>yi ,①③正确.故选C3. ・・•一次函数y 二kx+b, y 随x 的增大而减小, Ak<0,又Vkb>0, Ab<0,・••函数的图象经过笫二、三、四象限.故选C 解得0<a<2,所以有可能;解得两不等式没有公共部分,所以不可能;解得a<0,所以有可能; 解得a>2,所以有可能. 5. Vk*b<(),且k<0, Ab>0, k<0, /.函数y=kx+b 的图象经过第一、二、四象限,故选Dfy=x+l6. 由题意可得4 1,解得4 r ,故点(一卫,丄)应在交点的上方,即第二部分.故选B.丄 4 2r 47. 分两种情况:(1)当k>0时,正比例函数y =-kx 的图象过原点、第一、三象限,一次惭数y=kx - 2的图象经 过第一、三、四象限,选项A 符合;(2)当k<0时,正比例函数尸・kx 的图象过原点、第二、四象限,一次函数尸kx ・2的图象经过第二、三、四 象限,无选项符合. 故选A.8. A 、把x=0代入函数关系式得2x0+3二3,故函数图象过点(0, 3),不过(0,・卫),故错误;2 B 、 由A 知函数图象不过点(0, -卫),故错误;2 C 、 把x» 1代入函数关系式得,2x (-1) +3=1,故(-1, -1)不在函数图象上,故错误;D 、 分别令x=0, y=0,此函数成立,故正确.故选D 9. 函数y 二・x ・1是一次函数,其图象是一条直线.当x=0时,y 二・1,所以直线与y 轴的交点坐标是(0,・1); 当y 二0吋,x=- 1,所以直线与x 轴的交点坐标是(-1, 0).由两点确定一条直线,连接这两点就可得到y 二-X- 1的图象.故选D10. 整理为y=kx - 2 Vy 随x 的增大而减小Ak<0又因为图象过2, 4, 3象限故选D. 11. k]k 2<0,则 ki 与 k2 异号,因而两个函数一个y 随x 的增大而增大,另一个y 随x 的增大而减小,因而A 是错误的; bi<b 2,则yi 与y 轴的交点在y2与y 轴的交点的下边,因而B 、C 都是错误的. 故选D.4.根据图象知: A 、a>0, - (a ・2) >0. B 、a<0, - (a ・2) <0. C 、a<0, - (a -2) >0.D 、a>0, - (a -2) <0. 故选B① 当a>0, ② 当a>0, ③ 当a<0, ④ 当a<0, b>0 时, b<0 时, b>()时, b<0 时, y=ax+b 的图象经过第一、 二、三象限,y=bx+a 的图象经过第一、二、三象限, y 二ax+b 的图象经过第一、三、四象限; y=ax+b 的图象经过第一、二、四象限; y=ax+b 的图彖经过第二、三、四象限; 无选项符合 y 二bx+a 的图象经过第一、二、四象限, y=bx+a 的图象经过第一、三、四象限, y=bx+a 的图象经过第二、三、四象限, C 选项符合 无选项符合 无选项符合.第9页共12页12.©当ab>0,正比例函数y=nbx过第一、三象限;a与b同号,同正时y二ax+b过第一、二、三象限,故D错误;同负时过第二、三、四彖限,故B错误;②当abVO吋,正比例函数y二abx过第二、四象限;a与b异号,a>0, b<0吋y二ax+b过第一、三、四象限,故C错误;a<0, b〉0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40・10) ^6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米彳,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3-30万米110万米-故本选项错误;故选B14.根据题意列出关系式为:y=40 - 5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0, 40),如果每小吋耗油0.5刃「,且8小吋,耗完油,故函数图象为一条线段.故选D15.V正比例函数尸kx的图象经过第一、三象限,・・・k>0,・•・- kVO,・・・y二kx-k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0, 2), (3, 0),故斜率0-3 3所以解析式为y=- ~|+2'令y>2,即-寻2>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:—x+3<0,解可得:x< - 2,故答案为x< - 2218.根据题意,观察图象,可得直线1过点(2, 0),且y随x的增大而增大,分析可得,当x>2吋,有y>019・根据图示及数据可知:①一次函数yi=kx+b的图彖经过第二、四彖限,则kVO正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数yi=kx+b与y2二x+a的图象交点的横坐标是3,所以当x=3时,yi=y2正确;④当x>3时,yi<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(・4, 2),所以yi>y2即直线1在直线2的上方,则xV・4・21.根据图象和数据可知,当y<0即图象在x轴下侧,x<l.故答案为x<l22.函数尸-丄计3与坐标轴的交点的坐标为(0, 3), (6, 0).乙(1)点A的坐标(-4, 5);(2)和y轴的距离是2个单位长度的点的坐标M (2, 2), N ( - 2, 4)23.当x=0 时,y二-4;当y二0 吋,2x - 4=0,解得x=2, ・••函数图象与两坐标轴的交点为(0, -4) (2, 0). 图象如下:(1)x=・ 2 日寸,y=2x ( - 2) - 4= - 8,x=4 时,y=2x4 ・ 4=4,Vk=2>0, Ay随x的增大而增大,.I - 8<y<4;(2)x<2 时,yVO; x=2 时,y=0; x>2 时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<xS5 (y轴上的点是空心圆,因此XH O);(2)由图象可看i'll,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1, 1);(3)由(1)中两函数图象可知,当x>1时,yi>y2・(1)因为一次项系数是- 3<0,所以y的值随x的增大而减小;(2)当y=0时,x=l,所以图彖与x轴的交点坐标是(1, 0);当x=0时,y=3,所以图象与y轴的交点坐标是(0, 3);(3)由图象知,在A点左边,图彖在x轴上方,函数值大于0・所以xWl时,y>0.(4)VOA=1, OB=3, /.函数y=3 - 3x的图象与坐标轴所围成的三角形的面积是S/^OB二丄xlx3二I2 2V/ \ 3B\ ,01\ X27.(1)函数y=2x- 1与坐标轴的坐标为(0, - 1)(丄0),描点即可,如图所示;2(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x- 1的图象上,B点在直线y=2x - 1的图象上,A代入函数后发现- 2.5x2 - 1=-6^-4,因此A点不在函数y=2x - 1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当ySO 时,2x - 1<0,因此xS丄.28.(1)当x=・4 时,y=2;当y= - 2 时,x= - 2;(2)由(1)可知函数图象过(-4, 2)、( -2, -2),由此可画岀函数的图彖,如下图所示: (3) Vy= - 2x - 6, - 4<y<2/・-4S - 2x - 6<2 2< - 2x<8-4<x< - 1(2)观察图象可得,当x> -3吋,y>0;当x=-3吋,y二0;当x< - 3吋,yVO.列表:Xy21描点,连线(如图)...(也可以写成过点(0, 2)和(1, 0)画直线)(2)①(1, 0); (0, 2)②VI。

一次函数应用题精编(附答案)

一次函数应用题精编(附答案)

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自20XX年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。

(完整版)一次函数应用题(含答案).doc

一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。

八年级数学:一次函数(应用题)练习(含解析)

A.8000,13200B.9000,10000
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( )A . 过点(0,3),(0,﹣)的直线B . 过点(1,5),(0,﹣)的直线C . 过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( )A .B .C .D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( )A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( )A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

一次函数实际应用题_含答案

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。

要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。

2甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。

相关文档
最新文档