高考数学二轮复习第1讲 空间几何体的表面积与体积

合集下载

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何 Word版含答案

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何 Word版含答案

江苏 新高考高考对本专题内容的考查一般是“一小一大”,小题主要考查体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考查形式单一,难度一般.第1课时立体几何中的计算(基础课) [常考题型突破]空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆).(3)球的表面积和体积公式: ①S 球=4πR 2(R 为球的半径); ②V 球=43πR 3(R 为球的半径).[题组练透]1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3 cm ,母线长为5 cm ,所以圆锥的高为52-32=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3=12π,所以该铁球的半径是39cm.答案:392.(2017·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2017·南通、泰州一调)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为_______cm 3.解析:三棱锥D 1-A 1BD 的体积等于三棱锥B -A 1D 1D 的体积,因为三棱锥B -A 1D 1D 的高等于AB ,△A 1D 1D 的面积为矩形AA 1D 1D 的面积的12,所以三棱锥B -A 1D 1D 的体积是正四棱柱ABCD -A 1B 1C 1D 1的体积的16,所以三棱锥D 1-A 1BD 的体积等于16×32×1=32.答案:324.如图所示是一个直三棱柱(以A 1B 1C 1为底面)被一个平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,A 1A =4,B 1B =2,C 1C =3,则此几何体的体积为________.解析:在A 1A 上取点A 2,在C 1C 上取点C 2,使A 1A 2=C 1C 2=BB 1,连结A 2B ,BC 2,A 2C 2,∴V =VA B C A BC 11122-+VB A ACC 22-=12×1×1×2+13×(1+2)2×2×22=32. 答案:325.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是________.解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=⎝⎛⎭⎫r 1r 22=94.答案:94[方法归纳]解决球与其他几何体的切、接问题(1)解题的关键:仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面:要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系,达到空间问题平面化的目的.(3)认识球与正方体组合的3种特殊截面:(4)熟记2个结论:①设小圆O 1半径为r ,OO 1=d ,则d 2+r 2=R 2;②若A ,B 是圆O 1上两点,则AB =2r sin ∠AO 1B 2=2R sin ∠AOB 2.[题组练透]1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:322.(2017·全国卷Ⅲ改编)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34×π×1=3π4.答案:3π43.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=3,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为________.解析:如图所示,BE过球心O,∴DE=42-32-(3)2=2,∴V E -ABCD=13×3×3×2=2 3.答案:2 34.(2017·南京、盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC =2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.解析:因为将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,所以三棱锥O-EFG的高为圆柱的高,即高为AB,所以当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=12×4×2=4,所以三棱锥O-EFG体积的最大值(V O-EFG)max=13×(S△EFG)max×AB=13×4×3=4.答案:4[方法归纳]多面体与球的切接问题的解题技巧[必备知识]将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.[题组练透]1.(2017·南通三模)已知圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,则这个圆锥的高为________.解析:因为圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,所以圆锥的母线长l =3,设圆锥的底面半径为r ,则底面周长2πr =3×2π3,所以r =1,所以圆锥的高为32-12=2 2. 答案:2 22.(2017·南京考前模拟)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则棱锥E -DFC 的体积为________.解析:S △DFC =14S △ABC =14×⎝⎛⎭⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12. V E -DFC =13×S △DFC×h =324. 答案:3243.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时, 设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0, ∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312× 25a 4-533a 5. 令t =25a 4-533a 5,则t ′=100a 3-2533a 4, 由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG=36BC , 设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52, 则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2, 则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415 [方法归纳][A 组——抓牢中档小题]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是棱B 1B 的中点,则三棱锥B 1-ADE 的体积为________.解析:VB 1-ADE =VD -AEB 1=13S △AEB 1·DA =13×12×12×1×1=112.答案:1122.若两球表面积之比是4∶9,则其体积之比为________.解析:设两球半径分别为r 1,r 2,因为4πr 21∶4πr 22=4∶9,所以r 1∶r 2=2∶3,所以两球体积之比为43πr 31∶43πr 32=⎝⎛⎭⎫r 1r 23=⎝⎛⎭⎫233=8∶27.答案:8∶273.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=4π3×278=92π.答案:92π4.已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 解析:设圆锥底面圆的半径为r ,母线长为l ,则侧面积为πrl =10πr =60π,解得r =6,则圆锥的高h =l 2-r 2=8,则此圆锥的体积为13πr 2h =13π×36×8=96π.答案:96π5.(2017·扬州期末)若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm 2),则它的体积为________(单位:cm 3).解析:因为正四棱锥的底面边长为2,侧面积为8,所以底面周长c =8,12ch ′=8,所以斜高h ′=2,正四棱锥的高为h =3,所以正四棱锥的体积为13×22×3=433.答案:4336.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π得,a 313πr 3=3π,得a=r ,从而S 1S 2=62π=32π.答案:32π7.(2017·苏北三市三模)如图,在正三棱柱ABC -A1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.解析:三棱锥的底面积S △ABA 1=12×3×3=92,点P 到底面的距离为△ABC 的高h =32-⎝⎛⎭⎫322=332,故三棱锥的体积VP -ABA 1=13S △ABA 1×h =934. 答案:9348.(2017·无锡期末)已知圆锥的侧面展开图为一个圆心角为2π3,且面积为3π的扇形,则该圆锥的体积等于________.解析:设圆锥的母线为l ,底面半径为r , 因为3π=13πl 2,所以l =3,所以πr ×3=3π,所以r =1,所以圆锥的高是32-12=22,所以圆锥的体积是13×π×12×22=22π3.答案:22π39.(2017·徐州古邳中学摸底)表面积为24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为________.解析:设圆柱的高为h ,底面半径为r , 则圆柱的表面积S =2πr 2+2πrh =24π, 即r 2+rh =12,得rh =12-r 2, ∴V =πr 2h =πr (12-r 2)=π(12r -r 3), 令V ′=π(12-3r 2)=0,得r =2,∴函数V =πr 2h 在区间(0,2]上单调递增,在区间[2,+∞)上单调递减,∴r =2时,V 最大,此时2h =12-4=8,即h =4,r h =12.答案:1210.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为________.解析:把三棱锥P -ABC 看作由平面截一个长、宽、高分别为1、1、3的长方体所得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 答案:5π11.已知正三棱锥P -ABC 的体积为223,底面边长为2,则侧棱PA 的长为________.解析:设底面正三角形ABC 的中心为O ,又底面边长为2,故OA =233,由V P -ABC =13PO ·S △ABC ,得223=13PO ×34×22,PO =263,所以PA =PO 2+AO 2=2. 答案:212.(2017·苏州期末)一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.解析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种情况:①孔高为3,则2πr 2=2πr ×3,解得r =3;②孔高为8,则r =8;③孔高为9,则r =9.而实际情况是,当r =8,r =9时,因为长方体有个棱长为3,所以受限制不能打,所以只有①符合.答案:313.如图所示,在体积为9的长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于点E ,则四棱锥E -A 1B 1C 1D 1的体积V =________.解析:连结B 1D 1交A 1C 1于点F ,连结BD ,BF ,则平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF .因为F 是A 1C 1的中点,所以BF 是中线,又B 1F 綊12BD ,所以FE EB =12,故点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以四棱锥E -A 1B 1C 1D 1的体积V =13×S 四边形A 1B 1C 1D 1×13BB 1=19V 长方体ABCD -A 1B 1C 1D 1=1.答案:114.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.解析:依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).答案:16(π-2)[B 组——力争难度小题]1.已知三棱锥S -ABC 所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若SC =AB =AC =1,∠BAC =120°,则球O 的表面积为________.解析:∵AB =AC =1,∠BAC =120°, ∴BC =12+12-2×1×1×⎝⎛⎭⎫-12=3, ∴三角形ABC 的外接圆直径2r =3sin 120°=2,∴r =1.∵SC ⊥平面ABC ,SC =1, ∴该三棱锥的外接球半径R =r 2+⎝⎛⎭⎫SC 22=52,∴球O 的表面积S =4πR 2=5π. 答案:5π2.(2017·南京三模)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.解析:在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,所以BB 1⊥AB ,又因为∠ABC =90°,即BC ⊥AB ,又BC ∩BB 1=B ,所以AB ⊥平面BB 1C 1C, 因为AB =1,BC =2,点D 为侧棱BB 1上的动点,所以侧面展开,当AD +DC 1最小时,BD =1,所以S △BDC 1=12×BD ×B 1C 1=1,所以三棱锥D -ABC 1的体积为13×S △BDC 1×AB =13.答案:133.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析:如图所示,AB =2,CD =a ,设点E 为AB 的中点,则ED ⊥AB,EC⊥AB,则ED=AD2-AE2=22,同理EC=22.由构成三角形的条件知0<a<ED+EC=2,所以0<a< 2.答案:(0,2)4.如图,已知AB为圆O的直径,C为圆上一动点,PA⊥圆O所在的平面,且PA=AB=2,过点A作平面α⊥PB,分别交PB,PC于E,F,当三棱锥P-AEF的体积最大时,tan∠BAC=________.解析:∵PB⊥平面AEF,∴AF⊥PB.又AC⊥BC,AP⊥BC,∴BC⊥平面PAC,∴AF⊥BC,∴AF⊥平面PBC,∴∠AFE=90°.设∠BAC=θ,在Rt△PAC中,AF=AP·ACPC=2×2cos θ21+cos2θ=2cos θ1+cos2θ,在Rt△PAB中,AE=PE=2,∴EF=AE2-AF2,∴V P-AEF=16AF·EF·PE=16AF·2-AF2·2=26·2AF2-AF4=26·-(AF2-1)2+1≤26,∴当AF=1时,V P-AEF取得最大值26,此时AF=2cos θ1+cos2θ=1,∴cos θ=13,sin θ=23,∴tan θ= 2.答案: 2第2课时平行与垂直(能力课) [常考题型突破][例1](2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .[方法归纳]1.(2017·苏锡常镇一模)如图,在斜三棱柱ABC -A1B 1C 1中,侧面AA 1C 1C是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.(1)求证:E 是AB 的中点;(2)若AC 1⊥A 1B ,求证:AC 1⊥BC .证明:(1)连结BC1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1 .因为侧面AA 1C 1C 是菱形,AC 1∩A 1C =O ,所以O 是AC 1中点,所以AE EB =AO OC 1=1,E 是AB 的中点. (2)因为侧面AA 1C 1C 是菱形,所以AC 1⊥A 1C,又AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.2.(2017·苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2.(1)若点Q是PD的中点,求证:AQ⊥平面PCD;(2)证明:BD∥平面PEC.证明:(1)因为PA=AD,Q是PD的中点,所以AQ⊥PD.又PA⊥平面ABCD,所以CD⊥PA.又CD⊥DA,PA∩DA=A,所以CD⊥平面ADP.又因为AQ⊂平面ADP,所以CD⊥AQ,又PD∩CD=D,所以AQ⊥平面PCD.(2)取PC的中点M,连结AC交BD于点N,连结MN,ME,在△PAC中,易知MN=12PA,MN∥PA,又PA∥EB,EB=12PA,所以MN=EB,MN∥EB,所以四边形BEMN是平行四边形,所以EM∥BN.又EM⊂平面PEC,BN⊄平面PEC,所以BN∥平面PEC,即BD∥平面PEC.[例2]ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点.求证:(1)平面MON∥平面PAC;(2)平面PBC⊥平面MON.[证明](1)因为M,O,N分别是PB,AB,BC的中点,所以MO∥PA,NO∥AC,又MO∩NO=O,PA∩AC=A,所以平面MON∥平面PAC.(2)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.由(1)知,MO∥PA,所以MO⊥BC.连结OC,则OC=OB,因为N为BC的中点,所以ON⊥BC.又MO∩ON=O,MO⊂平面MON,ON⊂平面MON,所以BC⊥平面MON.又BC⊂平面PBC,所以平面PBC⊥平面MON.[方法归纳]1.(2017·无锡期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.证明:(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,因为四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF,因为四边形ABCD为矩形,所以O点为AC的中点,因为E为PC的中点,所以OE∥PA,因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD,同理可得:OF∥平面PAD,又因为OE∩OF=O,所以平面OEF∥平面PAD,因为EF⊂平面OEF,所以EF∥平面PAD.2.(2016·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D ⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.[例3]圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.(1)求证:平面AFC⊥平面CBF.(2)在线段CF上是否存在一点M,使得OM∥平面ADF?并说明理由.[解](1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF ⊂平面ABEF ,∴AF ⊥CB .又AB 为圆O 的直径,∴AF ⊥BF .又BF ∩CB =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)当M 为CF 的中点时,OM ∥平面ADF .证明如下:取CF 中点M ,设DF 的中点为N ,连结AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO , ∴四边形MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF ,∴OM ∥平面DAF .[方法归纳]与平行、垂直有关的存在性问题的解题步骤[变式训练]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BF BE的值. 解:(1)证明:∵四边形ABCD 为矩形,∴AB ⊥BC ,∵平面ABCD ⊥平面BCE ,∴AB ⊥平面BCE ,∴CE ⊥AB .又∵CE ⊥BE ,AB ∩BE =B ,∴CE ⊥平面ABE ,又∵CE ⊂平面AEC ,∴平面AEC ⊥平面ABE .(2)连结BD 交AC 于点O ,连结OF .∵DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF .∴DE ∥OF ,又在矩形ABCD 中,O 为BD 中点,∴F 为BE 中点,即BF BE =12. 2.如图,在矩形ABCD 中,E ,F 分别为BC ,DA 的中点.将矩形ABCD 沿线段EF 折起,使得∠DFA =60°.设G 为AF 上的点.(1)试确定点G 的位置,使得CF ∥平面BDG ;(2)在(1)的条件下,证明:DG ⊥AE .解:(1)当点G 为AF 的中点时,CF ∥平面BDG .证明如下:因为E ,F 分别为BC ,DA 的中点,所以EF ∥AB ∥CD .连结AC 交BD 于点O ,连结OG ,则AO =CO .又G 为AF 的中点,所以CF ∥OG .因为CF ⊄平面BDG ,OG ⊂平面BDG .所以CF ∥平面BDG .(2)因为E ,F 分别为BC ,DA 的中点,所以EF ⊥FD ,EF ⊥FA .又FD ∩FA =F ,所以EF ⊥平面ADF ,因为DG ⊂平面ADF ,所以EF ⊥DG .因为FD =FA ,∠DFA =60°,所以△ADF 是等边三角形,DG ⊥AF ,又AF ∩EF =F ,所以DG ⊥平面ABEF .因为AE ⊂平面ABEF ,所以DG ⊥AE .[课时达标训练]1.如图,在三棱锥V -ABC 中,O ,M 分别为AB ,VA 的中点,平面VAB ⊥平面ABC ,△VAB 是边长为2的等边三角形,AC ⊥BC 且AC =BC .(1)求证:VB ∥平面MOC ;(2)求线段VC的长.解:(1)证明:因为点O,M分别为AB,VA的中点,所以MO∥VB.又MO⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,AC⊥BC,AB=2,所以OC⊥AB,且CO=1.连结VO,因为△VAB是边长为2的等边三角形,所以VO= 3.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC⊂平面ABC,所以OC⊥平面VAB,所以OC⊥VO,所以VC=OC2+VO2=2.B1C1中,AC⊥BC,A1B2.(2017·南通二调)如图,在直三棱柱ABC-A与AB1交于点D,A1C与AC1交于点E.求证:(1)DE∥平面B1BCC1;(2)平面A1BC⊥平面A1ACC1.证明:(1)在直三棱柱ABC-A1B1C1中,四边形A1ACC1为平行四边形.又E为A1C与AC1的交点,所以E为A1C的中点.同理,D为A1B的中点,所以DE∥BC.又BC⊂平面B1BCC1,DE⊄平面B1BCC1,所以DE∥平面B1BCC1.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,又BC⊂平面ABC,所以AA1⊥BC.又AC⊥BC,AC∩AA1=A,AC⊂平面A1ACC1,AA1⊂平面A1ACC1,所以BC⊥平面A1ACC1.因为BC⊂平面A1BC,所以平面A1BC⊥平面A1ACC1.3.(2017·南京三模)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.证明:(1)因为BD∥平面AEF,BD⊂平面BCD,平面AEF∩平面BCD=EF,所以BD∥EF.因为BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.(2)因为AE⊥平面BCD,CD⊂平面BCD,所以AE⊥CD.因为BD⊥CD,BD∥EF,所以CD⊥EF,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,所以CD⊥平面AEF.又CD⊂平面ACD,所以平面AEF⊥平面ACD.4.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD;(2)当PD∥平面AEC时,求PE∶EB的值.解:(1)证明:在平面ABCD中,过A作AF⊥DC于F,则CF=DF=AF=1,∴∠DAC=∠DAF+∠FAC=45°+45°=90°,即AC⊥DA.又PA⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PA.∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴AC⊥平面PAD.又AC⊂平面AEC,∴平面AEC⊥平面PAD.(2)连结BD交AC于O,连结EO.∵PD∥平面AEC,PD⊂平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO,则PE∶EB=DO∶OB.又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1,∴PE∶EB的值为2.5.(2017·扬州考前调研)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD.证明:(1)连结OQ,因为AB∥CD,AB=2CD,所以AO =2OC ,又PQ =2QC ,所以PA ∥OQ ,因为OQ ⊂平面QBD ,PA ⊄平面QBD ,所以PA ∥平面QBD .(2)在平面PAD 内过P 作PH ⊥AD 于H ,因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD , 所以PH ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PH ⊥BD .又PA ⊥BD ,且PA ∩PH =P ,PA ⊂平面PAD ,PH ⊂平面PAD ,所以BD ⊥平面PAD ,又AD ⊂平面PAD ,所以BD ⊥AD .6.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)若P 为BD 的中点,试问:在线段AE 上是否存在点Q ,使得PQ ∥平面BCE ?若存在,找出点Q 的位置;若不存在,请说明理由.解:(1)证明:如图,取EF 的中点G ,连结AG ,因为EF =2AB ,所以AB =EG ,又AB ∥EG ,所以四边形ABEG 为平行四边形,所以AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2, 所以AG 2+AF 2=GF 2,所以AG ⊥AF .因为四边形ABCD 为矩形,所以AD ⊥AB ,又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB ,AD ⊂平面ABCD , 所以AD ⊥平面ABEF ,又AG ⊂平面ABEF ,所以AD ⊥AG .因为AD ∩AF =A ,所以AG ⊥平面ADF .因为AG ∥BE ,所以BE ⊥平面ADF .因为DF ⊂平面ADF ,所以BE ⊥DF .(2)存在点Q ,且点Q 为AE 的中点,使得PQ ∥平面BCE .证明如下:连结AC ,因为四边形ABCD 为矩形,所以P 为AC 的中点.在△ACE中,因为点P,Q分别为AC,AE的中点,所以PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,所以PQ∥平面BCE.。

(新高考)高考数学冲刺专项课件:专题六 立体几何 第一讲 空间几何体的表面积与体积

(新高考)高考数学冲刺专项课件:专题六 立体几何  第一讲  空间几何体的表面积与体积

连接
MA,
MC1
,则
MC1
MA
,所以
MN
1 2
AC1
2,
又 A1M 1, A1N
2
,所以
A1MN
π 2
,且
AB//A1B1 ,
所以异面直线 MN 与 AB 所成角为 A1MN ,
所以异面直线 MN 与 AB 所成角不等于 π , 2
故 C 不正确;三棱锥 M ABC1 的体积
VM ABC1
VC1 ABM
所以 PDO 60 ,则 PO 2 tan 60 2 3 , PD 2 4 .
cos 60
[解析]
由题意可知三棱锥 P ABC 的内切球的球心 O ' 在线段 PO 上,
在 Rt△POD 中, sin DPO OD R ,即 2 R , PD PO R 4 2 3 R
解得 R 2 3 .所以该三棱锥的内切球的体积 3
AC 平面 ABCD, AC 平面 BDEF,
多面体 ABCDEF 体积
V
VABDEF
VCBDEF
1S 3
BDEF
AC 1 2 3
2 2 2
2 16 , 3
故选 D.
[跟踪训练]
2.正四棱台的上、下底面的边长分别为 2,4,
侧棱长为 2,则四棱台的体积为( D )
A. 56 2 3
32
[解析]
解得 PD 3 .连接 OC,设外接球的半径为 R, 则 OD 3 R , OC R ,在△ODC 中, CD 1 AC 3 ,
2
由勾股定理得 (3 R)2 ( 3)2 R2 ,解得 R 2 .
三棱锥 P ABC 的外接球的体积V 4 π 23 32 π ,

高三数学二轮复习:立体几何

高三数学二轮复习:立体几何
板块三 专题突破 核心考点
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是

解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

高考数学知识点:空间几何体的表面积和体积

高考数学知识点:空间几何体的表面积和体积

高考数学知识点:空间几何体的表面积和体积第1篇:高考数学知识点之空间几何体的表面积和体积在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

下面小编给大家介绍高考数学知识点之空间几何体的表面积和体积,赶紧来看看吧!1、圆柱体:表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a,V=a4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr=π2Dd/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D+Dd+3d/4)/15(母线是抛物线形)第2篇:高考数学知识点:空间几何体的表面积和体积数学是研究数量、结构、变化、空间以及信息等概念的一门学科,下面是小编整理的高考数学知识点:空间几何体的表面积和体积,希望对大家有帮助!1、圆柱体:表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a,V=aa-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr=π2Dd/4D-桶腹直径d-桶底直径h-桶高V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D+Dd+3d/4)/15(母线是抛物线形)第3篇:高考数学知识点:空间几何体的表面积和体积知识解析一、柱、锥、台和球的侧面积和体积典型例题1:1、几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2、求体积时应注意的几点:(1)、求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)、与三视图有关的体积问题注意几何体还原的准确*及数据的准确*.3、求组合体的表面积时注意几何体的衔接部分的处理.典型例题2:1、以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2、多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3、旋转体的表面积问题注意其侧面展开图的应用.典型例题3:1、计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2、注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3、等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.第4篇:空间几何体的表面积与体积的数学知识点一、课标要求:了解一些简单的几何体的表面积的计算方法,了解棱柱、棱锥、台的表面积计算公式(不要求记忆公式)二、教学目标:(1)了解平面展开图的概念及柱、锥、台的表面积公式;(2)会求一些简单几何体的表面积公式;(3)让学生经历空间几何体的侧面展开过程,感知几何体的形状;(4)让学生通过对照比较,理顺柱体、锥体、台体侧面积之间的转换关系,体会数和形的完美结合.(5)通过学习使学生感受到空间几何体侧面积的求解过程,对自己空间思维能力的影响,从而增强学习数学的信心.三、教学重点、难点:重点;空间几何体侧面积的计算难点;空间几何体侧面展开四、设计思路:借助多媒体,通过动态演示一些多面体的平面展开图的过程,让学生在直观感知的基础上了解平面展开图的概念,进而结合前面已研究的柱、锥、台这三类几何体的概念,介绍正棱柱、正棱锥、正棱台的概念,结合模型组织学生感知探索侧面展开图的形成过程及侧面展开图的构成,得出它们侧面积的计算公式。

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8

.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

专题三 立体几何1.高考立体几何试题具有较强的综合性,重视基础学问、基本技能和创新意识的考查,突出直观想象、逻辑推理、数学运算等学科核心素养的考查.内容包括“空间几何体”“点、直线、平面之间的位置关系”和“空间向量与立体几何”.2. 从近几年高考数学试题考查的状况来看,题目难度和题量相对稳定,一般是一个大题,两个小题,占22分,难度基本是中等.3.立体几何高考选择题或填空题有两个常考的热点:一是空间几何体的表面积、体积的计算,有时和数学文化、科技情境交汇命题,特殊要留意的是球与球的组合体问题,常作为小题的压轴题出现,难度较大,对空间想象实力和推理实力都有较高的要求.二是空间中点、直线、平面之间的位置关系的判定,或空间角的计算,若出现在压轴小题的位置,则类型一般为立体几何动态问题或翻折问题.4.立体几何高考解答题常以棱柱或棱锥为载体,一般设置两问,“一证一算”,一问是定性分析,一问是定量分析.其中定性分析以线、面平行、垂直的证明为主,考查逻辑推理实力及学科素养;而定量分析主要是应用空间向量求线面角、二面角,考查数学运算实力与学科素养.1.几何体的表面积与体积公式(1)柱体的体积和表面积:V =S 底h ;S 圆柱侧=2πrl ;S 表面积=S 侧+2S 底.(2)台体的体积和表面积:V =13(S 上+S 下+S 上S 下)h ;S 圆台侧=π(r 1+r 2)l ;S 表面积=S 侧+S 上+S 下.(3)锥体的体积和表面积:V =13S 底h ;S 圆锥侧=πrl ;S 表面积=S 侧+S 底. (4)球的体积和表面积:V =43πR 3;S =4πR 2. 2.三个基本领实(1)基本领实1:过不在同一条直线上的三点,有且只有一个平面.(2)基本领实2:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.(3)基本领实3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.3.线面平行、垂直的定理(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂α,b ⊂α,a ∩b =P ,a ∥β,b ∥β⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .(5)线面垂直的判定定理:⎭⎪⎬⎪⎫l ⊥a l ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α. (6)线面垂直的性质定理:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (7)面面垂直的判定定理: ⎭⎪⎬⎪⎫l ⊥αl ⊂β⇒α⊥β.(8)面面垂直的性质定理: ⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥al ⊂β⇒l ⊥α. 4.三种空间角的求法设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角:设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21·a 22+b 22+c 22 .(2)线面夹角:设直线l 与平面α的夹角为θ⎝⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角:设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.5.空间距离(1)点到直线的距离直线l 的单位方向向量为u ,A 是直线l 上的任一点,P 为直线l 外一点,设AP →=a ,则点P到直线l 的距离d =a 2-(a ·u )2.(2)点到平面的距离平面α的法向量为n ,A 是平面α内任一点,P 为平面α外一点,则点P 到平面α的距离为d =|AP →·n ||n |.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学生用书P46]第1讲空间几何体的表面积与体积考点一空间几何体的表面积和体积[学生用书P47][典型例题]命题角度1求空间几何体的表面积(1)(2020·高考全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π(2)如图,在正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为________.【解析】(1)如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=2r,解得AB=23,故OO1=23,所以R2=OO21+r2=(23)2+22=16,所以球O的表面积S =4πR2=64π.故选A.(2)设正方体的棱长为1,则其表面积为6,三棱锥D1­AB1C为正四面体,每个面都是边长为2的正三角形,其表面积为4×12×2×62=23,所以三棱锥D1­AB1C的表面积与正方体的表面积的比为1∶ 3.【答案】 (1)A (2)1∶ 3求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得不规则几何体的表面积.命题角度2 求空间几何体的体积(1)(2020·南充市第一次适应性考试)如图,在正三棱锥A -BCD 中,AB =BC ,E 为棱AD 的中点.若△BCE 的面积为2,则三棱锥A -BCD 的体积为( ) A.23B .33 C.233D .223 (2)(一题多解)(2020·福建省质量检测)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A.16π9B .8π9 C.16π27 D .8π27【解析】 (1)因为AB =BC ,所以正三棱锥A -BCD 为正四面体.因为E 为AD 的中点,所以AD ⊥BE ,AD ⊥CE .又CE ∩BE =E ,所以AD ⊥平面BCE .设AD =a ,则BE=CE =32a ,所以等腰三角形BCE 的面积S △BCE =12×BC × BE2-⎝ ⎛⎭⎪⎫BC 22=12×a ×⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=12×22a 2=2,所以a =2,所以V 三棱锥A -BCD =V 三棱锥A -BCE +V 三棱锥D -BCE=2V 三棱锥A -BCE =2×13S △BCE ×AE =2×13×2×a 2=223. (2)方法一:如图,OC =2,OA =3,由△AED ∽△AOC 可得ED OC =AE AO .设圆柱体的底面半径r =ED =2x (0<x <1),可得AE =3x ,则圆柱体的高h =OE =3-3x ,圆柱体的体积V =π(2x )2(3-3x )=12π(x 2-x 3),令V (x )=12π(x 2-x 3),则V ′(x )=12π(2x -3x 2),令V ′(x )=0,解得x =23或x =0(舍去),可得V (x )在区间⎝ ⎛⎭⎪⎫0,23上单调递增,在区间⎝ ⎛⎭⎪⎫23,1上单调递减,故当x =23时,V (x )取得最大值,V (x )max =16π9,即圆柱体的最大体积是16π9.方法二:同方法一,则圆柱体的体积V =12πx 2(1-x )=6π·x ·x (2-2x )≤6π·⎣⎢⎡⎦⎥⎤x +x +(2-2x )33=16π9,当且仅当x =2-2x ,即x =23时等号成立,故圆柱体的最大体积是16π9.【答案】 (1)D (2)A求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.已知圆锥的顶点为S ,底面圆周上的两点A ,B 满足△SAB 为等边三角形,且面积为43,又知SA 与圆锥底面所成的角为45°,则圆锥的表面积为( ) A .82πB .4(2+2)πC .8(2+1)πD .8(2+2)π解析:选C.设圆锥的母线长为l ,由题意得34l 2=43,所以l =4.设圆锥的底面半径为r ,因为SA 与圆锥底面所成的角为45°,所以r =l ·cos 45°=4×22=22,因此圆锥的表面积为πrl +πr 2=82π+8π=8(2+1)π,选C.2.《九章算术》是我国古代的数学名著,书中提到一种名为“刍甍”的五面体,如图所示,四边形ABCD 是矩形,棱EF ∥AB ,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则这个几何体的体积是( )A.203B .83+2 3 C.1023 D .823解析:选 C.过点E 作EG ⊥平面ABCD ,垂足为点G ,过点F 作FH ⊥平面ABCD ,垂足为点H ,过点G 作PQ ∥AD ,交AB 于点Q ,交CD 于点P ,过点H 作MN ∥BC ,交AB 于点N ,交CD 于点M ,如图所示.因为四边形ABCD 是矩形,棱EF ∥AB ,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,所以四边形PMNQ 是边长为2的正方形,EG =(3)2-12= 2.所以这个几何体的体积为V =V E ­AQPD +V EPQ ­FMN +V F ­NBCM =2V E -AQPD +V EPQ -FMN =13×1×2×2×2+12×2×2×2=423+22=1023,故选C.考点二 与球有关的切、接问题[学生用书P48][典型例题]命题角度1 外接球(2020·贵阳市适应性考试)已知A ,B ,C ,D 四点在球O 的表面上,且AB =BC =2,AC =22,若四面体ABCD的体积的最大值为43,则球O 的表面积为( )A .7πB .9πC .10πD .12π【解析】 根据题意有AB 2+BC 2=AC 2,所以△ABC 在以AC 为直径的截面圆内,如图,S △ABC =12×2×2=2.当平面DAC ⊥平面ABC 时,所得四面体体积最大,此时,设高为h ,则V D ­ABC =13S △ABC ·h =13×2h =43,解得h =2,设O 1为AC 的中点,则OO 1⊥平面ABC ,在Rt △OO 1C 中,根据OO 21+O 1C 2=OC 2,得(2-R )2+(2)2=R 2(R为球O 的半径),解得R =32,所以球O 的表面积S =4πR 2=9π.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度2内切球(2020·高考全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【解析】易知半径最大的球即为该圆锥的内切球.圆锥PE及其内切球O如图所示,设内切球的半径为R,则sin∠BPE=ROP=BEPB=13,所以OP=3R,所以PE=4R=PB2-BE2=32-12=22,所以R=22,所以内切球的体积V=43πR3=23π,即该圆锥内半径最大的球的体积为23π.【答案】2 3π求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.[对点训练]1.(2020·福州市适应性考试)设三棱柱ABC-A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=32且三棱柱的所有顶点都在同一球面上,则该球的表面积是( )A.24πB.18πC.26πD.16π解析:选C.依题意得三棱柱ABC-A1B1C1的外接球即底面为正方形(边长为2)、高为32的长方体的外接球,故该球的直径为长方体的体对角线,设该球的半径为R,则有(2R)2=22+22+(32)2=26,故该球的表面积为4πR2=26π,故选C.2.(一题多解)在四棱锥P-ABCD中,四边形ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD=2a,若在这个四棱锥内放一个球,则该球半径的最大值为_______ _.解析:通解:由题意知,球内切于四棱锥P-ABCD时半径最大,设该四棱锥的内切球的球心为O,半径为r,连接OA,OB,OC,OD,OP,则V P­ABCD=V O­ABCD+V O­P AD +V O­P AB+V O­PBC+V O­PCD,即13×2a×2a×2a=13×⎝⎛⎭⎪⎫4a2+2×12×2a×2a+2×12×2a×22a×r,解得r=(2-2)a.优解:易知当球内切于四棱锥P-ABCD,即与四棱锥P-ABCD各个面均相切时,球的半径最大,作出相切时的侧视图如图所示,设四棱锥P-ABCD内切球的半径为r,则1 2×2a×2a=12×(2a+2a+22a)×r,解得r=(2-2)a.答案:(2-2)a[学生用书(单独成册)P132]一、单项选择题1.如图所示的直观图中,O′A′=O′B′=2,则其平面图形的面积是( )A .4B .4 2C .2 2D .8解析:选A.由斜二测画法可知原图为两条直角边长分别为2和4的直角三角形,如图所示,所以其面积S =12×2×4=4,故选A.2.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B .323π C .16π D .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.3.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1-AEF 的体积为2,则四棱柱ABCD -A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18解析:选A.设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1-AEF =V F ­A 1AE ,又V F ­A 1AE =13S △A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD ­A 1B 1C 1D 1,所以V ABCD ­A 1B 1C 1D 1=6V A 1-AEF =6×2=12.所以四棱柱ABCD ­A 1B 1C 1D 1 的体积为12.故选A.4.(2020·全国统一考试模拟卷)已知在三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( )A .4B .6C .4 3D .6 3解析:选 C.由∠ABC =π2,AB =2,BC =6,得AC =210.由∠SAB =π2,AB =2,SB =4,得SA =23,则SA 2+AC 2=SC 2,得SA ⊥AC .又SA ⊥AB ,所以SA ⊥平面ABC .所以三棱锥S -ABC 的体积为13S △ABC ·SA =13×12×2×6×23=4 3.5.中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD ,ABFE ,CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10,EF 到平面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是( )A .110B .116C .118D .120解析:选D.如图,过点A 作AP ⊥CD ,AM ⊥EF ,过点B 作BQ ⊥CD ,BN ⊥EF ,垂足分别为P ,M ,Q ,N ,连接PM ,QN ,将一侧的几何体补到另一侧,组成一个直三棱柱,直三棱柱的底面积为12×10×3=15,高为8,体积V =15×8=120.6.如图,半径为R 的球的两个内接圆锥有公共的底面.若两个圆锥的体积之和为球的体积的38,则这两个圆锥的高之差的绝对值为( )A.R 2 B .2R 3 C.4R 3 D .R解析:选D.设球的球心为O ,半径为R ,体积为V ,上面圆锥的高为h (h <R ),体积为V 1,下面圆锥的高为H (H >R ),体积为V 2,两个圆锥共用的底面的圆心为O 1,半径为r .由球和圆锥的对称性可知h +H =2R ,|OO 1|=H -R .因为V 1+V 2=38V ,所以13πr 2h +13πr 2H =38×43πR 3,所以r 2(h +H )=32R 3.因为h +H =2R ,所以r =32R .因为OO 1垂直于圆锥的底面,所以OO 1垂直于底面的半径,由勾股定理可知R 2=r 2+|OO 1|2,所以R 2=r 2+(H -R )2,所以H =32R (H =12R 舍去),所以h =12R ,则这两个圆锥的高之差的绝对值为R ,故选D. 7.如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4B .2π C.3π2D .9π4解析:选C.正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.8.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体体积的最大值为( )A.2 000π9B .4 000π27C .81πD .128π解析:选 B.小圆柱的高分为上下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,体积V 单调递增;当53<h <5时,V ′<0,体积V 单调递减.所以当h =53时,小圆柱的体积取得最大值,即V max =π×⎝ ⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 二、多项选择题9.下列说法中正确的是( )A .用一个平面截一个球,得到的截面是一个圆面B .圆台的任意两条母线延长后一定交于一点C .有一个面为多边形,其余各面都是三角形的几何体叫作棱锥D .若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥解析:选ABD.在A 中,用一个平面截一个球,得到的截面是一个圆面,故A 正确;在B 中,由圆台的概念知圆台的任意两条母线延长后一定交于一点,故B 正确;在C 中,依照棱锥的定义,其余各面的三角形必须有公共的顶点,故C 错误;在D 中,若六棱锥的底面边长都相等,则底面为正六边形,由过底面中心和顶点的截面知,若以正六边形为底面,侧棱长一定大于底面边长,故D 正确.10.(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可能为( ) A.2πB .(1+2)πC .22πD .(2+2)π解析:选AB.如果是绕直角边旋转一周,那么形成圆锥,所以圆锥底面半径为1,高为1,母线长是直角三角形的斜边长,为2,所以所形成的几何体的表面积S =πrl +πr 2=π×1×2+π×12=(2+1)π.如果是绕斜边旋转一周,那么形成的是上、下两个圆锥,所以圆锥的半径是直角三角形斜边上的高,为22,两个圆锥的母线都是直角三角形的直角边,长为1,所以形成的几何体的表面积S =2×πrl =2×π×22×1=2π.综上可知,形成的几何体的表面积为(2+1)π或2π.故选AB.11.已知四面体ABCD 是球O 的内接四面体,且AB 是球O 的一条直径,AD =2,BD =3,则下列结论正确的是( )A .球O 的表面积为13πB .AC 上存在一点M ,使得AD ∥BMC .若N 为CD 的中点,则ON ⊥CDD .四面体ABCD 体积的最大值为132解析:选ACD.因为AB 是球O 的一条直径,所以AC ⊥BC ,AD ⊥BD ,所以AB =AD2+BD2=22+32=13,球O 的半径为12AB =132,球O 的表面积为4π×⎝ ⎛⎭⎪⎫1322=13π,A 正确; 因为AD 与平面ABC 相交,所以AC 上找不到一点M ,使得AD ∥BM ,B 错误; 连接OC ,OD ,因为OC =OD ,所以△OCD 为等腰三角形.又N 为CD 的中点,所以ON ⊥CD .C 正确;易知点C 到平面ABD 的距离的最大值为球的半径R ,所以四面体ABCD 体积的最大值为13·S △ABD ·R =13×12×2×3×132=132,D 正确.12.(2020·山东临沂实验中学期末)已知四棱锥P -ABCD ,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =23,CD =PC =PD =2 6.若点M 为PC 的中点,则下列说法正确的是( )A .BM ⊥平面PCDB .P A ∥平面MBDC .四棱锥M -ABCD 外接球的体积为36πD .四棱锥M -ABCD 的体积为6解析:选BC.如图,连接AC ,BD 交于点O ,取CD 的中点N ,连接PN ,MN ,NO ,MO ,因为侧面PCD ⊥平面ABCD ,侧面PCD ∩平面ABCD =CD ,BC ⊥CD ,所以BC ⊥平面PCD .连接BM ,MD ,若BM ⊥平面PCD ,则BM ∥BC .显然与已知BM 与BC 相交矛盾,所以A 错误.因为点M 为PC 的中点,点O 为AC 的中点,所以OM ∥P A .又P A ⊄平面MBD ,MO ⊂平面MBD ,所以P A ∥平面MBD ,所以B 正确.因为点M 为PC 的中点,所以四棱锥M -ABCD 的体积是四棱锥P -ABCD 的体积的一半.由题意可得,PN ⊥平面ABCD ,PN =(26)2-(6)2=32,所以V M ­ABCD =12V P ­ABCD =12×13PN ×S 四边形ABCD =16×32×26×23=12,所以D 错误.因为点O ,N 分别为AC ,CD 的中点,所以ON ∥BC .又BC ⊥平面PCD ,所以ON ⊥平面PCD ,所以ON ⊥NM .在矩形ABCD 中,易得AC =(26)2+(23)2=6,所以OC =3,ON= 3.在△PCD 中,NM =12PD =6,所以在Rt △OMN 中,MO =ON2+MN2=3+6=3.所以OM =OA =OB =OC =OD ,所以点O 为四棱锥M -ABCD 外接球的球心,外接球的半径为3,所以其体积V =43π×33=36π,所以C 正确.故选BC.三、填空题13.如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点.若AA 1=4,AB =2,则四棱锥B -ACC 1D 的体积为________.解析:取AC 的中点O ,连接BO (图略),则BO ⊥AC ,所以BO ⊥平面ACC 1D . 因为AB =2,所以BO = 3. 因为D 为棱AA 1的中点,AA 1=4,所以AD =2,所以S 梯形ACC 1D =12×(2+4)×2=6, 所以四棱锥B -ACC 1D 的体积为13×6×3=2 3.答案:2 314.(一题多解)(2020·高考浙江卷)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.解析:方法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2 =2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.方法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr = 2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:115.(2019·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P分别作PE⊥BC交BC于点E,作PF⊥AC交AC于点F.由题意知PE=PF= 3.过P作PH⊥平面ABC于点H,连接HE,HF,HC,易知HE=HF,则点H在∠ACB的平分线上,又∠ACB=90°,故△CEH为等腰直角三角形.在Rt△PCE中,PC=2,PE=3,则CE=1,故CH=2,在Rt△PCH中,可得PH=2,即点P到平面ABC的距离为 2.答案: 216.(2020·西安五校联考)如图①,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图②所示粽子形状的六面体,则该六面体的表面积为________;若该六面体内有一个小球,则小球的最大体积为________.解析:(1)由题意,知该六面体的每个面均是边长为1的正三角形,所以该六面体的表面积为34×12×6=332.(2)将棱长为1的正四面体PQRS补成一个正方体,如图,则正方体的棱长为22,所以正四面体PQRS的体积V PQRS=⎝⎛⎭⎪⎫223-4×13×12×22×22×22=212,所以本题中的六面体的体积V=2×212=26.当小球与六面体的六个面均相切时,小球的体积最大,设此时小球的半径为r.小球的体积最大时,小球的球心与5个顶点的连线将该六面体分为六个全等的三棱锥,则六个三棱锥的体积和等于该六面体的体积,即有13×34×r×6=26,解得r=233,故小球的最大体积为43π·r3=43π·⎝⎛⎭⎪⎫2333=86π729.答案:33286729π。

相关文档
最新文档