工业机器人标定技术
工业机器人运动学标定及误差分析(精)

工业机器人运动学标定及误差分析运动学标定是机器人离线编程技术实用化的关键技术之一,也是机器人学的重要内容,在机器人产业化的背景下有十分重要的理论和现实意义。
机器人运动学标定以运动学建模为基础,几何误差参数辨识为目的,为机器人的误差补偿提供依据。
工业机器人在以示教方式工作时,以重复精度为主要指标;在以离线编程方式工作时,主要工作指标变为绝对精度。
但是,工业机器人重复精度较高而绝对精度较低,难以满足离线编程工作时的精度,所以需要进行运动学标定来提高其绝对精度。
随着机器人离线编程系统的发展,工业机器人运动学标定日益重要。
本文首先综合分析了工业机器人运动学标定的一些基本理论,为之后的运动学建模和标定提供理论基础。
根据ABB IRB140机器人实际结构,本文建立了D-H运动学模型,并讨论了机器人的正运动学问题和逆运动学问题的解;然后指出了该模型在标定中存在的缺陷,结合一种修正后的D-H模型建立了本文用于标定的模型。
并根据最终建立的运动学模型建立了机器人几何误差模型。
本文还在应用代数法求解机器人逆运动学问题的基础上,进行了应用径向基神经网络求解机器人逆解的研究。
该方法结合机器人正运动学模型,以机器人正解为训练样本训练经遗传算法优化后的径向基神经网络(GA-RBF网络),实现从机器人工作变量空间到关节变量空间的非线性映射,从而避免复杂的公式推导和计算。
本文在讨论了两种构造机器人封闭运动链进行运动学标定的方法的基础上,提出了一种新的机器人运动学标定方法——虚拟封闭运动链标定法。
并对该方法的原理、系统构成进行了详细的分析和说明。
该方法通过一道激光束将末端位置误差放大在观测平板上,能够获得更高精度的关节角的值,从而辨识出更为准确的几何参数。
为了验证本文提出的虚拟封闭运动链标定方法的有效性和稳定性,本文以ABB IRB140机器人为研究对象,利用有关数据进行了仿真分析,最终进行了标定试验,得出结论。
同主题文章[1].王金友. 中国工业机器人还有机会吗?' [J]. 机器人技术与应用. 2005.(02)[2].李如松. 工业机器人的应用现状与展望' [J]. 组合机床与自动化加工技术. 1994.(04)[3].赖维德. 工业机器人知识讲座——第一讲什么是工业机器人' [J].机械工人.冷加工. 1995.(02)[4].世界工业机器人产业发展动向' [J]. 今日科技. 2001.(11)[5].人丁兴旺的机器人大家族' [J]. 网络科技时代(数字冲浪). 2002.(01)[6].余力. 工业机器人在西班牙的应用' [J]. 管理科学文摘. 1994.(05)[7].曹祥康. 关于工业机器人产业化问题的思考' [J]. 机器人技术与应用. 2000.(01)[8].李瑞峰. 新一代工业机器人系列产品开发' [J]. 机器人. 2001.(S1)[9].王永林. 工业机器人技术概述与前瞻' [J]. 兵工自动化. 2004.(04)[10].刘远江. 中国工业机器人市场调查' [J]. 机器人技术与应用.2005.(02)【关键词相关文档搜索】:机械制造及其自动化; 工业机器人; 运动学标定; 绝对精度; 误差分析; GA-RBF网络; 虚拟封闭运动链【作者相关信息搜索】:上海交通大学;机械制造及其自动化;杨建国;夏天;。
工业机器人运动学标定及误差分析研究

工业机器人运动学标定及误差分析研究工业机器人是现代制造业中不可或缺的重要设备之一,它可以实现各种复杂的工业生产操作。
而工业机器人的运动学标定和误差分析则是确保机器人准确运动和定位的关键技术之一、本文将对工业机器人运动学标定及误差分析进行研究。
首先,我们需要明确工业机器人的运动学模型。
工业机器人的运动学模型是描述机器人运动学特征的数学模型,包括机器人末端执行器在空间坐标系中的位置和姿态。
机器人的运动学模型可以通过机器人臂的几何参数和关节参数进行建立。
接下来,我们需要进行工业机器人的运动学标定。
运动学标定是指通过实验测量,获得机器人运动学参数的过程。
具体步骤包括:1.确定运动学标定系统:选择适当的标定系统是进行运动学标定的首要任务。
常用的运动学标定系统包括激光测距仪、相机视觉系统等。
2.收集标定数据:通过标定系统对机器人执行器进行测量,获取机器人的位置和姿态数据。
标定数据可以通过移动机器人执行器,并记录其位置和姿态来获取。
3.进行标定参数计算:根据标定数据,通过数学运算方法计算机器人运动学参数。
计算方法可以采用最小二乘法等。
4.检验标定结果:将计算得到的运动学参数应用于机器人中,验证其是否能够准确描述机器人的运动学特性。
在进行工业机器人运动学标定的过程中,需要注意以下几点:1.标定精度要求:根据具体需求,确定工业机器人的运动学标定精度。
标定精度要求越高,则标定过程中需要收集的数据越多。
2.标定环境准备:保证标定环境的准确度和稳定性。
避免干扰因素对机器人运动学参数的影响。
3.标定数据处理:在收集标定数据后,需要对数据进行处理,去除异常值和噪声,以提高标定结果的准确性。
4.标定误差分析:对标定结果进行误差分析,评估标定精度。
常见的误差包括位置误差、姿态误差等。
1.关节间隙误差:机器人的关节存在间隙,会导致机器人运动学参数的偏差。
因此需要对机器人关节间隙进行误差分析,以减小误差对机器人定位的影响。
2.传动误差:机器人关节传动装置存在误差,如传动精度和传动回差等。
工业机器人建立工具坐标系的方法

工业机器人建立工具坐标系的方法工业机器人在进行工作时,需要准确地定位和定向,以便正确执行特定的任务。
为此,工业机器人往往需要建立工具坐标系(Tool Coordinate System)来描述其末端执行器(End Effector)的位置和姿态。
建立工具坐标系的方法有多种,下面详细介绍其中几种常用方法。
1.人工标定法:人工标定法是最常用的方法之一、该方法需要人工使用精确的测量工具,例如测量尺或激光仪等,来测量工具末端执行器相对于机器人坐标系的位置和姿态。
首先,通过操纵机器人,将工具末端执行器定位到几个事先设定好的位置和姿态,然后使用测量工具测量相应的数据。
通过这些数据,可以计算出工具坐标系相对于机器人基坐标系的坐标和姿态信息。
2.三点法:三点法是另一种常用的工具坐标系建立方法。
该方法需要选择三个具有较好几何分布的点,分别标记为A、B、C。
这三个点的位置需要互相独立,但可以通过机器人控制系统轻松到达。
首先,机器人末端执行器需要分别定位到A、B、C三个位置,并记录下机器人坐标系下的位置和姿态数据。
然后,根据这些数据,可以使用公式和计算方法确定出工具坐标系的位置和姿态信息。
3.线性插值法:线性插值法是较为灵活和精确的工具坐标系建立方法。
首先,选择一条线性路径,通过机器人控制系统指定机器人末端执行器沿该路径从一些起始点移动到一些目标点。
在移动过程中,通过机器人的关节位置数据和末端执行器的位姿数据,可以计算出每一个点相对于机器人基坐标系的位置和姿态信息。
根据这些数据,可以使用插值方法得到工具坐标系的位置和姿态信息。
4.杆状物法:杆状物法是一种实用的工具坐标系建立方法,该方法通常适用于需要定位和控制机器人末端执行器的情况。
基本原理是在机器人末端执行器上添加一个杆状物,如随机探针或激光测距仪。
通过测量杆状物的位置和姿态信息,可以反推出工具末端执行器的位置和姿态信息。
这种方法可以较精确地确定工具坐标系,并且可以在工作中实时校正。
机器人的运动学参数标定与标定精度

机器人的运动学参数标定与标定精度在工业自动化领域,机器人技术的快速发展给生产制造行业带来了革命性的变革。
机器人已成为生产线上的重要组成部分,其灵活性、精准性和效率极大地提升了生产效率。
然而,要使机器人能够实现复杂的运动控制和任务执行,就需要准确标定其运动学参数。
机器人的运动学参数标定是指确定机器人的三维坐标系和链接参数,这些参数包括关节角度、长度、质量、惯性等。
只有在准确标定了这些参数之后,机器人才能根据预先设定的控制指令来完成各种任务。
传统的机器人运动学参数标定方法主要基于机械设计数据和理论计算,其局限性在于无法考虑到实际环境中的误差和不确定性。
而且,由于机器人的复杂性和多自由度特性,往往导致运动学参数标定结果不够准确,影响了机器人的运动控制精度和稳定性。
因此,如何提高机器人的运动学参数标定精度成为一个迫切需要解决的问题。
近年来,随着传感器技术、数据处理算法和机器学习等方面的不断进步,人们提出了许多新的方法和技术来改善机器人的运动学参数标定精度。
其中,视觉标定方法是一种较为常用的方法,它通过摄像头捕捉机器人末端执行器在工作空间中的位置和姿态信息,然后利用相机标定算法计算出机器人的运动学参数。
由于视觉系统具有实时性、非接触性和高精度的特点,因此在工业机器人的应用中得到了广泛的应用。
另外,惯性传感器、编码器和激光测距仪等传感器也被广泛应用于机器人运动学参数标定中,通过这些传感器获取机器人的运动状态和姿态信息,进而计算出其运动学参数。
除了传感器技术的应用,还有一些基于数据处理算法和数学模型的方法也可以提高机器人的运动学参数标定精度。
例如,基于最小二乘法的非线性优化算法能够对机器人的标定数据进行拟合,从而减小标定误差。
另外,基于机器学习的方法也具有很大的潜力,通过训练数据集和深度学习算法,可以实现对机器人运动学参数的自动标定和更新,提高标定的精度和效率。
在实际应用中,机器人的运动学参数标定精度对其运动控制和路径规划至关重要。
工业机器人视觉系统的标定方法

工业机器人视觉系统的标定方法在现代工业自动化领域中,工业机器人扮演着至关重要的角色。
这些机器人能够执行一系列复杂的任务,从简单的装配工作到高度精密的制造流程。
而机器人视觉系统,作为工业机器人的“眼睛”,则赋予了机器人感知和理解周围环境的能力。
为了确保机器人视觉系统的准确性和可靠性,必须对其进行精确的标定。
本文将详细探讨工业机器人视觉系统的标定方法,包括其重要性、常见方法以及未来的发展趋势。
一、工业机器人视觉系统标定的重要性工业机器人视觉系统的标定是一个涉及多个步骤的复杂过程,其目标是通过一系列算法和技术手段,确定摄像机内外部参数,以及摄像机与机器人坐标系之间的相对位置关系。
这些参数包括摄像机的焦距、畸变系数、旋转矩阵和平移向量等。
只有经过准确的标定,机器人视觉系统才能精确地识别和定位目标物体,从而实现高效的自动化生产。
标定过程对于提高机器人视觉系统的性能至关重要。
一方面,准确的标定可以显著提高视觉系统的定位精度和稳定性,从而降低生产过程中的误差率。
另一方面,标定过程还有助于优化机器人的运动轨迹和路径规划,提高生产效率。
因此,掌握有效的标定方法对于实现工业自动化生产具有重要意义。
二、工业机器人视觉系统标定的常见方法1. 传统标定方法传统标定方法主要依赖于特定的标定参照物,如标定板、标定块等。
这些参照物具有已知且精确的几何特征,可用于估计摄像机的内外部参数。
传统标定方法的优点在于标定精度高、稳定性好,适用于对精度要求较高的场合。
然而,这种方法也存在一些局限性,如标定过程繁琐、需要专业操作人员以及对标定参照物的依赖性较强等。
2. 自标定方法自标定方法是一种不需要特定标定参照物的标定方法。
它利用摄像机在运动过程中拍摄到的多幅图像之间的对应关系,通过求解一系列方程组来估计摄像机的内外部参数。
自标定方法的优点在于灵活性高、适用范围广,可以应用于各种复杂的场景中。
然而,由于自标定方法依赖于图像之间的对应关系,因此其标定精度相对较低,且容易受到噪声和光照变化等因素的影响。
简述工业机器人工件坐标的标定方法以及工件坐标系的作用

简述工业机器人工件坐标的标定方法以及工件坐标系的作用随着工业机器人在生产领域的应用越来越广泛,工件坐标的准确性和标定成为了至关重要的问题。
工件坐标标定是指确定机器人执行任务时所需的工件坐标与实际工件位置之间的准确关系。
下面我们来详细讨论一下工业机器人工件坐标的标定方法以及工件坐标系的作用。
工业机器人工件坐标的标定方法:1. 基础标定法:将工件放置在已知坐标系中,通过测量机器人末端执行器相对于该已知坐标系的坐标来计算工件坐标系的位置和姿态。
2. 视觉标定法:通过机器视觉系统获取工件的图像信息,利用图像处理算法计算工件的位置和姿态。
3. 可编程标定法:通过程序控制机器人执行一系列特定动作,例如移动、旋转等,然后通过测量工具对机器人末端执行器的坐标进行测量,从而计算出工件坐标系的位置和姿态。
4. 双手协作标定法:利用机器人两只手的力和力矩传感器测量工件的力和力矩,通过对力和力矩的分析和计算,得到工件坐标系的位置和姿态。
工件坐标系的作用:1. 精确定位:工件坐标系的确定可以帮助机器人实现对工件的精确定位,从而有效地进行操作和加工。
2. 姿态控制:工件坐标系可以帮助机器人确定工件的姿态,从而实现准确的操作和加工。
3. 任务规划:工件坐标系可以作为规划的参考,帮助机器人确定路径和动作,从而实现高效的任务规划和执行。
4. 误差补偿:通过对工件坐标系的标定,可以计算出机器人在执行任务时可能存在的误差,从而进行误差补偿,提高生产的准确性和一致性。
5. 自动化生产:工件坐标系的准确标定可以使机器人实现自动化生产,提高生产效率和品质。
在工业机器人应用中,工件坐标的标定方法和工件坐标系的作用至关重要。
通过选择适合的标定方法,并正确理解和利用工件坐标系的作用,可以提高工业机器人的生产效率和准确性,促进制造业的发展。
工业机器人运动学模型标定方法

工业机器人运动学模型标定方法工业机器人在现代制造中的应用越来越广泛,对于现代制造企业降本增效、产品升级、质量控制、工人劳动条件改善等都具有十分重要的作用。
随着先进制造对高速、高精度、大承载工业机器人的需要,要求机器人系统本身须有较高的控制精度,控制精度主要通过位姿特性、轨迹特性及负载特性等指标来体现,这些是工业机器人的共性关键指标。
GB/T中关于机器人的位姿特性主要包括位姿准确度和位姿重复性。
位姿重复定位精度已经可以满足工业需求,但是在工作环境中,由于机械加工精度、装配误差、传动误差、磨损、环境影响等因素,造成机器人的实际运动学模型与理论运动学模型之间存在误差,从而影响机器人绝对定位精度。
随着对机器人的绝对定位精度要求越来越高,对提高机器人绝对定位精度的研究也成为了研究重点,通过标定技术来提高机器人绝对定位精度是国内外研究的热点。
本文主要针对工业机器人运动学模型标定中不同方法的参数建模和参数识别特点进行了比较。
1 运动学模型标定运动学模型标定主要是将影响机器人末端位姿偏差的因素归因于机器人连杆参数误差和关节角度误差,通过对运动学参数误差进行建模并借助一定的测量手段测量机器人末端位姿误差,结合参数辨识算法或数值优化算法识别出理论模型参数的误差,最后将各参数误差修正至模型参数的理论值。
研究文献表明,机器人的定位误差95%都是由于所建运动学模型不准确所造成的。
机器人运动学模型标定通常包括参数建模、误差测量、参数辨识、误差补偿四个步骤。
通过对运动学模型的参数辨识方法辨识出串联机械臂的准确参数,并对机械臂的结构误差进行补偿,从而提高机器人的绝对定位精度。
2 参数建模参数建模是建立描述机器人几何特性和运动性能的数学模型。
目前研究主要涉及到的运动学模型主要有DH模型、MDH模型、修正DH模型、S模型、CPC模型和POE模型,其中运用较广泛的是DH 模型、MDH模型和POE模型。
DH模型是最早被提出来的,其参数定义少、模型过程建立方便被广泛应用,但是模型奇异和冗余等问题突出,而且不满足误差模型完整性和连续性的要求。
工业机器人工件 工具坐标系标定的基本流程

工业机器人工件工具坐标系标定的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!工业机器人工件与工具坐标系标定的基本流程详解在现代工业生产中,机器人扮演着越来越重要的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业机器人标定技术
在现代制造业中,工业机器人是起着非常重要的作用的关键设
备之一。
它能够完成一系列重复性高、精度要求极高的操作,使
得企业的生产效率得到大幅度提高。
然而,在工业机器人的应用中,为了能够保证其操作精度和可靠性,需要进行一项非常重要
的技术操作,就是标定。
标定的概念比较简单,就是通过收集一系列的机器人运动数据,来确定机器人各个关节之间的空间位置关系以及工具位置和姿态
的变化规律。
从而保证机器人能够准确地响应各种命令,并完成
各种操作。
标定可以说是工业机器人应用中不可或缺的一项技术。
标定的过程并不复杂,但是需要专业知识和技能。
标定需要先
利用特殊工具从机器人结构体系入手,得到一系列的基本参数和
参照坐标点。
之后对于每个机器人关节自身的特殊性,也需要一
定的方法确定其误差的量化程度。
通过误差量化,可以将标定误
差降低到最小,提高机器人的精度和稳定性。
标定的过程可能比
较繁琐,但是少不了标定人员的专业技巧和经验。
只要标定人员
的技艺精湛、经验丰富,就可以有效地解决标定中遇到的各种问题。
标定技术的重要性还表现在其能对工业生产过程带来的好处上。
由于标定能够提高机器人的精度和可靠性,从而使得工业生产能
够更为高效、稳定。
这就意味着企业可以减少人力投入,减少生
产成本,提高生产效率和产品质量。
此外,标定技术也能够为机
器人应用提供更为广泛的场景。
例如,在制造汽车的过程中,机
器人需要穿过狭窄的空间进行操作,同时还需要保持操作精度以
保证汽车质量。
对于这种情况,标定能够帮助机器人找到正确的
位置,并实现无误差操作。
除此之外,标定还可以为机器人后期维护和拓展提供基础。
当
机器人产生故障时,或者需要进行扩展时,工程师通常会进行重
新标定。
这就能够有效地避免标定误差积累导致的操作不准确现象。
总之,标定技术的重要性不可小觑。
即便如此,工业机器人标定技术仍然面临着一些不可避免的挑战。
由于工业机器人的操作环境往往繁杂多样,标定过程也往往
十分棘手。
例如,在一些狭窄的空间中,需要进行高精度的标定,这就需要标定人员有高超的技能和经验。
另外,机器人结构的特
殊性也会使得标定变得更加困难。
同时,随着机器人应用的不断
普及,机器人各个关节之间的耦合影响也愈加明显,这就需要标
定人员更高的技术水平。
还有一点需要提醒的是,在标定中,误
差来源是复杂的,在实际操作中需要仔细分析,从而更为准确地
确定标定参数。
综上所述,工业机器人标定技术的重要性不可小觑。
标定能够
提高机器人操作精度和可靠性,从而使得企业的生产效率得到大
幅度提高。
同时,标定技术仍然需要不断地完善和提高,以满足
机器人应用领域的不断发展和变化。
只有不断提高技术水平,才能够更好地解决标定中遇到的各种问题,并为机器人应用带来更为广阔的场景和前景。