10 液化石油气储罐定期检验

10 液化石油气储罐定期检验
10 液化石油气储罐定期检验

10 液化石油气储罐定期检验

液化石油气贮罐是盛装液化石油气的常用设备,其公称容积多在3~150m3,以卧式常温容器居多,是一种典型的储存容器,广泛分布在各地,作为工矿企业燃料储存或民用生活中燃料的储配。

由于液化石油气的基本特性和储罐的结构特点,其定期检验也非常具有代表性,现就以液化石油气卧式储罐的定期检验为例,完整介绍检验的过程及要点。

当液化石油气与空气混合并达到一定浓度,遇到明火就会引起爆炸,这种能爆炸的混合气体中所含燃气的浓度极限称为爆炸极限,一般用体积百分数表示。在混合气体中当燃气减少到不能形成爆炸混合物时的那一浓度,称为可燃气体的爆炸下限,而当燃气增加到不能形成爆炸混合物时的那一浓度,称为爆炸上限。液化石油气的爆炸极限范围为1.5~9.5%。

F.液化石油气可燃、易爆且具有低毒,轻度危害

(2)基本结构:

液化石油气储罐使用较为普遍,其基本结构和参数均已标准化(见NB/T47001-2009《钢制液化石油气储罐型式与基本参数》),以8~50m3为例(部件、管口、基础)

技术要求

1.钢板应符合GB713—2014《承压设备用钢板》标准,制造前应逐张进行超声检测,符合NB/T47013.3-2015超声检测的Ⅱ级为合格。所用锻件应符合NB/T47008-2010规定的Ⅲ级要求,管子应符合GB /T8163-2008标准。

2.设备所有焊接接头采用全焊透结构,容器焊后应进行整体消除应力热处理,热处理后严禁施焊。

3.设备制造完毕,以0.5MPa的压缩空气检测补强圈的焊接接头质量,合格后以2.66MPa的压力进行水压试验,最后以2.13MPa的压力对容器进行气密性试验。

4.试验合格后,表面除锈,外表面涂红丹、银粉各两遍,罐体水平中心线四周涂一条宽度不小于150mm的红色带,壳体中心线(此红色带不涂)喷印中心标志,标志的左侧喷印“严禁烟火”,右侧喷印“禁止施焊”

字样字高不小于200mm。

5.本容器安装时应候斜0.003坡度,使排渣口处于最低位置,本容器首次充装(包括检修后)应充氮气置换装置,严禁直接充装。

6.管口方位按本图,所有未注明接管伸出长度为150mm,束节伸出长度为60mm。液面计上要标有最高液位警戒线。

7.本设备管口法兰须与管路连接的应配套法兰。

8.安全阀型号:A42Y一25C,DN100。并应在安全阀排出口装设导管,将排放介质引至安全地点,并进行妥善处理,不得直接排入大气。

9.设计使用年限(预期):10年。(指在正常平稳操作及正常维护下根据介质对容器不大于腐蚀余量的均匀腐蚀情况下的年限)

10.异种钢焊接接头应表面进行100%磁粉检测,按NB/147013.4-2015标准MT-Ⅰ级合格。

11.吊耳与吊耳、吊耳与壳体连接的所有焊缝应进行外观检查,不得存在裂纹与未熔合缺陷,且须按

JNB/T47013.4—2015进行MT检测Ⅰ级合格。吊耳仅作吊空罐用。

1000PPM之间。

3.其他无特殊情况。

现请你编制定期检验方案

编制方案前应审查资料(首次检验1~4)

1.设计资料(设计图样、强度计算书、设计单位资质证明等)

2.制造资料(产品合格证、质量证明书、监督检验报告、竣工图、制造单位资质证明)

3.安装竣工资料

4.改造或重大维修资料(如果有)

5.使用管理资料(使用证、运行记录等)

6.年度检查报告

资料审查中发现,该单位缺少年度检查报告,请问该如何处理?检验结束后,应以检验意见通知书的形式书面告知使用单位,并抄报该压力容器的使用登记机关,同时根据《容规》8.2.2条规定,在确定检验周期时适当缩短下次检验周期。

1.定期检验方案的主要内容

1)概述(检验性质、基本情况)

2)检验与评定的依据

3)检验人员职责及资格要求

4)检验所需的仪器设备

5)检验前的准备工作

6)检验项目和内容

(方法、部位、比例)

7)缺陷评定及返修

8)检验结论及检验报告

9)附图

方案的封面:

要点:

A.编号

B.编、审核、批人员的要求

C.日期

(6)按使用单位进罐作业、动火、用电、安全防护等规定办理相应的施工手续;

(7)检验时使用单位压力容器安全管理人员、操作和维护等相关人员应当到场协助检验工作,及时提供有关资料,负责安全监护,并且设置可靠的联络方式。

6)检验项目和内容(方法、部位、比例)

主要是根据损伤模式和失效模式选择检验的方法、部位、比例

6.1 检验方法主要根据损伤模式采用最有效的手段检验

液化石油气储罐使用中的主要损伤模式:

(根据GBT30583-2014承压设备损伤模式)

A.腐蚀减薄:大气腐蚀

B.环境开裂:湿硫化氢破坏、氢脆(对于高强钢更易发生)

C.材质劣化:无

D.机械损伤:过载

E.其他损伤:无

根据损伤机理选择方法,

检验的部位应当选择在损伤机理最严重的区域,

首次检验时,还应当补充对制造、安装质量的检验抽查,

比例要满足法规的要求,并有代表性。

A.腐蚀减薄:大气腐蚀(对于碳钢材料)

损伤形态:碳钢和低合金钢遭受腐蚀时主要表现为均匀减薄或局部减薄;

主要影响因素

a)大气成分:含有氯离子的海洋大气和含有强烈污染的潮湿工业大气是最严重的大气腐蚀环境;

b)湿度:干燥的大气腐蚀能力很弱,而湿度较大的环境,尤其是容易凝结水滴的大气环境腐蚀能力较强。以碳钢为例,当空气中相对湿度超过60%以上时,碳钢腐蚀速率呈指数曲线上升,而空气相对湿度低于50%,腐蚀速率则较低;

c)温度:材料表面温度宜高出环境露点温度至少3℃以上,否则易在材料表面形成冷凝水,造成腐蚀。

检测方法一般为宏观检查+腐蚀部位壁厚测定;

自动超声波扫查/导波法可对架空管道或无支撑部位容器壁进行检测。

B.环境开裂:湿硫化氢破坏、氢脆

湿硫化氢破坏

定义:在含水和硫化氢环境中碳钢和低合金钢所发生的损伤过程,包括氢鼓泡、氢致开裂、应力导向氢致开裂和硫化物应力腐蚀开裂四种形式。

开裂机理

a)氢鼓泡(HB):金属表面硫化物腐蚀产生的氢原子扩散进入钢中,并在钢中的不连续处(如夹杂物、裂隙等)聚集并结合生成氢分子,造成氢分压升高并引起局部受压,发生变形而形成鼓泡;

不需要外加应力(载荷应力)、其分布平行于钢板表面。(氢鼓泡发生残余应力)

b)氢致开裂(HIC):氢鼓泡在材料内部不同深度形成时,相临的鼓泡会连接在一起,形成台阶状裂纹为氢致开裂;

在钢的内部发生氢鼓泡区域,当氢的压力继续增高时,小的鼓泡裂纹趋向于相互连接,形成有阶梯特征的氢致开裂。

c)应力导向氢致开裂(SOHIC):在焊接残余应力或其他应力作用下,氢致开裂沿厚度方向不断连通并形成;

d)硫化物应力腐蚀开裂(SSCC):硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶格发生变形,材料韧性下降,脆性增加),在外加拉应力或残余应力的作用下形成开裂。

特征:沿晶或穿晶,成树枝状。

损伤形态

a)氢鼓泡:在钢材表面形成独立的小泡,小泡与小泡之间一般不会发生合并;

b)氢致开裂:在钢材内部形成与表面平行的台阶状裂纹,裂纹一般沿轧制方向扩展,不会扩展至钢的表面;

c)应力导向氢致开裂:一般发生在焊接接头的热影响区部位,由该部位母材上不同深度的HIC沿厚度方向的连通而形成;

d)硫化物应力腐蚀开裂:在焊缝热影响区表面起裂,并沿厚度方向扩展。

敏感材料

碳钢、低合金钢。

主要影响因素

a)pH值:溶液的pH值小于4,且溶解有硫化氢时易发生湿硫化氢破坏。此外溶液的pH值大于7.6,且氢氰酸浓度>20ppm并溶解有硫化氢时湿硫化氢破坏易发生;

b)硫化氢分压:溶液中溶解的硫化氢浓度>50ppm时湿硫化氢破坏容易发生,或潮湿气体中硫化氢气相分压大于0.0003MPa时,湿硫化氢破坏容易发生,且分压越大,敏感性越高;

c)温度:氢鼓泡、氢致开裂、应力导向氢致开裂损伤发生的温度范围为室温到150℃,有时可以更高,硫化物应力腐蚀开裂通常发生在82℃以下;

d)硬度:硬度是发生硫化物应力腐蚀开裂的一个主要因素。常用的低强度碳钢应控制焊接接头硬度在HB 200以下。氢鼓泡、氢致开裂和应力导向氢致开裂损伤与钢铁硬度无关;

e)钢材纯净度:提高钢材纯净度能够提升钢材抗氢鼓泡、氢致开裂和应力导向氢致开裂的能力;

f)焊后热处理:焊后热处理可以有效地降低焊缝发生硫化物应力腐蚀开裂的可能性,并对防止应力导向氢致开裂起到一定的减缓作用,但对氢鼓泡和氢致开裂不产生影响;

g)溶液中硫氢化铵浓度超过2%(质量比)会增加氢鼓泡、氢致开裂和应力导向氢致开裂的敏感性;

h)溶液中含有氰化物时,会明显增加氢鼓泡、氢致开裂和应力导向氢致开裂损伤的敏感性。

检测方法:湿荧光磁粉检测、涡流检测、射线检测、超声横波检测、硬度测定、金相分析等

D.机械损伤:

过载

外加载荷超过了设备的承受极限。

损伤外观或形貌:意外等可能使材料发生过度的弹性变形或塑性变形,导致设备损伤或失效。

6.2 检验的方法、部位、比例

6.2.1 测厚的方法:超声波测厚

测厚的部位:

1.液位经常波动的部位;

2.物料进口、流动转向、截面突变等易受腐蚀、冲蚀的部位;

3.制造成型时壁厚减薄部位和使用中易产生变形及磨损部位;

4.接管部位;

5.宏观检验时发现的可疑部位;

测厚的比例:

封头5点(4点成形减薄处,1点封头中心)

筒体:每个筒节4-8点,均布,焊缝左右可以适当增加测点

应测到每块钢板

接管:每个接管4点,均布

对于异常部位需要标注具体尺寸、位置,为下次检验复查定位

6.2.2 表面检测的方法:(铁磁性材料内表面采用荧光磁粉检测)

表面检测部位及比例:

1)碳钢低合金钢制压力容器、存在环境开裂倾向或者产生机械损伤现象的压力容器、首次定期检验的设计压力大于或者等于1.6MPa的第Ⅲ类压力容器,检测长度不少于对接焊缝长度的20%;(可以按照纵缝、环缝数量均布20%,更有代表性)

2)应力集中部位、变形部位、宏观检验发现裂纹的部位,接管角接接头、其他有怀疑的焊接接头,补焊区、工卡具焊迹、电弧损伤处和易产生裂纹部位应当重点检验;对焊接裂纹敏感的材料,注意检验可能出现的延迟裂纹;

3)检测中发现裂纹时,应当扩大表面无损检测的比例或者区域,以便发现可能存在的其他缺陷;

4)如果无法在内表面进行检测,可以在外表面采用其他方法对内表面进行检测。

6.2.3 埋藏缺陷检查的方法:RT或UT检测(脉冲反射、TOFD等)

埋藏缺陷检查的部位:

(1)使用过程中补焊过的部位;

(2)检验时发现焊缝表面裂纹,认为需要进行焊缝埋藏缺陷检测的部位;

(3)错边量和棱角度超过产品标准要求的焊缝部位;

(4)使用中出现焊接接头泄漏的部位及其两端延长部位;

(5)承受交变载荷压力容器的焊接接头和其他应力集中部位;

(6)使用单位要求或者检验人员认为有必要的部位。

已进行过埋藏缺陷检测的,使用过程中如果无异常情况,可以不再进行检测。

6.2.4 安全附件检验:该卧罐设有2只安全阀,型号图样上规定为A42F-25,检验是否在校验有效期内;

6.2.5 耐压试验/泄漏性试验

定期检验过程中,使用单位或者检验机构对压力容器的安全状况有怀疑时,应当进行耐压试验。(要求同检验技术)

对于介质毒性危害程度为极度、高度危害,或者设计上不允许有微量泄漏的压力容器,应当进行泄漏试验,本台储罐根据用户需求协商确定。

使用单位负责实施,检验机构负责检验。

6.3 检验项目及内容

本次检验的项目:

6.3.1宏观检查

6.3.2壁厚测定

6.3.3磁粉检测

6.3.1 宏观检验

(1)宏观检査的重点部位是检查设备铭牌的完好性、应力集中部位、接管表面等易产生裂纹部位、外表面机械刻痕、凹坑及弧坑检查有无裂纹,对怀疑处用5到10倍放大镜进行检查,对发现的表面裂纹等缺陷应作打磨处理;

(2)检查容器外表面、开孔接管、应力集中处有无腐蚀、磨损、变形等情况;

(3)咬边检査,焊缝表面有无咬边;

(4)基础或支座的检查,有无损坏,基础沉降、倾斜、开裂,紧固螺栓完好情况;

(5)几何尺寸和结构检査:纵、环焊缝对口错过量、棱角度尺寸、焊缝余高、角焊缝腰高、封头表面凹凸量及皱折、不合理的焊缝布置、进行直径测量,是否存在变形。

(6)所有检查出的缺陷,均应作详细的测量和记录。

6.3.2 壁厚测定

对容器封头和筒体进行壁厚测定,原则上每块钢板测厚4-6点。同时测点位置还应包括下列部位:

(1)制造成型时壁厚减薄的部位;

(2)宏观检验时发现可疑的部位;

(3)易受腐蚀、冲蚀的部位;

(4)历次检验时测定的最薄的部位;

(5)所有的接管部位。每个接管检测壁厚4点,均匀分布。

超声波测厚时,如发现母材存在夹层缺陷时应增加测定点,或用超声波探伤仪检查夹层分布愔况。另有异常情况应增加测厚点。原则上每只接管测4点,若发现有异常减薄情况或保温层破损时增加测厚点。

6.3.3 磁粉检测

由于储罐内表面以进行内部无损检测,因此从内壁对对接焊缝以及容器与接管相连的所有角焊缝内表面进行100%磁粉检测,检测部位如附图所示。

超声检测

(1)检验时发现焊缝表面裂纹,认为需要进行焊缝埋藏缺陷检测的部位;

(2)错边量和棱角度超过产品标准要求的焊缝部位;

检测方法:

①使用K2横波斜探头对焊缝进行单面双侧扫查。

②如有必要,使用射线检测进行复查。

补充内容:

1.检验方案的实施及变更

根据TSG Z0003《特种设备检验检测机构质量管理体系要求》的规定:

(1)检验方案应能被检验检测人员熟知并正确实施;

(2)如果变更检验项目或方法应该文件化,经过技术负责人审批,并且获得客户的同意;

(3)如果检验过程中需要使用一些非标准的检验方法,需要拟定作业指导书,并经过评审(比对等),还需要征得用户的同意。

2.检验工作的分包

通常情况下,检验检测机构应当独立完成检验检测任务。无损检测等专项检验检测项目可以分包。

(1)在检验检测前将分包安排书面通知客户,并且得到客户的同意;

(2)评价并且确认分包方具备承担分包项目的必要资质和能力;

(3)就其分包方的工作对客户负责,由客户指定的分包方除外;

(4)对分包方的工作质量进行监督;

(5)保存分包方的名录、评价记录以及对分包方的监督记录等。

如果是检验机构分包,需要有委托书、明确职责、工作范围、验收指标、过程进行监督,收到分包的检测分项报告后,应对其是否满足委托书、标准进行审查,是否有效,内容是否齐全,并签字确认。

7)缺陷返修及评定

7.1 根据检验所发现的缺陷,分析缺陷性质、类型、尺寸、形状、部位,按照《容规》的有关规定作出评定,对不允许的缺陷应及时修复,并会同有关单位进行讨论是否返修。

7.2返修单位应按照《容规》第5章要求进行。

7.3返修单位在自检合格的基础上,通知检验单位进行返修复检。合格后,返修单位出具返修报告,交检验单位一份。

7.4返修检验

返修后应作表面宏观检查、焊缝尺寸检查、采用原无损检测方法进行复验,必要时采用其他方法验证。

举例:如果环焊缝表面检测,发现裂纹,经打磨消除,不满足G0的条件,需要补焊,补焊深度15mm,要点有:

(1)B类接头返修补焊属于重大修理改造;

(2)返修单位应具有相应资质;

(3)应制定返修方案,经返修单位审批,(原)设计单位书面同意;

(4)告知;

(5)约请监督检验机构进行监督检验;

(6)焊接过程中应用无损方法确认缺陷已经消除,用合格的焊工和焊接工艺评定施焊,完成后再次无损检测(时机);

(7)由于存在应力腐蚀,返修后应局部热处理;

(8)返修深度超过1/2,需要耐压试验;

(9)返修后,复验,重新评定安全状况等级。

7.5 常见缺陷的评定(举例)

7.5.1 宏观检查缺陷:(结构不合理、尺寸)

(1)封头参数不标准,不符合产品标准:对封头拼缝和封头与筒体的环焊缝进行100%MT+UT检测,检验未查出新生缺陷。

(不包括正常的均匀腐蚀),可以定为2级或者3级;

如果有缺陷,可以根据相应的条款进行安全状况等级评定。

(2)封头=22mm,筒体20mm,不等厚对接,是否需要削薄。

(GB150 规定:板厚差大于30%较薄厚度或超过5mm,才需要削薄)

(3)宏观检验发现仪表管内壁角焊缝未焊透:未查出新生缺陷2~3级,检验难度较大,建议补焊处理。

(4)咬边:如果发现咬边,内表面焊缝一侧,深度1.0mm,长度50mm,总长300mm,请判断:

产品标准不允许咬边,定检规则允许0.5mm,超标,属于特殊容器,需要修复(打磨圆滑,但需要保证腐蚀裕量,或补焊);

长度50mm,不超标,允许100mm;

咬边总长300mm(双侧计算),该环焊缝周长2600*3.14=8164mm,占周长比例3.7%,允许15%,不超标。

(5)机械接触损伤、工卡具焊迹、电弧灼伤:

这些缺陷多数属于制造过程中遗留的,一般打磨消除,用表面无损检测方法确认消除,测量减薄量,按照G0计算或补焊。

(6)错边量和棱角度:

只有超出GB150产品标准规定的,才影响定级

如:某纵缝错边量4.5mm,A类接头GB150允许3mm,超标;

按定检规则要求:≤1/3T且不大于5mm,不超标;

但错边超标部位需要确认是否有裂纹、未焊透未熔合的缺陷,需要射线或超声补充检测,才能定级2~3级。

(7)有腐蚀的压力容器,按照以下要求评定安全状况等级:

1)分散的点腐蚀,如果腐蚀深度不超过名义壁厚扣除腐蚀裕量后的1/3,不影响定级;如果在任意200mm 直径的范围内,点腐蚀的面积之和不超过4500mm2,或者沿任一直线的点腐蚀长度之和不超过50mm,不影响定级;

假如腐蚀深度5mm,(名义20-裕量2)/3=6mm,允许存在。

2)均匀腐蚀,如果按照剩余壁厚(实测壁厚最小值减去至下次检验期的腐蚀量)强度校核合格的,不影响定级;经过补焊合格的,可以定为2级或者3级;

实测筒体17mm,均匀腐蚀3mm,已经超过腐蚀裕量,3年使用,每年减薄1mm,

强度校核(不考虑裕量)=11.3mm,如果下次检验周期6年,则需要17.3mm不够,缩短检验周期。

3)局部腐蚀,腐蚀深度超过壁厚余量的,应当确定腐蚀坑形状和尺寸,并且充分考虑检验周期内腐蚀坑尺寸的变化,可以按照本规程凹坑计算规定定级。

(8)鼓包

使用过程中产生的鼓包,应当查明原因,判断其稳定状况,如果能查清鼓包的起因并且确定其不再扩展,不影响压力容器安全使用的,可以定为3级;无法查清起因时,或者虽查明原因但是仍然会继续扩展的,定为4级或者5级。(本储罐如果鼓包,如无腐蚀减薄,过载,都是氢鼓包)使用中产生的鼓包,一般是由于金属局部过热、局部腐蚀、局部磨损或局部冲刷使材料强度降低,厚度变薄所引起的,或由于氢原子的作用所引起的(氢鼓包或氢鼓泡),对压力容器有较大的危害性,必须查明起因,并判断其稳定状况,如果能查明鼓包起因并确定其不再扩展的,可定为3级,无法查明起因或虽查明起因但仍会继续扩展的,定为4级或5级。

7.5.2 测厚发现的缺陷

(1)测厚发现整体减薄,超过腐蚀裕量:进行强度校核;

(2)测厚发现局部减薄,查明分布大小,定位,按照凹坑计算;

(3)测厚发现分层:

1)与自由表面平行的分层,不影响定级;

2)与自由表面夹角小于10°的分层,可以定为2级或者3级;

3)与自由表面夹角大于或者等于10°的分层,检验人员可以采用其他检测或者分析方法进行综合判定,确认分层不影响压力容器安全使用的,可以定为3级,否则定为4级或者5级。

母材中的分层如果与自由表面平行,对容器的承载能力基本没有影响,不影响定级;如果与自由表面的夹角小于10°,即近似与自由表面平行,其危害性不大,可以认为满足使用要求,定为2级或3级;如果与自由表面的夹角大于或等于10°,则对压力容器有较大危害,检验人员可采用超声波检测并采用合于使用方法进行综合评价,确认分层不影响容器安全使用的,可定为3级,否则定为4级或5级。

7.5.3 表面检测发现缺陷

内、外表面不允许有裂纹。如果有裂纹,应当打磨消除,打磨后形成的凹坑在允许范围内的(计算G0),不影响定级;否则,应当补焊或者进行应力分析,经过补焊合格或者应力分析结果表明不影响安全使用的,可以定为2级或者3级。

由于储罐存在环境开裂倾向,需要判断其在规定的操作条件下和检验周期内能否安全使用要求的,可以安全使用的定为3级,否则定为4级或者5级。

S成分含量),降低环境开裂的敏感性,是可以保证其在规定如果通过控制其使用条件(如控制介质中H

2

的操作条件下和检验周期内安全使用的,在这种情况下,其安全等级定为3级。

如果缺陷不能修复(如数量太多,密布在焊缝热影响区、母材等,无法修复)修复后不能避免检验周期内开裂的再次发生(介质条件无法改变),可以采用金相分析等方法分析开裂原因和严重程度,视情况定为4级或者5级。

7.5.4 埋藏缺陷检测发现的缺陷

凡是超过产品标准的埋藏缺陷才评级,对于该储罐,制造时RT,II级合格,如果是UT,I级合格。

如果该储罐采用超声波检测发现缺陷,需要注意的是按照《容规》评级需要确定缺陷的性质(未熔合、未焊透、条渣),如果采用常规脉冲反射法,很难判断,可以用TOFD(同样需要经验,但可以精确测定自身高度)或射线(性质判定容易,但很难判断自身高度)。

举例:

条渣10mm,NBT47013 II级允许1/3T 超标

条渣自身高度4mm

定检允许:H≤0.2t(实测厚度20,17?)且≤4mm

l≤3t

7.5.5 安全附件检验

安全附件的检验不影响定级,但超过检验有效期的压力容器,应限期整改,否则不得投入使用。

8)检验结论及检验报告

8.1 检验结论

(1)安全状况等级根据压力容器检验结果综合评定,以其中项目等级最低者为评定等级;

(2)需要改造或者修理的压力容器,按照改造或者修理结果进行安全状况等级评定;

(3)安全附件检验不合格的压力容器不允许投入使用。

以液化石油气储罐问题评级举例

问题汇总:

(1)咬边1.0mm深,返修合格,不影响定级;

(2)纵缝错边4.5mm,RT无异常,2~3级;

(3)点蚀5mm,不影响定级;

(4)均匀腐蚀3mm,检验周期设为5年,不影响定级;

(5)MT发现1处内表面裂纹,打磨消除,G0计算合格。不影响定级;

(6)条渣10mm,自身高度4mm,不允许返修合格,不影响定级。

综合:存在H

S超标问题,腐蚀速率较快,制造质量一般。

2

安全状况等级定位3级

符合要求(可以继续使用)1~3级

基本符合要求(有条件监控使用):4级

不符合要求(不得继续使用):5级

但前提都是:安全附件必须校验合格。

8.2 检验的原始记录

检验机构应当保证检验工作质量,检验时必须有记录,检验记录应当详尽、真实、准确,检验记录记载的信息量不得少于检验报告的信息量。

记录的格式由各个检验机构质量体系规定

8.3 检验报告

(1)报告的格式应当符合本规程的要求(只有结论页和结果汇总的附页)(单项检验报告的格式由检验机构在其质量管理体系文件中规定)。

结论报告中的“检验人员”一栏,应当填写所有参加本台容器的检验人员姓名,可以打印,不需要签字形式。

(2)压力容器定期检验报告一般30个工作日出完

应当有编制、审核、批准三级签字,此处的检验报告指整体报告,在结论报告页中进行三级签字;整体报告中的各分项报告一般实行检验(检测等)、审核二级签字。报告编制人(或者分项报告中检验、检测的签字人)应当是具有相应检验资格并且参加现场检验工作、对该台容器检验下结论的检验人员(不是录入检验报告的文秘人员),报告编制人(或者分项报告中检验、检测的签字人)应当对报告的真实性、准确性、有效性负主要责任;报告审核人应当具有相应检验资格并且由质量体系进行规定;批准人为检验机构的负责人或者授权的技术负责人。

(3)因设备使用需要,检验人员可以在报告出具前,先出具《特种设备定期检验意见通知书(1)》(见附件K),将检验初步结论书面通知使用单位,检验人员对检验意见的正确性负责;

(4)检验发现设备存在需要处理的缺陷,由使用单位负责进行处理,检验机构可以利用《特种设备定期检验意见通知书(2)》(见附件K)将缺陷情况通知使用单位,处理完成并且经过检验机构确认后,再出具检验报告;使用单位在约定的时间内未能完成缺陷处理工作的,检验机构可以按照实际检验情况先行出具检验报告,处理完成并且经过检验机构确认后再次出具报告(替换原检验报告)。经检验发现严重事故隐患,检验机构应

常压储罐定期检验及结果评价

常压储罐定期检验及结果评价 1范围 1.1 本标准规定了钢制焊接常压储罐的定期检验和结果评价的要求。 1.2 本标准适用于储存石油、石化产品及其他类似液体的常压立式圆筒形钢制焊接储罐罐体及其基础的定期检验,包括年度检验和全面检验。 1.3其它常压或低压(工作压力小于0.1Mpa)储罐的定期检验可参照本标准执行。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适应于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适应于本文件。 SHS 01012 常压立式圆筒形钢制焊接储罐维护检修规程 SY/T 5921 立式圆筒形钢制焊接原油罐修理规程 JB/T 10764 无损检测常压金属储罐底板声发射检测及其评价 JB/T 10765 无损检测常压金属储罐底板漏磁检测方法 JB/T 4730 承压设备无损检测 3 一般要求 3.1年度检验,是指为了确保常压储罐罐体在检验周期内的安全而实施的运行过程中的在线检查,每年至少一次。常压储罐罐体的年度检验可以由设备管理人员进行,也可以由检验检测机构(以下简称检验机构)的专业检验人员进行。 3. 2全面检验,是按一定的检验周期对常压储罐进行的较为全面的检验。对于常压储罐全面检验,检验单位应当根据常压储罐的使用情况、失效模式选择检验方法,检验方法可采用在线检验方法或停工检验方法,对于储罐群或罐区内的储罐,其定期检验还可采用基于风险的检验方法。 3.2.1在线检验是指常压储罐在运行过程中的检验。储罐顶板和壁板的在线检验是指从储罐外侧进行的宏观检查、腐蚀状况检测和焊缝无损检测等,其检测结果评价方法与停工检验相同。储罐底板的在线检验是指底板的腐蚀状况检测,检测方法执行JB/T 10764-2007《无损检测常压金属储罐底板声发射检测及其评价》,检测结果评价方法执行本标准第6章有关条款规定。 3.2.2停工检验是指常压储罐停工清罐时的检验,其检验结果评价方法执行本标准第6章有关条款规定。 3.2.3基于风险的检验是指对储罐群或罐区内的储罐逐一进行风险评价、危险源辨识、失效机理分析并进行风险计算,根据可接受风险的大小和风险的发展趋势,决定储罐的检验周期和检测手段。 3 .3定期检验应当由专业检验机构进行,其检验周期的确定根据采用的检验方法按本标准第6章进行。 4年度检验的方法与要求 4 .1常压储罐年度检验包括使用单位常压储罐安全管理情况检查;常压储罐罐体、及运行状况检查等。 年度检验以外部宏观检查为主,以目视和锤击法检测,必要时进行外侧的壁厚测定。 4. 2每年应对罐体做一次测厚检查。测厚检查应对罐壁下部二圈壁板的每块板沿竖向至少测2个点,其他圈板可沿盘梯每圈板测1个点。测厚点应固定,设有标志,并按编号做好测厚记录。有保温层的储罐,其测厚点处保温层应制做成活动块便于拆装。 4. 3进行常压储罐年度检验,除非检查人员认为必要,一般可以不拆除保温层。 4. 4检查前检查人员应当首先全面了解被检常压储罐底板的使用情况、管理情况,认真查阅

20立方米石油液化气储罐

设计摘要 储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。 关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言 在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。 生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。 化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。 由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。 在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。 对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

液化石油气槽车的装卸详细流程

一、准备工作 1、引导罐车对准装卸台位置停车,待司机拉上制动手闸,关闭汽车发动机后,给车轮垫上防滑块。 2、检查液化石油气检验单,检查罐车和接收贮罐的液位、压力和温度,检查装卸阀和法兰连接处有无泄漏。 3、接好静电接地线,拆卸快装接头盖,将装卸台气、液相软管分别与罐车的气、液相管接合牢固后,开启放散阀,用站内液化石油气排尽软管中空气,关闭放散阀。 4、使用手动油压泵打开罐车紧急切断阀,听到开启响声后,缓慢开启球阀。 二、正常装卸车程序 1、液化石油气压缩机卸车作业 ①气相系统:开通接收储罐的气相出口管至压缩机进口管路的阀门;开通压缩机出口管至罐车的气相管阀门。 ②液相系统:开通罐车液相管至接收储罐的进液管阀门。 ③通知运行工启动压缩机。 ④待罐车气相压力高于接收储罐0.2MPa~0.3MPa后,液体由罐车流向接收储罐。当罐车液位接近零位时,及时通知压缩机运行工停车,关闭罐车液相管至接收储罐的进液管阀门,关闭接收储罐气相出口管至压缩机进口管路的阀门,关闭压缩机出口管至罐车的气相管阀门。 ⑤将罐车气相出口管至压缩机进口管路的阀门接通,将压缩机出口至接收储罐气相进口管路的阀门接通,通知运行工启动压缩机回收罐车内气体,回收至罐车压力为~0.2MPa停车,并关闭上述有关阀门。 ⑥关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,卸车作业结束。 ⑦按规定填好操作记录表。 2、液化石油气压缩机装车作业 ①气相系统:开通罐车气相管至压缩机入口管路的阀门;开通压缩机出口管至出液储罐气相入口管路的阀门。 ②液相系统:开通罐车液相管至出液储罐的出液管路的阀门。 ③通知运行工启动压缩机。 ④待出液储罐气相压力高于罐车0.2MPa~0.3MPa后,液体由出液储罐流向罐车。当罐车液位达到最高允许充装液位时,及时通知压缩机运行工停车,关闭罐车液相阀门和出液储罐的出液管阀门。 ⑤关闭罐车气相管至压缩机入口管阀门,关闭压缩机出口管至出液储罐气相入口管路的阀门。关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,装车作业结束。 ⑥按规定填好操作记录表。 3、液化石油气泵卸车作业 ①气相系统:开通罐车气相阀至接收储罐气相管路的阀门。 ②液相系统:开通罐车液相阀至泵进口管路的阀门;开通泵出口至接收储罐进液管路的阀门。 ③通知运行工启动液化石油气泵。

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气的装卸操作

编订:__________________ 单位:__________________ 时间:__________________ 液化石油气的装卸操作 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4593-64 液化石油气的装卸操作 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 液化石油气的装卸,根据其输送方式的不同,装卸的方法也不同。 由炼油厂通过管路直接输送到储配站的液化石油气,可利用管道的压力压入储罐。 用罐车运输液化石油气时,可根据具体情况,采用不同的装卸方法进行。常用的装卸方法有:压缩机装卸法、烃泵装卸法、加热装卸法、静压差装卸法和气体加压装卸法等。 一、压缩机装卸法 1.原理 利用压缩机抽吸和加压输出气体的性能,将需要灌装的储罐(或罐车)中的气相液化石油气通入压缩机

的入口,经压缩升压后输送到准备卸液的罐车(或储罐)中,从而降低灌装罐(或罐车)的压力,提高卸液罐车(或储罐)中的压力,使二者之间形成装卸所需的压差(0.2~0.3MPa),液态液化石油气便在压力差的作用下流进灌装的储罐(或罐车),以达到装卸液化石油气的目的。 2.工艺流程 压缩机装卸、倒罐的工艺流程如图1-5-4所示。由图可以看出,当要将罐车中的液化石油气灌注到储罐中去时,打开阀门9和13,关闭阀门10和12,按压缩机的操作程序开启压缩机,把储罐中的气态液化石油气抽出,经压缩后进入罐车,使罐车内气相压力升高,罐车中的液态液化石油气在此压力作用下经液相管进入储罐。气、液态液化石油气的流动方向如图1-5-4所示。 图1-5-4压缩机装卸、倒罐工艺流程

液化石油气储存设备的分类及构造

编号:SY-AQ-01617 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 液化石油气储存设备的分类及 构造 Classification and construction of LPG storage equipment

液化石油气储存设备的分类及构造 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 液化石油气常用的储存设备,有卧式圆筒罐和球罐两种。 一、卧式圆筒罐 卧式圆筒罐是一种压力容器,主要由筒体、封头、人孔、支座、接筒、安全阀、液位计、温度计及压力表等部件组成(见图1-10-1)。 卧式圆筒罐的形状特点是轴对称,圆筒体是一个平滑的曲面,应力分布比较均匀,承载能力较高,且易于制造,便于内件的设置和装拆,因而获得广泛的应用,一般用于中小型液化石油气储配站。 图1-10-1卧式圆筒罐 1-就地液位计接管;2-远传液位计接管;3-就地压力表接管;4-远传压力表接管;5-液相回流管接管; 6-安全阀接管;7-人孔;8-排污管;9,10-液相管接管;11-气相管接管; 12-就地温度计接管;13-远传温度计接管;14-固定鞍座;15-

活动鞍座 二、球形罐 球形罐的容积较大,主要由壳体、人孔接管及拉杆等组成(见图1-10-2),其壳体又由不同数量的瓣片组装焊接而成(见图1-10-3)。 球形罐的形状特点是中心对称,具有以下优点:受力均匀,在相同壁厚的条件下,球形壳体的承载能力最高。即在同样内压下,球形壳体所需要的壁厚最薄,仅为同直径、同材料圆筒形壳体壁厚的1/2(不计腐蚀裕度);在相同容积条件下,球形壳体的表面积最小。壳体壁厚薄和表面积小,制造时可以节省钢材。如制造容积相同的容器,球形要比圆筒形节省约30%~40%的钢材。所以,从受力状态和节约用材来说,球形是压力形容器最理想的形体。但球形罐也存在某些不足,制造比较困难,工时成本高,对于大型球罐,由于运输等原因,要先在制造厂压好球瓣,然后运到现场组装,由于施工条件差,质量不易保证。因此,球形罐只用于大型液化石油气储配站,球形罐的基本参数见表1-10-1。 图1-10-2球形罐

液化石油气储罐设计

油气储运课程设计说明书 1、设计题目:卧式液化石油气储罐设计 2、设计条件: (1)操作温度:15℃ (2)设计温度:20℃ (3)操作压力:0.72MPa (4)设计压力:0.79MPa (5)介质:液化石油气 (6)公称直径:3200mm (7)公称容积:100m3 (8)圆筒长度:11300mm (9)L2=9800mm (10)A=750mm (11)设备及附件材料自选 3、设计任务: 设计参数的确定;结构分析;材料选择;强度计算及校核;焊接结构设计;标准零部件的选型;制造工艺及制造过程中的检验;设计体会;参考书目等。 4、设计要求: 由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。本设计学生必须完成一张A1装配图、一张A3鞍式支座图、一张A3零件图和编制技术性设计说明书一份。

摘要: 通过本次设计,锻炼了查找文献的能力,提高了计算机水平,并且对卧式储罐等大型储罐有了进一步的了解,加深了对本专业课程的认识,在设计的同时,也锻炼了学习的逻辑思维能力和实际动手能力,为今后的工作奠定了良好的基础。从液化石油气的特点,探讨有关卧式圆筒形液化石油气储罐的设计主要对其设计参数、材料选择、结构设计、安全附件及制造与检验等几个方面进行分析和计算。 关键字: 液化石油气卧式储罐设计强度

常压储罐定期检验工艺培训课件

在用常压立式圆筒形钢制焊接储罐 定期检验工艺 编制: 审核: 批准:

在用常压立式圆筒形钢制焊接储罐定期检验工艺 1 适用范围 本工艺适用于建筑在具有足够承载能力的均质基础上,其罐底与基础紧密接触,储存液态石油及石油产品等介质,内压不大于6000Pa 的历史圆筒形钢制焊接储罐(以下简称储罐)。 2 检验前预备 2.1 审查储罐必要的图纸、技术资料、历次检验报告、各种安全附件、有关技术资料、使用运行记录以及与储罐有关的一切技术资料。 2.2 预备好检验工具、材料和劳动爱护用品。 2.3 检验前应做好以下工作,达到安全作业条件: 2.3.1 将罐内油品抽至最低位(必要时接临时泵),加堵忙板,使罐体与系统管线隔离。 2.3.2 打开人孔和透光孔。 2.3.3 清出底油。轻质油品罐用水冲洗,通入蒸汽蒸罐24h以上(应注意防止温度变化造成罐内负压)。重质油罐通风24h以上。 2.3.4 排除冷凝液,清扫罐底。

注意事项: a.采纳软密封的浮顶罐、内浮顶关东火钳原则上应拆除密封系统并密封块置于罐外(仅进罐检查可不拆除密封系统。若密封系统检查无明显泄漏,不阻碍动火安全时,动火钞票也可不拆除密封系统)。 b.进罐前必须对罐内气体进行浓度分析,安全合格后方可进入。 c.进罐检查及检验使用的灯具必须是防爆灯,其电压应符合安全要求。 d.动火前必须严格按照有关手续办理相关手续。 3检验依据 3.1 SHS01012-2004《常压立式圆筒形钢制焊接储罐维护检修规程》3.2 GB128-2005 《立式圆筒形钢制焊接油罐施工及验收规范》3.3 SH/T3530-2001《石油化工立式圆筒形钢制储罐施工工艺标准》3.4SH/T3530-2001《石油化工立式圆筒形钢制储罐施工工艺标准》3.5 JB/T4735 《钢制焊接常压容器》 3.6 GB8958 《缺氧危险作业安全规程》 3.7 HG20660 《压力容器中化学介质毒性危害和爆炸危险程度分类》 3.8 HG/T20678-2000《衬里钢壳设计技术规定》

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

液化石油气站的安全技术和事故预防措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 液化石油气站的安全技术和事故 预防措施(标准版)

液化石油气站的安全技术和事故预防措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1引言 在城市内建设的液化石油气站(如小区气化站、混气站和加气站等)应安全使用。保证安全有二种途径,一是主要通过比较大的安全间距来减少事故的危害,二是主要通过技术措施保证运行的安全。为减少事故而需设置的安全间距是很大的。为了防止较大事故(如发生连续液体泄漏,泄漏时间30min)的安全距离:静风为36m,风速≤1.0m/s 时下风向为80m;为防止重大事故(如爆发性液体泄漏)的安全距离:静风为65m,风速≤1.0m/s时下风向为150m.这对一般液化石油气储罐难以实现。城市用地十分紧张,很难找到一片空地专用于液化石油气站建设。这就要求液化石油气站的建设应以安全技术为主,即应采用先进成熟的技术和可靠的防止燃气泄漏措施,满足液化石油气站的建设的发展的需要。 2主要安全技术措施

液化石油气的储存和运输

液化石油气的储存和运输 第一部分 液化石油气的储存 液化石油气是一种易燃易爆物质,它易燃易爆的特性主要表现有: (1)液化石油气沸点低,在常温常压下极易汽化。 (2)液化石油气气态比空气重,能飘浮在地面或在低洼处沉积,而不易扩散。 (3)液化石油气的爆炸下限低,当液化石油气在空气中的浓度达到1.5%时,就能形成爆炸性气体。 (4)液化石油气的点火能量小(小于0.4mJ),只要有极微小的火星就可引燃引爆。 (5)液化石油气的电阻率高,高速从容器中喷出时能产生数千伏以上的静电电压,其放电火花足以引起着火爆炸。 (6)液化石油气中含有硫化物,能腐蚀容器产生硫化亚铁粉末,遇空气会放热自燃。 储存液化石油气应注意事项: (1)仓库应阴凉通风,防止日光曝晒,严禁受热。在运输中必须轻装轻卸,不得撞击。同时应戴好钢瓶上的安全帽。 (2)钢瓶内容物性质互相抵触的钢瓶应分开存放。例如,氢气钢瓶与液氯钢瓶;氢气瓶与氧气钢瓶;液氯钢瓶与液氨钢瓶等均不得同库存放。 (3)储运中的钢瓶阀门应旋紧,不得泄漏。 1钢瓶液化石油气应放在容易搬动而又通风干燥、不容易受腐蚀的地方。客户应经常检查钢瓶角阀、胶管、减压阀、灶具是否完好,用肥皂水泡沫在气路及各接头处涂抹,以检查是否有漏气、裂纹、老化、松脱等现象,严禁用明火检漏。高温季节,要特别注意减压阀皮膜、皮垫及胶管的检查,防止超压、漏气等情况发生。 2.液化石油气和其他物质一样也具有热胀冷缩的性能,而且它的膨胀系数比水大10倍左右,因此不能超装,夏季禁止钢瓶在阳光下曝晒,严禁用火烤钢瓶和用开水烫钢瓶,以免钢瓶爆破。液化气不能和煤炉等其他火源同室使用。不准在卧室、办公室、地下室、浴室存放、使用装有液化石油气的钢瓶。 3.钢瓶与灶具和热水器的使用距离不得少于0.8米,胶管长度不宜超过2米,不用时关闭所有阀门。 4.在使用燃气灶、热水器、取暖器等过程中,不能脱人监护,并要保持室内通风,睡觉时严禁使用取暖器。 5. 钢瓶使用前应检查瓶体及附件角阀、减压阀各部分的连接处是否有漏气。检查的方法通常是涂刷肥皂溶液,如有漏气即出现鼓泡现象。钢瓶在使用过程中由于多种原因会产生一些缺陷,致使机械强度降低,如不及时发现或清除而任其发展,有可能会发生重大事故,因此必须对钢瓶进行定期检查。禁止使用未经检测合格、超过检测期限的钢瓶和生锈腐蚀严重的、报废钢瓶。 6.不可随意将钢瓶内的残液倾倒或排放。在日常生活中,有些客户为了图便利,多充气,错误认为残液就是水,因而随便将残液倒入地沟、下水道以及厕所内,这是十分危险的。因为残液倒出瓶外后,其残液比汽油还易挥发、扩散,当气体与空气混合达到一定浓度时,只要遇到丁点火星就会引起燃烧爆炸事故。因此禁止乱倒液化气残液,残液由燃气公司统一回收。 7.液化石油气钢瓶属于薄壁压力容器,所以钢瓶在使用过程中要轻拿轻放,禁止摔、砸、滚、踢。 8.钢瓶的使用是靠自然蒸发,其下部是液相,上部是气相。气体从角阀流出,经减压阀把压力降至使用压力供燃具使用。如果钢瓶卧放或倒立,这就使液体直接从角阀流出,减压阀失去降压作用,造成高压供气,这时容易导致液体外泄,泄漏出的液化石油气体积迅速扩大200多倍,遇明火即可能发生爆炸事故后果不堪设想。因此钢瓶禁止卧放或倒立。 9.液化石油气钢瓶的倒罐充装必须要有一套严格的操作规程和安全防火措施,现场杜绝明火和静电火花以及合格的连接部件,稍有差错极易造成爆炸、火灾和冻伤事故,因此相互之间严禁倒罐。 10.要正确掌握角阀、减压阀、燃具开关的使用方法,同时经常注意和教育孩子,不要去玩弄阀门开关,弄坏了开关或忘记关闭就会造成漏气,以致引起火灾或其它事故。每次使用前必须确认燃气具的开关在关闭的位置上方可通气点火。用气完毕后,牢记关闭钢瓶角阀防止漏气。关闭时不要用力过猛,以防角阀发生意外事故。严禁客户私自拆卸、检修角阀和减压阀。 11.气瓶角阀、减压阀、应使用质量合格的产品。胶管应使用专用耐油高压胶管,长度1.5~2米,不能穿墙越室,并要定时检查,发现老化或损坏要及时更换。胶管两端与燃气具和减压阀之间要用卡箍紧固,严禁泄漏。 12. 使用液化石油气时应打开厨房窗户,使厨房通风良好。如发现液化石油气泄漏应迅速关闭气源总开关;熄灭一切火种同时

常压储罐管理规定

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. Q/SHCL 常压储罐管理规定 中国石化股份公司长岭分公司发布

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 目次 前言.................................................................. 错误!未定义书签。 1 范围................................................................ 错误!未定义书签。 2 规范性引用文件...................................................... 错误!未定义书签。 3 职责................................................................ 错误!未定义书签。 3.1 机动工程处职责..................................................... 错误!未定义书签。 3.2 使用单位职责....................................................... 错误!未定义书签。 3.3 供应处职责......................................................... 错误!未定义书签。 4 管理内容与要求...................................................... 错误!未定义书签。 4.1 竣工验收........................................................... 错误!未定义书签。 4.2 生产使用管理....................................................... 错误!未定义书签。 4.3 维护检修管理....................................................... 错误!未定义书签。 4.4 资料管理........................................................... 错误!未定义书签。 4.5 常压储罐施工管理程序............................................... 错误!未定义书签。 4.6 常压储罐定期检验程序............................................... 错误!未定义书签。 5 检查考核............................................................ 错误!未定义书签。

液化石油气储罐倒罐(正式版)

文件编号:TP-AR-L1874 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 液化石油气储罐倒罐(正 式版)

液化石油气储罐倒罐(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 储罐倒罐是指将某个储罐内的液态液化石油气通 过输送设备和管道倒入另一储罐的操作过程。要求储 配站至少配备两台液化石油气储罐,其目的就是以备 相互倒罐。 一、储罐倒罐的原因 液化石油气倒罐,除了从储罐倒入中间储罐以备 汽化输往生产窑炉使用外,当遇有下列情况之一时, 必须进行倒罐。 1.已到检验周期,需要进行定期检验的储罐

根据《压力容器安全技术监察规程》第132条规定:安全状况等级为1~2级的压力容器,每6年至少进行一次内外部检验;安全状况等级为3级的压力容器,每隔3年至少进行一次内外部检验。液化石油气储罐在进行内外部检验之前,应将内存液化石油气全部倒出,并经清洗置换合格,以便检验人员进入罐内检查。 2.储罐的安全附件损坏,需进行修理时 液化石油气储罐的安全附件主要有:安全阀、压力表、温度计、液压计、降温冷却系统等。当这些部件损坏、失灵,需要修理或更换,有的附件还要进入罐内修复,即使不需动火,也应将液化石油气倒出,以免发生事故。 3.储罐的入孔盖、盲板、法兰出现泄漏或所属阀门损坏

液化石油气储存设备的分类及构造

安全管理编号:LX-FS-A17444 液化石油气储存设备的分类及构造 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

液化石油气储存设备的分类及构造 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 液化石油气常用的储存设备,有卧式圆筒罐和球罐两种。 一、卧式圆筒罐 卧式圆筒罐是一种压力容器,主要由筒体、封头、人孔、支座、接筒、安全阀、液位计、温度计及压力表等部件组成(见图1-10-1)。 卧式圆筒罐的形状特点是轴对称,圆筒体是一个平滑的曲面,应力分布比较均匀,承载能力较高,且易于制造,便于内件的设置和装拆,因而获得广泛的

应用,一般用于中小型液化石油气储配站。 图1-10-1 卧式圆筒罐 1-就地液位计接管;2-远传液位计接管;3-就地压力表接管;4-远传压力表接管;5-液相回流管接管; 6-安全阀接管;7-人孔;8-排污管;9,10-液相管接管;11-气相管接管; 12-就地温度计接管;13-远传温度计接管;14-固定鞍座;15-活动鞍座 二、球形罐 球形罐的容积较大,主要由壳体、人孔接管及拉杆等组成(见图1-10-2),其壳体又由不同数量的瓣

大型常压储罐的无损检测技术

大型常压储罐的无损检测技术 易燃易爆液体作为原料或产品普遍存在于化工生产过程中,大部分化工企业普遍分布着或大或小的易燃易爆液体LPG罐车|槽车|储罐区。如石油、石化及化工生产企业的石脑油、原油、乙醇、甲醇、汽油和丙酮等卧式液化气储罐区;仓储企业的石油库和危险化学品(例如硫酸)仓库等储罐区。常压卧式液化气储罐在原油和化学危险品的储存和输送过程中发挥着不可替代的作用,随着石油工业的发展,储罐的应用也不断地增长,各国政府都在积极扩大石油储备库,加大石油储备量,我国政府也在会同相关大企业在沿海地区建立一批10万m 的常压原油液化石油气储罐,提高战略石油储量,保障我国能源和化工原料的需求。由于易燃易爆液体储存构成危险源的临界量为20t,因此上述储罐区一般都属于重大危险源,必须重点进行安全管理。目前,国内石油、化工、航空、港口等企业拥有的5000 m 以上的大型储油罐数量在2 万台以上。常压液化气体储罐(立式)的失效形式主要为罐壁板的强度失效和罐底板的腐蚀泄漏失效,不仅危害安全生产,而且严重污染环境。常压储罐一般为立式圆筒形钢制焊接容器,为了确保安全使用,美国API 653 规定,每5 a(年)至少进行一次运行中常压液化气体储罐的外部宏观检查。若不知道腐蚀速率,超声测厚在线检测周期为5 a;知道腐蚀速率后,超声测厚在线检测周期应根据实际计算而定,但最长≯15 a。底板检测周期应根据实际计算确定,但最长≯20 a。国内按照国务院颁布的《危险品化学安全管理条例》要求,必须对化学危险品卧式液化气储罐进行定期检验,但目前具体年限和检验规则还没有明确的要求;SY/T 592标准规定,新建储罐第一次检测修理期限≯10 a,以后检验周期为5~7 a。 我国GBJ 128~1990《立式圆筒形钢制焊接油罐施工及验收规范》、SY/T 5921—2000(立式圆筒形钢制焊接原油罐修理规程》和美国API 653{油罐检验、修理、改造和重建》等标准对常压液化气储罐的材料、预制、组装、焊接、检验和修理等方面都有严格要求。制造储罐所采用的材料主要有碳钢和不锈钢,国内目前使用的材料主要是碳钢,按SH 3046—1992((石油化工立式圆筒形钢制焊接液化气体储罐设计规范》规定,允许使用的碳钢牌号有Q235 一AF,Q235A,20R,16Mn 和16MnR 等。目前国外主要采用声发射技术在线检测常压储罐罐壁板上的活性缺陷和罐底板上的腐蚀和泄漏信号,采用漏磁方法定期检测罐底板的腐蚀和泄漏,用超声检测技术检测罐壁板和顶板。国内对常压罐的定期检验近年来刚刚开始,主要采用超声、磁粉、射线、渗透检测和超声测厚等手段。国外现在广泛采用的声发射和漏磁扫查技术,我国还没有相应的检测标准及规范,正处于试验推广阶段。 1 制造和安装过程中采用的无损检测技术 常压储罐主要是利用预制成型的顶板、壁板和底板在现场组装后焊接而成。其中顶板和壁板大多 采用对接焊形式,底板大多采用搭接接头。对于常压储罐底圈和第一圈罐壁的钢板,当厚度≥23 mm 时,应按ZBJ 74003—1988((压力容器用钢板超声波探伤》进行检测,达到Ⅲ级标准者为合格。对于 屈服点≤390 MPa的钢板,应取钢板张数的20%进行抽查,当发现不合格的钢板时,应逐张检查;对 于屈服点>390 MPa 的钢板,应逐张进行检查。 1.1 罐底焊缝的无损检测要点 (1)所有罐底板焊缝(图1)应采用真空箱法进行严密性试验,试验负压≮53 kPa,无渗漏为合格。

30m3液化石油气储罐设计

课程设计任务书 题目:303m 液化石油气储罐设计 设计条件表 序号 项目 数值 单位 备注 1 最高工作压力 1.893 MPa 由介质温度确定 2 工作温度 -20~48 ℃ 3 公称容积(s V ) 30 3 m 4 装量系数(V ) 0.9 5 工作介质 液化石油气 6 使用地点 太原市,室内 管口条件: 液相进口管 DN50;液相出口管DN50;安全阀接口DN80;压力表接口DN25;气相管DN50;放气管DN50;排污管DN50。 液位计接口和人孔按需设置。

设计计算说明书 1. 储存物料性质 1.1物料的物理及化学特性 1.2 物料储存方式 常温常压保存,不加保温层。 2. 压力容器类别的确定 储存物料液氯为高度危害液体,工作压力为 1.303MPa ,储罐属低压容器。PV ≧0.2MPa.3m ,根据《压力容器安全技术监察规程》][2,所以设计储罐为第三类容器。 3.1储罐筒体公称直径和筒体长度的确定 公称容积g V =303m ,则 4 πi D L =30。 L D i = 3 1计算,得 i D =2.335m ,L =7.006.。 取D=2.3m,此时11] [查表 ,得封头容积1V =2×1.7588=3.517 3 m ,直边段长度为40mm 。计 算筒体容积2V =4824 .267588.1230=?-3 m , 4824 .264 12 =L D ,解得 mm L 3772.61=。取筒体长度为6.4m 。 10.307588.124.63.24 V 2 =?+?=)(真π 此时5%.3%0100%)/303010.30(/)(≤=?-=-V V V 真,所以合适,画图发现比例也合适。 最后确定公称直径为2300mm ,筒体长度为6400mm 。 3.2封头结构型式尺寸的确定

液化石油气站操作规程

操作规程汇编

目录 槽罐车卸车操作规程错误!未定义书签。 压缩机操作规程错误!未定义书签。 烃泵操作规程错误!未定义书签。 气瓶抽真空操作规程错误!未定义书签。 气瓶倒残操作规程错误!未定义书签。 气瓶充装供液操作规程错误!未定义书签。 气瓶充装操作规程错误!未定义书签。 倒罐操作规程错误!未定义书签。 液化石油气排放操作规程错误!未定义书签。消防泵操作规程错误!未定义书签。 事故应急救援操作规程错误!未定义书签。 配电房安全操作规程错误!未定义书签。

槽罐车卸车操作规程 卸车前准备 槽车按指定位置停好后,关闭发动机,拉紧手动制动器。 连接槽车与卸车台的静电接地线。 将气、液相软管与槽车气,液相接头连接,打开放气阀, 放出连接处管中的空气,然后关闭放气阀。 操作顺序 确定卸液罐,打开卸液罐的进液阀,气相阀。 打开压缩机房气相阀门组卸液罐的下排阀门。 打开气相阀门组卸车柱的上排阀门。 打开压缩机的进气阀门。 打开压缩机分离器的进出口阀门。 打开压缩机的出气阀门。 打开卸车柱气液相阀门。 打开槽车紧急切断阀,气液相软管上的球阀。 开启压缩机进行卸车。 当槽车内液相卸完后,关闭压缩机,关闭液相管路阀门。 关闭气相阀门组卸液罐的下排阀门,打开上排阀门;关闭气相阀门组装卸柱的上排阀门,打开下排阀门;或不改变阀门组阀的开、关状态,将压缩机四通阀的方向改变,将槽车内的气相抽至储罐内,直至槽车内的压力小于,但不低于。 关闭压缩机。 关闭槽车紧急切断阀。 关闭气相系统管路上的阀门,打开气液相软管末端放气阀,放出连接管处的液化气,卸下气液相软管,卸车结束。 注意事项 作业现场,严禁烟火,严禁使用易产生火花的工具和用品。 卸车人员必须穿戴防静电的工作服、防护手套。 卸车时卸车人员必须严密监视储罐的液位、压力、温度,发现异常立即停止卸气。卸车结束后,应检查阀门关闭情况。 填写《罐车卸车操作记录》并签字。

相关文档
最新文档