自动控制原理 ppt课件
合集下载
自动控制原理课件

• 即,原开环Bode图+校正环节Bode图+ 增益调整=校正后的开环Bode图
2.根轨迹法
在系统中加入校正装置,相当于增加 了新的开环零极点,这些零极点将使 校正后的闭环根轨迹,向有利于改善 系统性能的方向改变,系统闭环零极 点重新布置,从而满足闭环系统性能 要求。
§6.2 线性系统的基本控制规律
校正装置 Gc(s)
R(s)
+
+
+
原有部分 C(s)
Go(s)
-
(d)前馈补偿
对扰动
信号直
接或间
测 量 , R(s) +
+
形成附 加扰动
+ -
补偿通
道
校正装置 Gc(s)
原有部分 + Go2(s)
N(s)
+ 原有部分 C(s) Go2(s)
(e)扰动补偿
•串联校正和反馈校正属于主反馈回路之内的校正。
根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
+
+
-
-
原有部分 Go(s)
校正装置 Gc(s)
(b)反馈校正
C(s)
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 形和滤 波后再 送入反 馈系统
•知 识 要 点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。
2.根轨迹法
在系统中加入校正装置,相当于增加 了新的开环零极点,这些零极点将使 校正后的闭环根轨迹,向有利于改善 系统性能的方向改变,系统闭环零极 点重新布置,从而满足闭环系统性能 要求。
§6.2 线性系统的基本控制规律
校正装置 Gc(s)
R(s)
+
+
+
原有部分 C(s)
Go(s)
-
(d)前馈补偿
对扰动
信号直
接或间
测 量 , R(s) +
+
形成附 加扰动
+ -
补偿通
道
校正装置 Gc(s)
原有部分 + Go2(s)
N(s)
+ 原有部分 C(s) Go2(s)
(e)扰动补偿
•串联校正和反馈校正属于主反馈回路之内的校正。
根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
+
+
-
-
原有部分 Go(s)
校正装置 Gc(s)
(b)反馈校正
C(s)
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 形和滤 波后再 送入反 馈系统
•知 识 要 点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。
自动控制原理课件大全ppt课件

复 杂
自动控制系统对函数概念的理解:
程 度
加
自控原理的思维控制 方量式x:数控学制的系方统法,工被控程制的量意y识,深控制的语言
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 3
第一节 数学模型
数学模型的定义 能够描述控制系统输出量和输入量数量关系之间 关系的数学表达式
(t )
原因:后级电路的电流i2影响前级电路的输出电压uc1(t)。
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 15
第二节 时域数学模型-微分方程
负载效应
R1C1R2C2
d
2uo (t) dt 2
(R1C1
R2C2 )
duo (t) dt
(频域)
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 6
第一节 数学模型
数学模型建立(建模)的方法
解析法: 即依据系统及元部件各变量之间所遵循的 物理、化学定律列写出变量间的数学表达式,并经实 验验证,从而建立系统的数学模型
R1C1R2C2
d
2uo (t) dt 2
(R1C1
R2C2
R1C2
)
duo (t) dt
uo
(t )
ui
(t )
机械力学系统的数学模型: 相似系统
m
d
2 y(t dt 2
)
f
自动控制原理及应用课件

确保系统能够满足定位要求。
控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立
控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立
自动控制原理教学ppt

前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
《自动控制原理》课件第二章

Cen idRd
Ld
d id dt
ud
(2-4)
当略去电动机的负载力矩和粘性摩擦力矩时,机械运动
微分方程式为
M GD2 d n 375 d t
(2-5)
式中,M为电动机的转矩(N·m); GD2为电动机的飞轮矩
(N·m2)。当电动机的励磁不变时,电动机的转矩与电枢电
流成正比,即电动机转矩为
M=Cmid
称为相似量。如式(2-1)中的变量ui、uo分别与式(2-3)中的变
量f(t)、y(t)为对应的相似量。
2.1.2 线性定常微分方程求解及系统运动的模态 当系统微分方程列写出来后,只要给定输入量和初始条
件,便可对微分方程求解,并由此了解系统输出量随时间变 化的特性。
若线性定常连续系统的微分方程模型的一般表示形式为 y(n)(t)+a1y(n-1)(t)+···+any(t)=b0u(m)(t)+b1u(m-1)(t)+…+bmu(t)
x0
( x x0 )2
当增量x-x0很小时,略去其高次幂项,则有
y
y0
f (x)
f (x0)
d f (x) dx
x0
(x x0)
令Δy=y-y0=f(x)-f(x0),Δx=x-x0,K=(df(x)/dx)|x0,则线性
化方程可简记为Δy=KΔx。这样,便得到函数y=f(x)在工作
点A附近的线性化方程为y=Kx。
图2-4 小偏差线性化示意图
对于有两个自变量x1、x2的非线性函数f(x1,x2),同样 可在某工作点(x10,x20)附近用泰勒级数展开为
y
f (x1 ,x2 )
f
自动控制原理胡寿松第六版ppt

通常m < n;a1 , … , an; b0 , … , bm 均为实数; 首先将Xs的 分母因式分解,则有
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
自动控制原理课件:自动控制系统概述
本章思考题:
• 自动控制的实质是什么? • 闭环控制的结构使得其具有哪些优缺点? • 对自动控制系统的基本要求有哪些?
随动系统与自动调整系统 线性系统与非线性系统 连续系统和离散系统 单输入单输出系统和多输入多数出系统
1.5 自动控制系统的基本要求 稳定性 稳态性能指标 暂态性能指标
经典控制理论的主要分析方法:时域分析,频域分析
1.6 控制系统数字仿真实践的必要性
进行数字仿真实 验在某种意义上比理 论和试验对问题的认 识可以更为细致,不 仅可以了解问题的结 果而且可以通过设定 仿真条件等方式连续 动态、重复地显示控 制系统发展演化的中 间过程,方便了解直 观试验不易观测到的 整体与局部细节过程。
自动控制系统概述
目 录
CONTENTS
1.1 引言 1.2 开环控制和闭环控制 1.3 闭环自动控制系统的基本组成 1.4 自动控制系统的分类 1.5 自动控制系统的基本要求 1.6 控制系统数字仿真实践的必要性
1.1 引言
自动控制的基本概念
自动控制 自动控制是在没有人的直接干预下,利用物理装置对生产设备和
闭环控制的特点
控制器与被控对象之间既有信号的正向作用,又 有信号的反馈作用。
优点:抗干扰能力强,稳态精度高、动态性能好等。
缺点:设计不合理时,将出现不稳定。在开控制器 2-控制对象 3-检测装置
1.3 闭环自动控制系统的基本组成
1.4 自动控制系统的分类
工艺过程进行合理的调节,使期望的物理量保持恒定,或者按照一定 的规律变化。
自动控制系统 自动控制系统是为实现某一控制目标所需要的所有物理部件的有
机组合体。
1.2 开环控制和闭环控制
图1-1 电炉加热系统 1-控制器(调压器) 2-被控对象(电炉箱)
《自动控制原理》课件
集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域
《自动控制原理》PPT课件
pi)
0
即K*=0时:闭环极点 si=开环极点pi
当K*→∞时,闭环特征方程 :
m
(s
i 1
zi )
1 K*
n
(s
i 1
pi)
0
K*→∞
m
(s
i 1
zi
)
0
即K*→∞时,闭环极点 si=开环零点zi
当m 时n, 有n-m 条的终点在无穷远点
n
n
K*
s
i 1 m
pi
i 1
s
zi
K*
lim
s
s
i 1
m
s
i 1
pi zi
lim snm s
12
说明:
1)有限开环零、极点:zi,pi 无限开环零、极点:∞
根轨迹起于开环极点,终于开环零点
2)在绘制其他参数根轨迹时,可能会出现 m>n 的情况,
H(s)
其中:Mi (s) (s zi1 )( s zi2 ); Ni (s) (s pi1 )( s pi2 ) i 1,2
开环零点:M1(s)M2(s) 0 开环极点:N1(s)N2(s) 0
闭环传递函数:s
K1 M1 ( s) N 2 s
K*M1(s)M2(s) N1(s)N2(s)
1 绘制依据 ——根轨迹方程
R(s) _
C(s) G(s)
闭环的特征方程:1 G(s)H(s) 0
H(s)
即:G(s)H(s) 1 ——根轨迹方程(向量方程)
用幅值、幅角的形式表示:
G(s)H(s) 1
bao--自动控制-PPT课件
2024/1/6
自动控制
1
目录
1 2 3 4 5 6
2
2024/1/6
自控起源 自控基础知识 常用传感器与执行器 控制器及调节方法 具体案例分析 自控点位表
自控起源 ❖ 自动控制对于我们来说并不是一个陌生的概念,因为它已
经延伸到社会生活的各个领域: ❖ 如:在家中,为了可以舒适的生活,我们需要控制室内的
提供快速群组性设备名单的设立及管理 提供实时警报讯息、警报讯息记录
历史数据记录
提供对特殊监控点图形及文字趋势记录
报表打印程序 丰富的报表内容,提供检视及虚拟系统操作效率
12
2024/1/6
自控系统的设计原则 ❖ 1、使系统设备能够可靠、高效运行,减轻人员劳动强度; ❖ 2、确保建筑物内环境舒适 ❖ 3、提供系统优化运行和能耗控制方案,进行节能管理; ❖ 4、及时提供设备运行的有关信息,并进行统计与分析,作
下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状 态或参数自动地按照预定的规律运行。自动控制是相对人工控制概念 而言的。
❖ 自动控制的发展过程
❖ 第一代气动控制系统PCS(pneumatic control system); ❖ 第二代模拟式控制体系ACS(analogy control system); ❖ 第三代计算机控制体系CCS(computer control system); ❖ 第四代分布式数字控制系统DCS(distributed control ❖ system); ❖ 第五代现场总线控制系统FCS(fieldbus control system)。
盒,适合屋外安装。
17
2024/1/6
湿度传感器
❖ 湿度传感器的种类:根据原理 的不同可分为干湿球湿度计、 电容式、氯化锂电阻式、氯化 锂露点式等。 以干湿球湿度计为例:
自动控制
1
目录
1 2 3 4 5 6
2
2024/1/6
自控起源 自控基础知识 常用传感器与执行器 控制器及调节方法 具体案例分析 自控点位表
自控起源 ❖ 自动控制对于我们来说并不是一个陌生的概念,因为它已
经延伸到社会生活的各个领域: ❖ 如:在家中,为了可以舒适的生活,我们需要控制室内的
提供快速群组性设备名单的设立及管理 提供实时警报讯息、警报讯息记录
历史数据记录
提供对特殊监控点图形及文字趋势记录
报表打印程序 丰富的报表内容,提供检视及虚拟系统操作效率
12
2024/1/6
自控系统的设计原则 ❖ 1、使系统设备能够可靠、高效运行,减轻人员劳动强度; ❖ 2、确保建筑物内环境舒适 ❖ 3、提供系统优化运行和能耗控制方案,进行节能管理; ❖ 4、及时提供设备运行的有关信息,并进行统计与分析,作
下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状 态或参数自动地按照预定的规律运行。自动控制是相对人工控制概念 而言的。
❖ 自动控制的发展过程
❖ 第一代气动控制系统PCS(pneumatic control system); ❖ 第二代模拟式控制体系ACS(analogy control system); ❖ 第三代计算机控制体系CCS(computer control system); ❖ 第四代分布式数字控制系统DCS(distributed control ❖ system); ❖ 第五代现场总线控制系统FCS(fieldbus control system)。
盒,适合屋外安装。
17
2024/1/6
湿度传感器
❖ 湿度传感器的种类:根据原理 的不同可分为干湿球湿度计、 电容式、氯化锂电阻式、氯化 锂露点式等。 以干湿球湿度计为例:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
16
反馈控制系统的基本组成
一般的形式
输入信号 比较
输出信号
放大
执行
被控对象
测量
输入信号——系统控制目标的反映,是人的意志的具体体现
控制系统——主要完成对有关信号的变换、处理,发出控制
17
17
反馈控制系统的基本组成
一般组成:
被控对象—系统所控制和操纵的对象,输出被控量
控制器—接收变换和放大后的偏差信号,转化为被控制对象操作信号
• 主要针对线性定常系统,采用经典控制理论 • 时域响应,稳定性分析,根轨迹法
12
12
输入 +
e(t)
e(t)
_ 采样开关
保持器
输出 被控过程
输入 +
输出
AD
计算机
DA
放大器 执行器 被控对象
_
反馈装置
13
13
自动控制系统的分类
按数学模型分类 线性系统
特点:系统由线性元件构成,描述运动规律的数学模型为线性微分方程。运动方程一 般形式:
andd ncnt( tan )-1dd n-1c n-1 t( t )a1ddct(a0tc)(t) 式主要中特:点r(是t)具—有—叠系 加统b m 性输d 和入d m 齐量rm 次;t(性c 。(ttb )m )—-1 —d 系d m -统1 m r-输t1(出 量t )b 1d drt (b 0 tr)(t)
从数学角度上看,研究的是输入与输出之间的映7射关7
自动控制系统的分类
按信号流向分类
开环控制系统 特点:系统的输出端与输入端不存在反馈回路,输 出量对系统的控制作用不发生影响的系统。
图纸
程序 指令
微型计算机
放大器
执行机构 (步进电机)
工作机床
切削刀具
8
8
自动控制系统的分类
闭环控制系统(反馈控制系统)
自动控制原理
Automatic Control
绪论
1
1
教材及参定、谢克明编, 电子工业出版社
参考书
《Automatic Control Systems》 Benjamin C.Kuo,高等教育出版社 《自动控制原理》,李素玲编,西安电子科技大学出版社 《自动控制理论》,夏德矜编, 机械工业出版社
3
3
控制理论的发展
原始控制设备
没有理论指导
经典控制理论
单输入(SI)
现代控制理论
多输入输出(MIMO)
大系统理论/复杂系统理论 智能控制理论
4
4
控制理论的发展
经典控制理论
研究的主要对象是单输入、单输出——单变量系统。如:调节电压改变电机的速度; 调整方向盘改变汽车的运动轨迹等。
现代控制理论
2
2
概述
自动化(Automation 或 Automatization ) 自动控制
在脱离人的直接干预,利用控制装置(简称控制器)使被控对象(或生产过程等)的 某一物理量(如温度、压力、PH值等)准确地按照预期的规律运行。
自动控制系统
实现上述控制目的,由相互制约的各部分按一定规律组成的具有特定功能的整体。
特点:系统输出信号与测量元件之间存在反馈回路。 “闭环”这个术语的含义,就是将输出信号通过测量 元件反馈到系统的输入端,通过比较、控制来减小系 统误差。
微型计算机
放大器
执行机构
工作机床
切削刀具
位移
图纸
反馈测量元件
9
9
自动控制系统的分类
按输入信号分类
恒值控制系统(或称自动调节系统)
特点:输入信号是一个恒定的数值。工业生产中的恒温、恒压等自动控制系统都属于这一类型。 恒值控制系统可看成输入等于常值的过程控制系统。
根轨迹法和频率法
线性、非线性、定常、 时变系统
(多输入、多输出) 向量空间
(状态空间描述)
状态空间法
系统分析及给定输入、 揭示系统的内在规律,实
输出情况下的系统综 现在一定意义下的最优控
合
制与设计
6
6
控制系统的基本组成
控制系统的组成:输入部分、控制系统部分和输出部 分。
输入
输出
控制系统
从物理角度上看,自动控制研究的是特定激励作用下 的系统响应变化情况;
研究的主要对象是多输入、多输出——多变量系统。如,汽车看成是一个具有两个输 入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。计算机科学地发展, 极大地促进了控制科学地发展。
5
5
研究对象 描述方法 研究方法 研究目标
经典控制理论
现代控制理论
线性定常系统 (单输入、单输出)
传递函数 (输入、输出描述)
过程控制系统(或称程序控制系统)
特点:输入信号是一个已知的函数。系统的控制过程按预定的程序进行,要求被控量能迅速准确 地复现输入,如化工中的压力、温度、流量控制、数控机床等。
10
10
随动系统(或称跟踪系统)
特点:输入信号是一个未知变量。要求控制系统的输出量 能平稳地跟踪和复现输入信号变化。 如:火炮自动跟踪系统。 该系统要求有较好的跟踪能力。
动态过程(好/快)
在输入信号到到达稳态的变化全过程,包括离预期值的振荡和过渡时间。反例:高射 炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓, 仍然抓不住目标
19
19
课程主要任务
分析和设计反馈自动控制系统
建立系统的数学模型
• 传递函数,方框图,信号流图
根据模型分析系统特性
14
14
非线性系统
特点:在构成系统的环节中有一个或一个以上的非线性环节。 非线性的理论研究远不如线性系统那么完整,目前尚无通用的方法可以解决各类非线 性系统。 近似处理。
15
15
自动控制系统的分类
其他分类方式
按系统数学模型参数特性分:定常系统和时变系统 按功能分:温度控制系统、速度控制系统、位置控制系统等。 按元件组成分:机电系统、液压系统、生物系统等。
放大变换环节—将偏差信号变换为适合控制器执行的信号
校正装置—为改善系统动态和静态特性而附加的装置 反馈环节—测量变送环节
18
18
控制系统性能的基本要求
稳定性(稳)
能工作(即达到稳态),并在有一定的环境和参数变化时,还能有稳定“裕量”
稳态精度(准)
系统进入稳态时,稳态值与预期的差别越小越好
11
11
自动控制系统的分类
按输入信号数字特征来分类
连续系统
特点:系统各部分信号都是模拟的连续函数。目前工业中普遍采用的常规仪表PID调节器 控制的系统。
离散系统
特点:系统的某一处或几处信号以脉冲序列或数码形式传递的控制系统。系统中用脉冲 开关或采样开关,将连续信号转变为离散信号。其中离散信号以脉冲形式传递的系统又 叫脉冲控制系统,离散信号以数码形式传递的系统又叫数字控制系统。
16
反馈控制系统的基本组成
一般的形式
输入信号 比较
输出信号
放大
执行
被控对象
测量
输入信号——系统控制目标的反映,是人的意志的具体体现
控制系统——主要完成对有关信号的变换、处理,发出控制
17
17
反馈控制系统的基本组成
一般组成:
被控对象—系统所控制和操纵的对象,输出被控量
控制器—接收变换和放大后的偏差信号,转化为被控制对象操作信号
• 主要针对线性定常系统,采用经典控制理论 • 时域响应,稳定性分析,根轨迹法
12
12
输入 +
e(t)
e(t)
_ 采样开关
保持器
输出 被控过程
输入 +
输出
AD
计算机
DA
放大器 执行器 被控对象
_
反馈装置
13
13
自动控制系统的分类
按数学模型分类 线性系统
特点:系统由线性元件构成,描述运动规律的数学模型为线性微分方程。运动方程一 般形式:
andd ncnt( tan )-1dd n-1c n-1 t( t )a1ddct(a0tc)(t) 式主要中特:点r(是t)具—有—叠系 加统b m 性输d 和入d m 齐量rm 次;t(性c 。(ttb )m )—-1 —d 系d m -统1 m r-输t1(出 量t )b 1d drt (b 0 tr)(t)
从数学角度上看,研究的是输入与输出之间的映7射关7
自动控制系统的分类
按信号流向分类
开环控制系统 特点:系统的输出端与输入端不存在反馈回路,输 出量对系统的控制作用不发生影响的系统。
图纸
程序 指令
微型计算机
放大器
执行机构 (步进电机)
工作机床
切削刀具
8
8
自动控制系统的分类
闭环控制系统(反馈控制系统)
自动控制原理
Automatic Control
绪论
1
1
教材及参定、谢克明编, 电子工业出版社
参考书
《Automatic Control Systems》 Benjamin C.Kuo,高等教育出版社 《自动控制原理》,李素玲编,西安电子科技大学出版社 《自动控制理论》,夏德矜编, 机械工业出版社
3
3
控制理论的发展
原始控制设备
没有理论指导
经典控制理论
单输入(SI)
现代控制理论
多输入输出(MIMO)
大系统理论/复杂系统理论 智能控制理论
4
4
控制理论的发展
经典控制理论
研究的主要对象是单输入、单输出——单变量系统。如:调节电压改变电机的速度; 调整方向盘改变汽车的运动轨迹等。
现代控制理论
2
2
概述
自动化(Automation 或 Automatization ) 自动控制
在脱离人的直接干预,利用控制装置(简称控制器)使被控对象(或生产过程等)的 某一物理量(如温度、压力、PH值等)准确地按照预期的规律运行。
自动控制系统
实现上述控制目的,由相互制约的各部分按一定规律组成的具有特定功能的整体。
特点:系统输出信号与测量元件之间存在反馈回路。 “闭环”这个术语的含义,就是将输出信号通过测量 元件反馈到系统的输入端,通过比较、控制来减小系 统误差。
微型计算机
放大器
执行机构
工作机床
切削刀具
位移
图纸
反馈测量元件
9
9
自动控制系统的分类
按输入信号分类
恒值控制系统(或称自动调节系统)
特点:输入信号是一个恒定的数值。工业生产中的恒温、恒压等自动控制系统都属于这一类型。 恒值控制系统可看成输入等于常值的过程控制系统。
根轨迹法和频率法
线性、非线性、定常、 时变系统
(多输入、多输出) 向量空间
(状态空间描述)
状态空间法
系统分析及给定输入、 揭示系统的内在规律,实
输出情况下的系统综 现在一定意义下的最优控
合
制与设计
6
6
控制系统的基本组成
控制系统的组成:输入部分、控制系统部分和输出部 分。
输入
输出
控制系统
从物理角度上看,自动控制研究的是特定激励作用下 的系统响应变化情况;
研究的主要对象是多输入、多输出——多变量系统。如,汽车看成是一个具有两个输 入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。计算机科学地发展, 极大地促进了控制科学地发展。
5
5
研究对象 描述方法 研究方法 研究目标
经典控制理论
现代控制理论
线性定常系统 (单输入、单输出)
传递函数 (输入、输出描述)
过程控制系统(或称程序控制系统)
特点:输入信号是一个已知的函数。系统的控制过程按预定的程序进行,要求被控量能迅速准确 地复现输入,如化工中的压力、温度、流量控制、数控机床等。
10
10
随动系统(或称跟踪系统)
特点:输入信号是一个未知变量。要求控制系统的输出量 能平稳地跟踪和复现输入信号变化。 如:火炮自动跟踪系统。 该系统要求有较好的跟踪能力。
动态过程(好/快)
在输入信号到到达稳态的变化全过程,包括离预期值的振荡和过渡时间。反例:高射 炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓, 仍然抓不住目标
19
19
课程主要任务
分析和设计反馈自动控制系统
建立系统的数学模型
• 传递函数,方框图,信号流图
根据模型分析系统特性
14
14
非线性系统
特点:在构成系统的环节中有一个或一个以上的非线性环节。 非线性的理论研究远不如线性系统那么完整,目前尚无通用的方法可以解决各类非线 性系统。 近似处理。
15
15
自动控制系统的分类
其他分类方式
按系统数学模型参数特性分:定常系统和时变系统 按功能分:温度控制系统、速度控制系统、位置控制系统等。 按元件组成分:机电系统、液压系统、生物系统等。
放大变换环节—将偏差信号变换为适合控制器执行的信号
校正装置—为改善系统动态和静态特性而附加的装置 反馈环节—测量变送环节
18
18
控制系统性能的基本要求
稳定性(稳)
能工作(即达到稳态),并在有一定的环境和参数变化时,还能有稳定“裕量”
稳态精度(准)
系统进入稳态时,稳态值与预期的差别越小越好
11
11
自动控制系统的分类
按输入信号数字特征来分类
连续系统
特点:系统各部分信号都是模拟的连续函数。目前工业中普遍采用的常规仪表PID调节器 控制的系统。
离散系统
特点:系统的某一处或几处信号以脉冲序列或数码形式传递的控制系统。系统中用脉冲 开关或采样开关,将连续信号转变为离散信号。其中离散信号以脉冲形式传递的系统又 叫脉冲控制系统,离散信号以数码形式传递的系统又叫数字控制系统。